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Abstract: In this paper we show how a genetic scheduler algorithm can be applied to solve 
a hard multi-project optimization problem with shared resources. The resources work in 
multiple operation modes, so they can substitute each other (but with different efficiency). 
We consider processes which have quite complex structure, i.e., it allows the existence of 
parallel sub-processes. This problem is extremely complex, there is no chance to get the 
optimal solution in reasonable time. The proposed algorithm intends to find a near-optimal 
solution, where the goal of the optimization is the minimization of the makespan of the 
schedule. We present the genetic operations of the algorithm in detail. We fill the pool of 
populations only with feasible solutions, but making possible the discovery of the whole 
search space. The feasibility of a schedule is ensured by excluding time-loops regarding the 
sequence of the tasks both in their process and in the queue of their resource. We executed 
several tests for determining the (hopefully) optimal parameters of the algorithm regarding 
the number of generations, the population size, the crossover rate and rate of the mutation. 
We applied the algorithm for many problem classes where the parameters of the input are 
fixed or randomly chosen from some interval. 

Keywords: multi-project scheduling; genetic algorithm; multi-purpose machines 

1 Introduction 
Scheduling is a widespread research area of operations research. The classes of the 
problem differs, e.g. in the number of the resources (machines) or in the properties 
of the tasks to schedule. Two important versions of the problem are the flow-shop 
problem [5, 10] and the job-shop problem. [2, 11] 

As the basic scheduling problem ‒ called job-shop scheduling problem (JSP), 
where a set of jobs have to be scheduled on a set of machines regarding certain 
criterion(s) ‒ is NP-hard [6], heuristics and more effective meta-heuristics are 
often used for real-life sized problems instead of exact solution methods. An 
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effective meta-heuristic is genetic algorithm (GA), in [15] Zhang et al. reviewed 
some of GA applications for flexible JSP and introduced their own problem 
representation and genetic operators. It was followed by the presentation of their 
computational results on common benchmark data sets. Next to GA other 
heuristics like tabu search [7] or simulated annealing [9] are also popular methods. 

The application area of different scheduling problems has a wide spectrum. In 
computer architecture and parallel software planning tasks have to be scheduled 
on processors (e.g. on CPU and GPU), in industrial or business applications 
workflow elements have to be assigned to resources and scheduled in time, while, 
e.g. in software project scheduling project-tasks have to be scheduled mainly on a 
human-based resource set usually in a dynamic manner. The different application 
areas differ in their requirements and have their own specialities. 

Nevertheless, the complexity of the basic problem remains, what necessitates the 
usage of heuristics. Votava [14] simulated two heuristic algorithms (named HEFT 
and CPOP) for task scheduling in a networking subsystem. Alba and Chicano [1] 
shown that GA is an appropriate tool for project scheduling and can be applied 
efficiently for automated task assignment. Chang et al. [4] - extending their former 
work [3] - presented a GA with improved representation and parameters, which 
took into account more human resource factors. Moreover, as the representation 
introduced a timeline axis as a third dimension (next to tasks and resources), it 
made possible the suspension and resumption of tasks and the reassignment of 
resources. 

Sadegheih used simulated annealing for determining the effect of GA parameters 
on the schedule [13]. In his work he dealt with 8-jobs and 7-machines problems 
and found the importance of mutation rate and not significant effect of crossover 
rate. 

Joo et al. [8] dealt with multi-project scheduling with multimode resources and 
applied activity splitting and simulated annealing. In this paper, a genetic 
algorithm for scheduling in multi-project environment is presented, where 
resources may have multiple functions, so they can substitute each other. The 
representation of a schedule is shown, the developed crossover and mutation 
genetic operators are introduced. The algorithm is able to cover the whole feasible 
search space during its operation. The paper emphasizes the method for 
guarantying the feasibility of the schedule by eliminating possible time loops what 
could arise after applying genetic operators. 

