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Abstract: The paper deals with modelling a finite single-server queuing system with the 

server subject to disasters. Inter-arrival times and service times are assumed to follow the 

Erlang distribution defined by the shape parameter r or s and the scale parameter rλ or sμ 

respectively. We consider two modifications of the model − server failures are supposed to 

be operate-independent or operate-dependent. Server failures which have the character of 

so-called disasters cause interruption of customer service, emptying the system and balking 

incoming customers when the server is down. We assume that random variables relevant to 

server failures and repairs are exponentially distributed. The constructed mathematical 

model is solved using Matlab to obtain steady-state probabilities which we need to compute 

the performance measures. At the conclusion of the paper some results of executed 

experiments are shown. 
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1 Introduction 

Queuing theory is a useful tool which enables us to find characteristics of queuing 

systems. We can meet queuing systems in many sectors, for example in 

informatics, telecommunications, transport or economics. In general, a queuing 

system represents a system which serves customers coming into the system. There 

are a lot of possible ways to classify queuing systems − for example according to 

the type of the input process (Poisson, k Erlang etc.), the service discipline (FCFS, 

LCFS, priority queues etc.), the capacity of the queue intended for waiting 

customers (systems which do not permit waiting for the service, finite capacity or 

the infinity capacity of the queue) and so on. Another criterion of the queuing 

system’s classification is whether failures of servers are considered in the model. 

For a lot of queuing systems which have already been modelled it is assumed that 

no failures of servers can occur. Such queuing systems represent the first group of 

queuing systems often called reliable queuing systems. The second group of 

queuing systems is represented by the so-called unreliable queuing systems or 

queuing systems subject to server breakdowns. 
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Failures of the server have an obvious impact on the performance measures of the 

studied queuing system. It is clear, for example, that the mean number of the 

customers in the service for an unreliable queuing system should be less than the 

value of the same performance measure for a corresponding queuing system 

which is not subject to breakdowns. A lot of policies have been developed; the 

policies determine what happens with the customer being served when the server 

breaks down. In this paper we consider that failures of the server cause emptying 

of the queuing system; meaning that all customers in the system leave it without 

being served. Moreover, each customer coming into the system when the server is 

broken down is not willing to wait and leaves the system (or is rejected). Such 

type of server failures are often called disasters or catastrophes. 

Some authors have already modelled queuing systems with server failures having 

the character of disasters or catastrophes. Krishna Kumar et al. [1] solved an 

M/M/1 queuing system. Catastrophes of the server occur according to the Poisson 

process when the server is busy. Whenever a catastrophe occurs the system 

empties instantly and all newly arriving customers are lost during the server 

repair. Sudhesh [2] studied a similar M/M/1 queue which differs in the fact that 

customers entering the system become impatient when the server is down. The 

authors of papers [1] and [2] executed transient analysis of the systems, which 

means they derived formulas for system state probabilities as functions of the time 

t. Yechiali [3] examined an M/M/c queue with random disastrous failures which 

cause all present customers to be lost. Customers entering the system during 

repairing of the server are considered to be impatient. 

Queuing systems in which inter-arrival and service times are considered to follow 

the Erlang distribution have already been studied in the past. But in comparison 

with queues assuming exponential or general distributed inter-arrival and service 

times, the models of queuing systems under the assumption of the Erlang 

distribution are not so common, especially in the case of being subject to 

breakdowns. 

Let us look at some models of reliable queuing systems in which the Erlang 

distribution is assumed. Plumchitchom and Thomopoulos [4] studied a single-

server queuing system with Erlang distributed inter-arrival and service times. 