Pongcharoen et al. [12] dealt with similar sized problem as ours (similar number 
of resources and tasks), too, however, their problem had not such a complex 
structure. They investigated population size, generation number, mutation and 
crossover rates. While determining optimal parameters of GA they also described 
how they face and eliminate time-loop (they called it deadlock). If they got an 
infeasible schedule, they swapped the problematic action with a random one. In 
our paper we handle this problem in other way. 
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In Section 2 the model of the problem is introduced and described formally. 
Section 3 presents the genetic algorithm and its operators we applied. In Section 4 
we summarize the computational results, while Section 5 concludes our work. 

2 The Example Processes and the Model of the 
Problem 

2.1 The Basic Example Processes 
This subsection introduces the problem we worked on, for illustrative purposes. In 
our simulations we used two kinds of processes: the tested production of 15 pieces 
of sensor type I and 20 pieces of sensor type II. Altogether, it means that we deal 
with 35 processes, parallel. The processes of producing one of each types of these 
products are illustrated in Figure 1. 

 
Figure 1 

The two types of our example processes 

In the figure we can see the sequence of tasks in processes. Tasks without caption 
are transportation tasks from one resource to another. The initial and final 
destination is the depot. The duration time of each task depends on the resource 
which operates, as Table 1 shows. In the table Tr. marks transportation task, Tr.d. 
holds for a transportation device followed by the abbreviated places of work 
phases (moreover d stands for the depot). In our example all the transportation 
devices have to get back to their starting place if we want to reuse them, and it 
takes the same time as to carry the materials to a place of work. For example, a 
transportation device can transfer a material from the depot to the place of 
temperature test in 3 time units, however, we have to wait 6 time units if we want 
to reuse it. The table also contains how many pieces of the different resources are 
available at all. 

In our example we apply setup time only in case of temperature chamber and 
vibration chamber. If they change their operation mode between temperature test 
and vibration test, symmetrical setup times are used. For temperature chamber we 
defined 5 time units as setup time and for the vibration chamber we determined 
the setup time as 6 time units. 
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Table 1 
Duration time of each task related to its resource usage /in time units/ 

 Tr. 
d-t 

Temp. 
test 

Tr. 
t-s 

Solde-
ring 

Tr. 
s-d 

Tr. 
d-c 

Cab-
ling 

Tr. 
c-s 

Tr. 
t-v 

Vibr. 
test 

Tr. 
v-s 

Temperature 
chamber (3 
pieces) 

- 6 - - - - - - - 10 - 

Cable 
producer (2 
pieces) 

- - - - - - 6 - - - - 

Vibration 
chamber (1 
piece) 

- 10 - - - - - - - 6 - 

Solderer (2 
pieces) 

- - - 4 - - - - - - - 

Tr.d. d-t (1 
piece) 

3 - - - - - - - - - - 

Tr.d. d-c (1 
piece) 

- - - - - 5 - - - - - 

Tr.d. t-s (1 
piece) 

- - 4 - - - - - - - - 

Tr.d. t-v (1 
piece) 

- - - - - - - - 3 - - 

Tr.d. c-s (1 
piece) 

- - - - - - - 3 - - - 

Tr.d. v-s (1 
piece) 

- - - - - - - - - - 5 

Tr.d. s-d (1 
piece) 

- - - - 4 - - - - - - 

Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;  
v: vibration test; s: soldering 

An example for a schedule can be seen in Figure 2 for a scenario where 3 
processes exist: 2 of them test and produce sensor type I and 1 of them tests and 
produces sensor type II. In the figure (Figure 2) each rectangle of a task contains 
its process ID. Moreover, empty boxes represent the duration while a 
transportation device reaches back to its start place. 

 
Figure 2 

A simple schedule as a result of our algorithm  

Several similar problems − with the same process structure, conditions and 
constraints − can be found in real-life practice (e.g. producing and packing a 
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porcelain in a manufacture requires parallel execution of tasks packaging material 
preparation and creation of the porcelain). There can be orders that require pure 
sculpted porcelain, while other orders necessitate paint. Human resources of the 
manufacture are specialized: there are potters and painters. Painters are better (and 
quicker) in paint and potters are better in sculpting. However, they can execute the 
task of the other specialists, too, but significantly slower. When both the porcelain 
and the packaging material are ready, the porcelain has to be packaged by a third 
type of specialist of the company. 

Next to this second example, other industrial/business processes may have the 
same characteristics. 