Wang and Huang [5] modelled a finite M/Ek/1 queuing system with a removable 

server (the server is turned off and turned on depending on the number of 

customers in the system). The authors further presented a cost function to 

determine the optimal policy. Cost and profit analysis for an M/Ek/1 queuing 

system with removable service station was carried out by Mishra and 

KumarYadav [6]. Yu et al. [7] developed a model of an M/Ek/1 queuing system 

with no damage service interruptions − it is assumed that after the first phase of 

service the service process can be interrupted with given probability. Binkowski 

and McCarragher [8] employed an Er/Ek/1/N queuing system to model the 

operation of a mining stockyard. An optimal management problem of the N-policy 

M/Ek/1 queuing system with a removable service station under steady-state 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 143 – 

condition was solved by Pearn and Chang [9]. In the paper [10] written by El-

Paoumy and Ismail a solution of a finite M
X
/Ek/1/N with bulk arrivals, balking and 

reneging is demonstrated. The matrix-geometric solution of the M/Ek/1 queue with 

balking and state-dependent service was demonstrated by Yue et al. [11]. Shawky 

[12] considered a single-channel service time Erlangian queue with finite source 

of customers, one server, finite storage capacity and balking and reneging. Adan et 

al. [13] analysed an Ek/Er/c queuing system. 

Some authors solved queues subject to failures under the assumption of the Erlang 

distribution which was most often applied to model service times. An M/Ek/1 

queue with server vacation was studied by Jain and Agrawal [14]. The authors 

further assumed that the server can break down when it is busy and the Poisson 

arrival rate is state dependent. Wang and Kuo [15] solved an M/Ek/1 machine 

repair problem − several identical machines operating under the care of an 

unreliable service station. The authors employed matrix geometric method to 

derive the steady-state probabilities and developed the steady-state profit function 

to find out the optimum number of machines. Kumar et al. [16] considered an 

M
X
/Ek/1 two-phase queuing system with a single removable server and with 

gating, server start-up and unpredictable breakdowns. 

In this paper we will focus on finite single-server queuing systems with the server 

subject to disasters, where inter-arrival times and service times follow Erlang 

distribution. Further we will assume that times between failures and times to 

repair are exponentially distributed. We employed a “direct” approach to model 

the queuing systems consisting of creating a state transition diagram, on the basis 

of the diagram we derive a linear equation system describing the system and the 

equation system is solved numerically using suitable software; in the paper we 

give a hint for solving in Matlab [17]. We hope that this paper makes the solving 

of finite Erlang distributed queuing systems possible primarily to non-

mathematicians who are not able to employ the most advanced mathematical 

methods used for analytical solving of queuing systems. 

The rest of the paper is organized as follows. In Section 2 we will discuss the 

necessary assumptions. In Section 3 we will present the mathematical model and 

its solving using Matlab. In Section 4 we will present results of some numerical 

experiments we did with the proposed model. Please note that the paper is an 

extended version of our conference paper presented at the conference 

Mathematical Methods in Economics 2012 [18]. 

2 General Assumptions and Notations 

Let us consider a single-server queuing system with a finite capacity equal to m, 

where m>1; that means the system has the capacity of m places for customers − 

single place in the service and m−1 places intended for the waiting of customers. 
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Customers waiting in the queue are served one by one according to the FCFS 

service discipline. 

Let inter-arrival times follow the Erlang distribution with the shape parameter r≥2 

and the scale parameter rλ; therefore the mean inter-arrival time is then equal to 



1


r

r
. Service times are also Erlang distributed with the shape parameter s≥2 

and the scale parameter sμ; thus the mean service time is equal to 


1


s

s
. We 

apply the Erlang distribution because it is able to model time duration of a lot of 

practical processes in comparison with the exponential distribution, which is often 

used. On the other hand, using the Erlang distribution brings some complications 

in modelling the system. However, single-server queues with the Erlang 

distribution of inter-arrival times or service times are still solvable using 

conventional methods. 

Let us assume that the server is successively failure-free (or available) and under 

repair. We will assume two modifications. For the first modification we consider 

that failures of the server can occur when the server is idle or busy − we say that 

server failures are operate-independent. In the case of the second modification we 

assume that failures of the server are so-called operate-dependent, which means 

the server can break down only when it is servicing a customer. Let us assume for 

both modifications that repair of the server is started immediately after 

breakdowns, and it immediately starts to operate when repaired. 