2.2 Difficulties of the Problem 
The complexity of the algorithm showed in this paper origins from the properties 
of the problem that we intend to solve. The problem class is a scheduling problem 
where resources have to be allocated to carry out the tasks of a process and the 
allocations have to be ordered in the time domain. However, as common practical 
scheduling problems, the basic problem has some other properties: 

• we deal with multiple processes parallel, which may share in the 
resources they use, 

• each process can include parallel substructure(s) of tasks instead of a 
fully sequential order of its ingredient tasks, 

• resources can operate in different operation modes. There are tasks, 
which can be carried out by more than one resources (usually with 
different parameters like operation time), and there are resources, which 
are able to do different tasks. It results in resource-substitution 
possibilities. 

These properties make the problem extremely complex, e.g. related to the 
common NP-hard Pm||Cmax problems. 

2.3 Notations 
The input is given as follows: 

• P = {p1, ..., pn} is the set of processes. 

• Ti = {ti,1, ..., ti,m} is the set of tasks of process pi. 

• T = ᴗn
i=1Ti is the set of the tasks of all processes. 

• Pre(ti,j) С Ti is the subset of the tasks of process pi (what can be an empty 
set) which are direct prior tasks to task ti,j in process pi. This set may have 
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more than one element because of the possible parallel structure of 
processes. 

• allPre(ti,j) С Ti is the subset of the tasks of process pi (what can be an 
empty set) which are prior tasks to task ti,j in process pi. E.g. if ti,b є 
Pre(ti,c) and ti,a є Pre(ti,b) then ti,a є allPre(ti,c). 

• R = {r1, ..., ro} is the set of resources. 

• capable: R x T → {0,1} is a function which describes whether a resource 
is able to carry out a task. 

• dur(ti,j,rk) є Nshows the duration time of carrying out task ti,j by resource 
rk, where capable(rk,ti,j) = 1. 

The schedule-related variables are: 

• allocatedRes(ti,j) є R is the resource which is assigned by the scheduler to 
task ti,j. 

• start(ti,j) є N is the start time of task ti,j of process pi. 

• end(ti,j) є N is the end time of task ti,j of process pi. 

• makespan(P) = max(end(ti,j)) - min(start(tk,l)) for all ti,j, tk,l є T. 

2.4 Constraints 
The constraints for determining start(ti,j) and end(ti,j) for all ti,j є T are: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑖𝑖,𝑗𝑗) ≠ ∅,∀𝑎𝑎𝑖𝑖,𝑗𝑗 ∈ 𝑇𝑇            (2.1) 

So, each task has to be carried out by a resource. 

𝑎𝑎𝑒𝑒𝑎𝑎(𝑎𝑎𝑖𝑖,𝑗𝑗)  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎(𝑎𝑎𝑖𝑖,𝑗𝑗) + 𝑎𝑎𝑑𝑑𝑠𝑠(𝑎𝑎𝑖𝑖,𝑗𝑗 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎𝑖𝑖,𝑗𝑗)),∀𝑎𝑎𝑖𝑖,𝑗𝑗 ∈ 𝑇𝑇         (2.2) 

The above constraint represents the connection between the start and finish time 
of a task regarding the related operation time. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎�𝑎𝑎𝑙𝑙,𝑚𝑚� ≥ 𝑎𝑎𝑒𝑒𝑎𝑎�𝑎𝑎𝑖𝑖,𝑗𝑗�𝑎𝑎𝑠𝑠 𝑎𝑎𝑒𝑒𝑎𝑎�𝑎𝑎𝑙𝑙,𝑚𝑚� ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎�𝑎𝑎𝑖𝑖,𝑗𝑗�,∀𝑎𝑎𝑖𝑖,𝑗𝑗, 𝑎𝑎𝑙𝑙,𝑚𝑚 ∈ 𝑇𝑇, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖,𝑗𝑗 ≠
𝑎𝑎𝑙𝑙,𝑚𝑚 𝑎𝑎𝑒𝑒𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑎𝑎𝑖𝑖,𝑗𝑗� ≡ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑎𝑎𝑙𝑙,𝑚𝑚�              (2.3) 

This constraint specifies that the tasks allocated to the same resource can not 
overlap each other. 