Now it is necessary to make some assumptions about failure frequency. Due to the 

fact that our modifications differ in assumptions about the occurrence of server 

failures we have to make different suppositions for individual modifications of the 

studied system. Assuming ergodicity (the system has the finite capacity), all of the 

possible states of the system can be summarized into three states: 

 The idle state − no customer is in the system (the system is empty) and 

the server is not broken down (is in working condition). Let us denote the 

equilibrium probability that the server is idle Pidle. 

 The busy state − i customers are in the system, where  mi ,...,1 ; that 

means a customer is in the service and (i−1) customers are waiting in the 

queue. The equilibrium probability that the system is found in the busy 

state is denoted with Pbusy. 

 The down state − no customer is in the system (as we are considering 

disasters) and the server is broken down and under repair; let us denote 

the equilibrium probability of this state Pdown. 

As these states are mutually exclusive and exhaustive, the sum of these 

probabilities has to be equal to 1: 

1 downbusyidle PPP . (1) 
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Let us start with the first modification. The server is successively available and 

broken down. Let the times the server is available be exponentially distributed 

with the parameter η meaning that the mean time the server is available equals the 

reciprocal value of the parameter η. Times to repair are exponentially distributed 

as well, but with the parameter ζ; the mean time to repair therefore equals to 


1
. It 

is clear that the server’s steady-state availability A (the ratio of time the server is 

available in expected value) is equal to: 

busyidle PPA 















11

1

     (2) 

and the server’s steady-state unavailability U (the ratio of time the server is broken 

down in expected value) is: 

downPAU 






1 . (3) 

And now we have to use similar assumptions about the second modification. Let 

us assume that times of overall server working between failures are exponentially 

distributed with the parameter η; the mean time of overall server working between 

failures is then equal to the reciprocal value of the parameter η. Times to repair are 

exponentially distributed as well, but with the parameter ζ; the mean time to repair 

is therefore equal to 


1
 as well. 

To express the server’s steady-state availability it is necessary to realize that in 

this modification the server failures are not as frequent as in the first modification 

for the same value of the parameter η. The value η has to be multiplied by a 

coefficient expressed by ratio 
busy

busyidle

P

PP 
 which takes into account the fact that 

the ratio of time the server is idle has no impact on failure frequency. Now, for the 

server’s steady-state availability we can write: 

 
  busyidle

busyidlebusy

busyidle

busy

busyidle

busy

busyidle

PP
PPP

PP

P

PP

P

PP

A 




















11

1

. (4) 

Realizing that  busyidledown PPP 1  and substituting it into (4) we can derive an 

expected formula in the form: 

UPP busydown 



. (5) 
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As far as the behaviour of customers at the moment of the failure is concerned, we 

will assume that the system empties after every breakdown of the server; and the 

system is empty when the server is down − i.e. failures represent so-called 

disasters (or catastrophes) in the system. 

Let us mention an example of such queuing system from railway transport. 

Marshalling yards represent important nodes on each railway net because they 

carry out inbound freight trains classification according to directions of individual 

wagons and form new outbound freight trains. Such yards are usually equipped 

with corresponding infrastructure consisting of reception sidings, a hump, sorting 

sidings and so on. The process of freight trains classification is carried out via the 

hump − a train of wagons is shunted from an arrival track over the hump and 

individual wagons (or set of wagons) are classified onto sorting sidings according 

to their directions. 

The hump can be considered to be the server, the inbound freight trains represent 

customers and the classification process is their service. However, the 

infrastructure belonging to the hump can break down from time to time. For 

example, some switches of the ladder below the hump can be broken down so 

wagons cannot be classified over the hump. In such cases we must carry out the 

classification process in a different way without using the hump. 

Another example of such queuing system could be a gas station that is open non-

stop. The station is equipped with one gas pump. Drivers arrive at the gas station 

in order to pump and pay. However, the gas station is a technical device so it can 

be subject to breakdowns. Because the gas station has only one gas pump, no 

driver can be served and therefore drivers do not arrive at the station when the gas 

pump is closed (under repair). Also all drivers who are at the station when the gas 

pump breaks down leave the station to pump somewhere else. 