𝑎𝑎𝑒𝑒𝑎𝑎(𝑎𝑎𝑖𝑖,𝑎𝑎) ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎(𝑎𝑎𝑖𝑖,𝑏𝑏),∀1 ≤ 𝑖𝑖 ≤ 𝑒𝑒,∀𝑎𝑎𝑖𝑖,𝑎𝑎, 𝑎𝑎𝑖𝑖,𝑏𝑏 ∈ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖,𝑎𝑎 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎(𝑎𝑎𝑖𝑖,𝑏𝑏)       (2.4) 

The final constraint describes that a task of a process can not start before its prior 
tasks of the same process are not finished. 

We look for a schedule where all constraints 2.1-2.4 are satisfied and the 
makespan(P) is minimal. 
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3 The Genetic Algorithm 
The scheduling of real workflows − especially in multi-project environment − 
requires more and more computational power regarding the increasing of the 
number and complexity of the processes. It is the reason for preferring heuristics 
to exact solvers for solving them. This paper presents a genetic algorithm which 
was developed for scheduling workflows/processes even if they have the 
properties introduced in Section 2. 

Genetic Scheduler (GS): 

The GS has the following steps: 

Step 1. An initial population is filled up by random instances. 

Step 2. Evaluation of the instances of the initial population (a fitness value is 
calculated for each of the instances of the population). 

Step 3. Applying elitism the best x percent of the generation is copied into the 
new generation. 

Step 4. The remaining instances of the new generation are selected and copied 
randomly from the previous generation. 

Step 5. We apply crossover genetic operator to the new generation: a randomly 
selected instance of the new generation will be replaced by the resulted child 
instance. 

Step 6. We apply mutation genetic operator to the instances of the new generation. 

Step 7. Fitness value is calculated for each of the instances of the new generation. 

Step 8. While the desired generation number is not reached: GOTO Step 3. 

The details of the algorithm are presented in the following subsections. 

3.1 Representation 
The genetic algorithm requires a solution − a schedule − to be represented by a 
coding technique that results a coded instance, on what, it is easy to apply the 
genetic operators and what is unambiguous. Since an instance is unambiguously 
described by the resource-assignment and the sequence of the tasks at each of the 
resources − what clearly defines the timing of the task as we intend to minimize 
the makespan so start each task as soon as possible −, it is enough only to store 
these data as an instance representation. We chose a two dimensional data 
structure (PS) for this type of representation: the first dimension represents the 
resources while the second dimension shows the sequenced tasks assigned to the 
resources. 

PS is a pseudo-instance of a schedule, where 
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𝑎𝑎𝑃𝑃𝑖𝑖𝐶𝐶 𝑇𝑇 𝑎𝑎𝑒𝑒𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑎𝑎𝑘𝑘,𝑙𝑙� = 𝑠𝑠𝑖𝑖  ∀𝑎𝑎𝑘𝑘,𝑙𝑙 ∈ 𝑎𝑎𝑃𝑃𝑖𝑖 ,∀1 ≤ 𝑖𝑖 ≤ 𝑎𝑎  
𝑎𝑎𝑒𝑒𝑎𝑎 𝑎𝑎𝑃𝑃𝑖𝑖 ≠ 𝑎𝑎𝑃𝑃𝑗𝑗  𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗, 

moreover PSi,jє T means that this task is assigned to resource ri and is the jth 
ordered element among the tasks assigned to ri. 

 
Figure 3 

The representation of an instance 

Figure 3 illustrates a simple instance as an example for the coding we apply. As 
we have introduced, ti,j signs the jth task of the ith process. For the sake of 
perspicuity, we used for the illustration of the tasks which belong to the same 
process the same color. As the coding schema shows, the representation includes 
only sequences, it has not exact timing data neither task duration. 

3.2 Population 
We create the initial population of the genetic algorithm populated by instances 
presented in subsection 3.1. The cardinality of the population is determined by an 
a priori set variable (populationSize). 

All of the instances are created as follows: 

Step 1. Select randomly one of the unscheduled processes until there exist at least 
one of them. 

Step 2. For each task of the selected process, starting from the first one taking into 
account the sequence of the tasks, do the followings: 

Step 2.1. Collect all the resource which are capable to carry out the task. 

Step 2.2. Select randomly one of these resources. 

Step 2.3. Select a random feasible position between the ordered tasks of the 
selected resource. 

Step 2.4. Place the task at the selected position (update the instance.) 

Step 3. GOTO Step 1. 

The result of the algorithm is an instance. The number of the instances to create is 
shown by the population size parameter of the genetic algorithm. 
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However, step 2.3 is critical: the generated instance has to be feasible. By 
selecting a nonlegal position for the task to insert a time-loop may evolve. It can 
happen in two ways: 

A In the ordered sequence of the tasks of a resource a later task of a process has 
the position with a smaller index than an earlier task of the same process. A 
simple example for it can be seen in Figure 4. 

 
Figure 4 

Time-loop related to one resource 

B Time-loops may occur involving more than one resource, too. Figure 5 
illustrates this kind of time-loop related to two resources, however, the number of 
the affected resources and tasks can be higher. Since, on one hand task t2,1 is 
executed by resource rx later than task t1,3, on the other hand task t2,2 - what has to 
be executed after task t2,1of the second process had been finished - is carried out 
earlier by resource ry than task t1,2. Although task t1,3 should have been processed 
after task t1,2 regarding the sequence of the tasks of the first process. If the 
insertion of a task triggers a situation similar to this, a time-loop occurs. 

 
Figure 5 

Time-loop related to one process 

After the creation of the initial generation whose population is filled up by 
random, feasible instances, further generations are generated by using genetic 
operators on the actual generation. The number of generations is also given by the 
preset value of a variable. 

3.3 Fitness Function 
For being able to decide which instances are better, we have to qualify them by a 
numeric value. In our case the fitness value of an instance is the makespan. It 
shows how does it take to do all the tasks of the schedule, starting from the 
beginning of the earliest task until the finishing of the latest one. In this work we 
deal only with time aspects, however, other parameters also can be involved into 
the creation of the fitness functions, e.g. the cost of the applied resources, creating 
a multi-objective problem. For calculating the fitness value of an instance it is 
important to know that the instance describes the order of the tasks for each 
resource. This sequence and the knowledge about process-related constraints and 
the operation times, determine the optimal timing unambiguously. We have to 
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know the start and finish time of all the tasks for calculating the makespan − the 
fitness value of a schedule. 

For timing three basic ideas have to be followed: 

• Each task as to be started as early as possible. 
• A task cannot be started until its direct prior task in the queue of the 

resource is not finished and the resource has not been transferred to the 
state in which it is ready for doing the new task (the latter duration is 
called setup time). 

• A task can not be started until all of its prior tasks in its process have not 
been finished. 

Keeping these constraints − which result a greedy scheduling − all the tasks are 
timed. After that the makespan can be calculated, obtaining the fitness value of the 
instance. 

3.4 Elitism 
The use of elitism on a generation of the genetic algorithm depends on a 
parameter of our algorithm, see subsection 3.7. When elitism is applied, then the 
best instances − instances with the lowest makespan − of the previous generation 
are copied to the next generation. The quantity of the instances which are handled 
as elites are set by a parameter of the algorithm. As the cardinality of a generation 
is unchanged, the remaining part of the new generation has to be filled up by 
random instances of the previous generation. In our case, other parameter signs 
whether any member − also the elites − can be selected during this random fill up 
without return. 

3.5 Crossover 
After the initial instances of the new generation are determined, our algorithm 
applies crossover genetic operation on the instances with a priori set probability. If 
crossover is applied, another parameter shows how percent of the population is 
created by crossover. Supposing that the value of this parameter is c, the following 
steps are iterated c times: 

Step 1. Select two different instances randomly from the new generation (parent1 
and parent2) 

Step 2. There is a parameter of the algorithm which shows what percent of the 
processes are inherited from parent1 and how much from parent2. Based on the 
value of this parameter: 

Step 2.1. Select randomly so many processes from parent1 that it meets the value 
of the parameter. 
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Step 2.2. Create a new instance, where the resource assignment for each task of 
the selected processes is the same as in parent1. The position of the tasks in the 
row of their resources is random, but taking care of avoiding the creation of time-
loops. 