As we stated before, the failures of the server have an impact on performance 

measures, therefore it is important to incorporate the failures in mathematical 

models of such queuing systems in order to get non-biased results. 

3 Mathematical Model 

To model the studied queuing system we applied the method of stages (see for 

example Kleinrock [19]). The method utilizes the fact that the Erlang distribution 

with the shape parameter r or s and the scale parameter rλ or sμ is a sum of r or s 

independent exponential distributions with the same parameter rλ or sμ. The 

process of each customer’s arrival consists of r exponential phases and the 

customer enters the system (or is rejected when the system is full) after finishing 

the last phase. Analogously, the service of each customer consists of s exponential 

phases and the customer leaves the system after finishing the last phase. Because 

the duration of all phases is exponentially distributed, the queue can be modelled 
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by a Markov chain. The reason for using the Erlang distribution is that this 

distribution is more general than the exponential distribution, which cannot be 

used in many practical examples; the Erlang distribution can be used to model 

random variables with a coefficient of variation less than 1. 

Let us consider a random variable K(t) being the number of the customers found 

in the system, a random variable I(t) being the number of finished phases of 

customer’s arrival, a random variable J(t) being the number of finished phases of 

customer’s service and a random variable F(t) being the number of broken servers 

at the time t. On the basis of the assumptions established in Section 2 it is clear 

that {K(t), I(t), J(t), F(t)} constitutes a Markov chain with the state space 

  1,0,0,1,...,0,0,,,,  fjrikfjik

  0,1,...,0,1,...,0,,...,1,,,,  fsjrimkfjik . 

Let us note that the first subset contains all the idle and down states and the 

second subset the busy states. The system is found in the state (k,i,j,f) at the time t 

if K(t)=k, I(t)=i, J(t)=j and F(t)=f; let us denote the corresponding probability 

P(k,i,j,f)(t). Complex information about Markov chains can be found for example in 

Bolch et al. [20]. 

Now we would like to set up the mathematical model of the system. At first, let us 

establish a group of variables αk, where k=0,1,...,m. The variable αk for k=0,1,...,m 

can take its value from the set {0,1}. The variables enable us to create the general 

model for both modifications (we can even create other modifications of the 

studied system using the variables, for example a modification in which the server 

breaks down only when the system is full). The variables will be used as a 

multiplier of the failure rate η. For the first modification we have αk=1 for 

k=0,1,...,m; that means the server can break down when idle (k=0) or busy 

(k=1,...,m). For the second modification we have α0=0 (the server can not break 

down when idle) and αk=1 for k=1,...,m (the server can break down when busy). 

Now we can illustrate the queuing model graphically on a state transition diagram 

(Figure 1). The vertices represent the particular states of the system and the 

directed edges indicate the possible transitions with the corresponding rates. 

Please note that in Figure 1 only those states are depicted which are necessary for 

the formation of an equation system. Due to the fact that some edges lead from 

nowhere or point to nowhere in Figure 1, let us comment on such examples: 

 The all red edges should point to states (0,0,0,1) up to (0,r−1,0,1) (the 

down states). But we did not draw all of them to these states because it 

would make the diagram more chaotic. 

 Some green and blue edges are duplicated because the states to which the 

edges point or from which they lead are not depicted in Figure 1. For 

example, the green edge exiting the state (0,0,0,0) leads to the state 

(0,1,0,0), which is not depicted in Figure 1. On the other hand, the green 

edge leading to the state (0,i,0,0) exits the state (0,i−1,0,0), which is not 
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depicted either. The blue edge exiting the state (1,0,0,0) leads to the state 

(1,0,1,0) (not depicted) and the blue edge leading to the state (1,0,j,0) 

exits the state (1,0,j−1,0) (not depicted too). 

 Some diagonal green edges lead from nowhere or point to nowhere for 

the same reason. For example the green edge exiting the state (1,r−1,0,0) 

leads to the state (2,0,0,0) (not depicted) and the green arc leading to the 

state (k,0,0,0) exits the state (k−1,r−1,0,0) (not depicted). 

 

Figure 1 

The state transition diagram 
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An original file containing the diagram can be downloaded from a web-page with 

the supplementary material − see [21]. 

Now we apply the global balance principle, which states that for each set of states 

X the flow out of the set X is equal to the flow into the set X (see Adan and 

Resing [22]). On the basis of the state transition diagram we are able to write the 

finite linear equation system of the steady-state balance equations in the form: 

       1,0,0,00,1,0,10,0,0,00 PPsPr s    , (6) 

for 1,...,1  ri : 

         1,0,,00,1,,10,0,1,00,0,,00 isiii PPsPrPr    , (7) 

for 1,...,1  mk : 

       0,1,0,10,0,1,10,0,0,   skrkkk PsPrPsr  , (8) 

for 1,...,1,1,...,1  rimk : 

       0,1,,10,0,1,0,0,,   sikikikk PsPrPsr  , (9) 

for 1,...,1  sj : 

     0,1,0,10,,0,11  jj PsPsr  , (10) 

for 1,...,1,1,...,1,,...,1  sjrimk :  

       0,1,,0,,1,0,,,   jikjikjikk PsPrPsr  , (11) 

for 1,...,1,1,...,2  sjmk : 

       0,1,0,0,,1,10,,0,   jkjrkjkk PsPrPsr  , (12) 

       0,0,1,0,0,1,10,0,0,   rmrmmm PrPrPsr  , (13) 

for 1,...,1  sj : 

         0,1,0,0,,1,0,,1,10,,0,   jmjrmjrmjmm PsPrPrPsr  , (14) 

for 1,...,1  ri : 

     0,0,1,0,0,,  imimm PrPsr  , (15) 

         





 

m

k

s

j
jkkr PPPrPr

1

1

0
0,,0,0,0,0,001,0,1,01,0,0,0  , (16) 

for 1,...,1  ri : 

         





 

m

k

s

j
jikkiii PPPrPr

1

1

0
0,,,0,0,,001,0,1,01,0,,0  . (17) 
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Subtracting the probability on the left side of each equation (6) − (17) we got an 

equation system which can be written in the matrix form: 

PQ0  T , 

where Q
T
 is the transposed infinitesimal generator matrix containing the transition 

rates of the Markov process and P is the unknown steady-state probability vector. 

Because the matrix Q
T
 is singular (the equation set is not linearly independent and 

one equation is redundant), it is necessary to incorporate the normalization 

condition in the form: 

    1
1

1

0

1

0
0,,,

1

0

1

0
,0,,0 













 

m

k

r

i

s

j
jik

r

i f
fi PP . (18) 

3.1 Solving Equation System using Matlab and Performance 

Measures 

We got the equation system of 12  rsrm  linear equations formed by 

equations (6) up to (18). The number of the unknown stationary probabilities is 

equal to rsrm 2 . 

To solve the corresponding equation system we can omit an equation, for example 

equation (6). Numerical solving of the system can be performed using Matlab. 

However, the applied state description in the form of (k,i,j,f) is four-dimensional 

and is very good for the formation of the equation system but is absolutely 

unsuitable for the computations in Matlab. Therefore we are obliged to establish 

an alternative one-dimensional state description in the following form: 

 The states (k,i,j,f) for k=1,...,m, i=0,...,r−1, j=0,...,s−1 and f=0 can be 

denoted using a single value   11  irjsrk , 

 The states (k,i,j,f) for k=0, i=0,...,r−1, j=0 and f=0,1 can be denoted using 

a single value 1 irfsrm . 

Applying the alternative one-dimensional state description we are able to 

transform the equation system in the form we need for using Matlab (we have to 

work with matrices). In Matlab we solve the linear system in the form: 

PAB  , 

where  T0;...;1;...;0B , where the value 1 is in the row 1 srm  (in the case 

that we omit the equation corresponding to the steady-state probability  0,0,0,0P ), A 

we get from the matrix Q
T
 in which the row 1 srm  is substituted by the row 

matrix  1;....;1;1  and P is the unknown steady-state probability vector. 
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After numerical solving of the equation system rewritten in the matrix form we 

obtain the stationary probabilities we need in order to compute performance 

measures of the studied system. 