Step 2.3. The resource assignment of the tasks of the remaining processes is the 
same as in parent2. The position of these tasks in the row of their resources is also 
random, but prevents the creation of time-loops. 

The created c pieces of child instances are first put into a temporary storage, then 
randomly selected instances of the generation is replaced by these children, taking 
care of not to select an instance which was put into the generation in this phase as 
a child. There is a parameter of the algorithm that controls whether an elite can be 
replaced by a child who was created by crossover. 

3.6 Mutation 
After the possible crossover over the new generation, mutation genetic operator 
can be applied on the population of the new generation. There is a parameter 
which shows the probability of whether applying mutation on this generation. If it 
is applied, another parameter determines the probability of using mutation for 
each instance of the generation, separately. 

Mutating an instance covers the following steps: 

Step 1. Select a process randomly from the schedule. 

Step 2. Delete all of the tasks of the selected process from the instance. 

Step 3. Do the following steps for each task of the process - starting from the first 
task of the process and processing them in order: 

Step 3.1. Collect all the resources which are able to carry out the task. 

Step 3.2. Select randomly one from these resources. 

Step 3.3. Insert the task into a random, but feasible position of the row of the 
selected resource. 

After all of these operations, the finalized population of the new generation is 
created. The fitness value of each created instance has to be calculated for 
qualifying the instances of the new generation and being able to inherit more 
generations based on the presented rules.  

3.7 Parameters of the Algorithm 
The developed genetic algorithm has several parameters. These are: 

• The size of a population (sizeofPopulation). 
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• The number of the generations. 
• The percent of the instances of a population obtained by elitism (elites). 
• When selecting the other (1-elites)*sizeofPopulation instances, whether 

we can reselect elites, too? 
• The possibility for applying crossover on a generation. 
• How percent of a generation should be resulted by crossover? 
• How percent of the processes origins from the first parent in case of 

crossover? 
• Whether only the instances with the worst fitness values should be 

replaced by the results of the crossover or any random instances? 
• The possibility for applying mutation for a generation. 
• The possibility for mutation in case of an instance of a generation which 

lets mutation to be applied. 
• Whether crossover and mutation can influence elites, too? 

In our work the execution of the algorithm always happens as long as the 
parameter of the generation number indicates and does not stop even if it realizes 
convergence of the results before the preset generation number is reached. 

4 Results 
The presented algorithm was applied for two kinds of problems. Both of them 
were based on the problem presented in subsection 2.1, but differ in the 
definiteness of the process number and the operation time. The first problem 
realizes exactly the same problem as subsection 2.1 presents. The second one 
applies stochastic operation time and process number. 

4.1 Results for the Deterministic Problem 
First, we run several times the algorithm for exactly the same problem presented 
in subsection 2.1 (with 35 processes) with the following parameter settings: 

• sizeofPopulation: 60. 
• The number of the generations: 400. 
• elites: 0.2. 
• When selecting the other instances, we can reselect elites, too. 
• The possibility for applying crossover on a generation: 1. 
• The percent of a generation should be resulted by crossover: 0.7. 
• The percent of the processes origins from the first parent in case of 

crossover: 0.5. 
• Only the instances with the worst fitness values should be replaced by the 

results of the crossover. 
• The possibility for applying mutation for a generation: 1. 
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• The possibility for mutation in case of an instance: 0.18. 
• Crossover and mutation can not influence elites. 

Some of the parameters − e.g. 0.18 mutation rate − were based on the values 
Pongcharoen et al. [12] found to be optimal. 

Figure 6 shows that even in case of 400 generation the results (the best makespan) 
differ significantly. 

 
Figure 6 

Some results in case of the deterministic problem, applying GA with 400 generation and  
60 population size 

After we found this fact, we intended to analyze the effect of the other important 
parameters both on the makespan of the resulted solution and the convergence of 
the results we obtained. 

In the next step, we changed the value of the population size while all the other 
parameters of the genetic algorithm stayed unchanged. The results are illustrated 
in Table 2. 