On the basis of the known stationary probability vector P, the steady-state 

probability that the server is idle is equal to: 

 





1

0
0,0,,0

r

i
iidle PP , (19) 

the steady-state probability that the server is busy can be expressed by the 

formula: 

 











m

k

r

i

s

j
jikbusy PP

1

1

0

1

0
0,,,  (20) 

and for the equilibrium probability that the server is down it holds: 







1

0
1,0,,0

r

i
idown PP . (21) 

Now let us consider three performance measures − the mean number of the 

customers in the service ES, the mean number of the customers waiting in the 

queue EL and the mean number of the broken servers EF. All of them can be 

computed according to the formula for the mean value of discrete random 

variable, where the random variable  1,0S  is the number of customers in the 

service,  1,0  mL  the number of waiting customers and  1,0F  the number 

of broken servers. 

For the performance measures we can write following formulas: 

busyPES  , (22) 

    











m

k

r

i

s

j
jikPkEL

2

1

0

1

0
0,,,1 , (23) 

downPEF  . (24) 

The Matlab script (m.file) with defined function enabling computation of 

equilibrium probabilities (19), (20) and (21) and performance measures (22), (23) 

and (24) is published online − see [21]. 
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4 Results of Experiments 

We performed several experiments with both modifications to demonstrate 

solvability of the presented model and to obtain some graphical dependencies. 

Applied values of the model parameters are summarized in Table 1. 

Table 1 

Summary of applied values of the model parameters 

Parameter m [-] r [-] 
rλ 

[h-1] 
s [-] 

sμ 

[h-1] 
η [h-1] ζ [h-1] 

Value 5 2 18 2 20 
0.01 up to 0.1 

with step 0.01 

0.1 up to 1.0 with 

step 0.1 

Substituting the values summarized in Table 1 into the model rewritten in Matlab 

we are able to compute the steady-state probabilities of the system states and on 

the basis of them we get the performance measures ES, EL and EF using formulas 

(22), (23) and (24). 

The values of the mean number of the customers in the service ES are listed in 

Table 2. The upper value corresponds to the queuing system with operate-

independent server failures, the lower value to the queue with operate-dependent 

server failures. The data from Table 2 are further shown in Figure 2, the left graph 

corresponds to the operate-independent modification and the right graph to the 

operate-dependent modification of the studied queuing system. 

Comparing the values with each other we can see that increasing value of the 

parameter η causes the decrease of the performance measure ES. It is an expected 

fact because with increasing value of the parameter η server failures are more 

frequent. On the other hand, increasing value of the parameter ζ brings about the 

increase of the measure ES. This dependency could also be logically expected 

because increasing value of ζ causes shorter times to server repair. Let us note that 

the values of ES are greater for the second modification than for the first 

modification; it is also logical because it has to hold that the failure frequency of 

the operate-dependent modification is lower than the failure frequency of the 

operate-independent modification. The failure frequency of the operate-dependent 

modification was equal to the failure frequency of the operate-independent 

modification only in the case that the Pidle would be equal to zero. 

Table 2 

The mean number of the customers in the service ES 

η / ζ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.01 
0.769 0.806 0.819 0.825 0.829 0.832 0.834 0.835 0.837 0.837 

0.780 0.812 0.823 0.828 0.832 0.834 0.836 0.837 0.838 0.839 

0.02 
0.704 0.768 0.792 0.804 0.812 0.817 0.821 0.824 0.826 0.828 

0.722 0.779 0.799 0.810 0.817 0.821 0.825 0.827 0.829 0.830 
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0.03 
0.648 0.733 0.766 0.784 0.795 0.803 0.808 0.812 0.816 0.818 

0.673 0.748 0.777 0.793 0.802 0.809 0.814 0.817 0.820 0.822 

0.04 
0.601 0.701 0.743 0.765 0.779 0.789 0.796 0.801 0.806 0.809 

0.630 0.720 0.757 0.776 0.788 0.797 0.803 0.808 0.811 0.814 

0.05 
0.560 0.672 0.720 0.747 0.764 0.775 0.784 0.791 0.796 0.800 

0.592 0.694 0.737 0.760 0.775 0.785 0.793 0.798 0.803 0.806 

0.06 
0.524 0.645 0.699 0.729 0.749 0.762 0.772 0.780 0.786 0.791 

0.558 0.670 0.718 0.745 0.762 0.774 0.782 0.789 0.794 0.799 

0.07 
0.493 0.620 0.679 0.713 0.734 0.750 0.761 0.770 0.777 0.782 

0.528 0.648 0.700 0.730 0.749 0.763 0.773 0.780 0.786 0.791 

0.08 
0.464 0.597 0.660 0.697 0.721 0.738 0.750 0.760 0.768 0.774 

0.501 0.626 0.684 0.716 0.737 0.752 0.763 0.771 0.778 0.784 

0.09 
0.439 0.576 0.642 0.681 0.707 0.726 0.739 0.750 0.759 0.766 

0.477 0.607 0.667 0.703 0.726 0.742 0.754 0.763 0.770 0.776 

0.10 
0.417 0.555 0.625 0.666 0.694 0.714 0.729 0.741 0.750 0.757 

0.455 0.588 0.652 0.690 0.714 0.732 0.745 0.755 0.763 0.769 

Figure 2 

The dependence of ES on the parameters η and ζ (first modification on the left, second modification on 

the right) 

Table 3 

The mean number of the customers waiting in the queue EL 

η / ζ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.01 
1.180 1.236 1.256 1.267 1.273 1.277 1.280 1.282 1.284 1.285 

1.197 1.246 1.263 1.271 1.277 1.280 1.283 1.285 1.286 1.287 

0.02 
1.076 1.173 1.210 1.229 1.241 1.249 1.255 1.259 1.263 1.265 

1.104 1.190 1.222 1.239 1.249 1.255 1.260 1.264 1.267 1.269 

0.03 
0.987 1.116 1.167 1.194 1.211 1.222 1.231 1.237 1.242 1.246 

1.024 1.139 1.184 1.207 1.222 1.232 1.239 1.244 1.248 1.252 

0.04 
0.912 1.064 1.126 1.160 1.182 1.196 1.207 1.215 1.222 1.227 

0.955 1.092 1.148 1.177 1.196 1.209 1.218 1.225 1.230 1.235 
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0.05 
0.846 1.015 1.088 1.128 1.154 1.171 1.184 1.194 1.202 1.209 

0.894 1.049 1.113 1.149 1.171 1.186 1.197 1.206 1.213 1.218 

0.06 
0.789 0.971 1.052 1.097 1.127 1.147 1.162 1.174 1.183 1.191 

0.840 1.008 1.081 1.121 1.147 1.164 1.177 1.187 1.195 1.202 

0.07 
0.738 0.930 1.018 1.068 1.101 1.124 1.141 1.154 1.164 1.173 

0.791 0.971 1.050 1.095 1.123 1.143 1.158 1.169 1.178 1.186 

0.08 
0.693 0.891 0.985 1.040 1.076 1.101 1.120 1.135 1.146 1.156 

0.748 0.935 1.021 1.069 1.101 1.123 1.139 1.152 1.162 1.170 

0.09 
0.653 0.856 0.955 1.013 1.052 1.079 1.100 1.116 1.128 1.139 

0.709 0.902 0.993 1.045 1.079 1.103 1.121 1.135 1.146 1.155 

0.10 
0.617 0.823 0.926 0.987 1.029 1.058 1.080 1.097 1.111 1.122 

0.673 0.871 0.966 1.022 1.058 1.084 1.103 1.118 1.130 1.140 

The values of the mean number of the customers waiting in the service EL are 

listed in Table 3 and graphically shown in Figure 3. We can see the same 

character of dependencies as in the case of the performance measure ES. 

Figure 3 

The dependence of EL on the parameters η and ζ (first modification on the left, second modification on 

the right) 

The values of the mean number of the broken servers EF are listed in Table 4 and 

graphically shown in Figure 4. It is logical to expect that the measure EF should 

increase with increasing value η and decrease with increasing value of ζ − both 

expectations were confirmed by reached results. Furthermore, we can check the 

correctness of reached results using formulas (3) and (5). 
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Figure 4 

The dependence of EF on the parameters η and ζ (first modification on the left, second modification on 

the right) 

Table 4 

The mean number of the broken servers EF 

η / ζ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

0.01 
0.091 0.048 0.032 0.024 0.020 0.016 0.014 0.012 0.011 0.010 

0.078 0.041 0.027 0.021 0.017 0.014 0.012 0.010 0.009 0.008 

0.02 
0.167 0.091 0.063 0.048 0.038 0.032 0.028 0.024 0.022 0.020 

0.144 0.078 0.053 0.041 0.033 0.027 0.024 0.021 0.018 0.017 

0.03 
0.231 0.130 0.091 0.070 0.057 0.048 0.041 0.036 0.032 0.029 

0.202 0.112 0.078 0.059 0.048 0.040 0.035 0.031 0.027 0.025 

0.04 
0.286 0.167 0.118 0.091 0.074 0.062 0.054 0.048 0.043 0.038 

0.252 0.144 0.101 0.078 0.063 0.053 0.046 0.040 0.036 0.033 

0.05 
0.333 0.200 0.143 0.111 0.091 0.077 0.067 0.059 0.053 0.048 

0.296 0.174 0.123 0.095 0.078 0.065 0.057 0.050 0.045 0.040 

0.06 
0.375 0.231 0.167 0.130 0.107 0.091 0.079 0.070 0.063 0.057 

0.335 0.201 0.144 0.112 0.091 0.077 0.067 0.059 0.053 0.048 

0.07 
0.412 0.259 0.189 0.149 0.123 0.104 0.091 0.080 0.072 0.065 

0.370 0.227 0.163 0.128 0.105 0.089 0.077 0.068 0.061 0.055 

0.08 
0.444 0.286 0.211 0.167 0.138 0.118 0.103 0.091 0.082 0.074 

0.401 0.251 0.182 0.143 0.118 0.100 0.087 0.077 0.069 0.063 

0.09 
0.474 0.310 0.231 0.184 0.153 0.130 0.114 0.101 0.091 0.083 

0.429 0.273 0.200 0.158 0.131 0.111 0.097 0.086 0.077 0.070 

0.10 
0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100 0.091 

0.455 0.294 0.217 0.172 0.143 0.122 0.106 0.094 0.085 0.077 

Conclusions 

In the paper we discussed two modifications of an Er/Es/1/m queuing system 

subject to disasters which cause loss of all customers in the system and balking all 

customers incoming to the system while the server is under repair. To solve the 
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proposed model using Matlab, we developed the one-dimensional system state 

description, which enabled us to rewrite the linear equation system into the matrix 

form. After numerically solving the equation system we got the steady-state 

probabilities we need for computing the performance measures. We focused on 

three performance measures – ES, EL and EF. 

In the experimental part of the paper we presented the dependencies of the 

performance measures on the parameters of η and ζ defining the failure frequency 

and the repair rate. Our experiments confirmed that the presented mathematical 

model can be successfully applied for solving such queuing system. The 

experiments showed the expected dependencies: 

 The increasing value of η decreases the value of ES and the increasing 

value of the parameter ζ increases the value of ES. For the same values of 

η and ζ, the value of ES is lower for the operate-independent modification 

than for the operate-dependent modification. 

 The values of EL evince the same character of dependency as the values 

of ES. 

 The value of EF increases with the increasing value of η and decreases 

with the increasing value of ζ. The values of EF are greater for the 

operate-independent modification than for the operate-dependent 

modification. 
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