Table 2 
Makespan results for the genetic scheduler with variable population size /in time units/ 

generation: 400, crossover rate: 0.7, mutation rate: 0.18, population size: p 
 p:10 p:20 p:30 p:40 p:50 p:60 p:80 p:100 p:150 
Test 1. 857 802 832 802 780 740 770 790 734 
Test 2. 854 796 779 796 767 796 743 779 760 
Test 3.  834 812 797 844 803 799 775 756 732 
Test 4. 876 823 824 792 774 799 761 732 752 
Test 5. 829 818 826 804 782 758 808 762 744 
The best 829 796 779 792 767 740 743 732 732 
Avg. 850 810.2 811.6 807.6 781.2 778.4 771.4 763.8 744.4 
Deviation 16.96 9.97 20.26 18.70 12.09 24.69 21.30 19.96 10.61 
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Table 3 
Makespan results for the genetic scheduler with variable crossover rate /in time units/ 

generation: 400, population size: 100, mutation rate: 0.18, crossover rate: c 
 c: 0.7 c: 0.5 c: 0.3 c: 0.1 
Test 1. 790 708 723 684 
Test 2. 779 689 660 710 
Test 3.  756 711 683 720 
Test 4. 732 708 688 704 
Test 5. 762 718 684 700 
The best 732 689 660 684 
Avg. 763.8 706.8 687.6 703.6 
Deviation 19.96 9.62 20.24 11.89 

As it can be seen, the higher the cardinality of the population is the better the 
results we got for the same generation number, however after population size 100 
the best makespan does not improve. 

In the followings, we fixed the value of the population size 100 and investigated 
the effect of smaller crossover rates. We collected the results in Table 3. 

The results show that crossover rate 0.3 resulted the best makespan and the best 
average makespan, too. For our further investigation we fixed crossover rate at 
value 0.3. At this point, we found the importance of well determined crossover 
rate, unlike in paper by Pongcharoen et al. [12]. The difference may origin from 
the difference of the design of the genetic operators. The final important parameter 
we dealt was the mutation rate. Its effect on the efficiency of the genetic algorithm 
is illustrated in Table 4. 

Table 4 
Makespan results for the genetic scheduler with variable mutation rate /in time units/ 

generation: 400, population size: 100, crossover rate: 0.3, mutation rate: m 
 m: 0.08 m: 0.18 m: 0.28 m: 0.38 m: 0.48 
Test 1. 887 723 692 678 682 
Test 2. 751 660 674 648 648 
Test 3.  707 683 680 676 692 
Test 4. 708 688 736 672 674 
Test 5. 698 684 692 661 675 
The best 698 660 674 648 648 
Avg. 750.2 687.6 694.8 667 674.2 
Deviation 70.83 20.24 21.75 11.17 14.59 

The results show that a higher mutation rate (0.38) has positive effect on the 
genetic algorithm. Its reason can be that it makes the algorithm jump out of local 
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optimum more often, but the construction of the algorithm does not let it to leave a 
better part of the search space for the worse part of that. 

4.2 Results for Stochastic Problem 
Based on the parameters we determined in the previous subsection, we applied our 
genetic algorithm on a problem, where operation time and process number are 
stochastic. The problem includes the same type of processes presented in 
subsection 2.1. However, the number of processes was changed as follows: the 
problem produces x pieces of sensor type I where x є [10,20] and y pieces of 
sensor type II where y є [15,25]. For different executions we selected x and y from 
their interval based on uniform distribution. 

Moreover, the operation times are also stochastic variables, following uniform 
distribution from the interval presented in Table 5. 

Table 5 
Duration time selection interval of each task /in time units/ in case of the stochastic problem 

 Tr. 
d-t 

Temp
. test 

Tr. 
t-s 

Solde
-ring 

Tr. 
s-d 

Tr. 
d-c 

Cab
-
ling 

Tr. 
c-s 

Tr. 
t-v 

Vibr. 
test 

Tr. 
v-s 

Temperatur
e chamber 

- [4,8] - - - - - - - [8,12
] 

- 

Cable 
producer 

- - - - - - [4,8
] 

- - - - 

Vibration 
chamber 

- [8,12] - - - - - - - [4,8] - 

Solderer - - - [3,5] - - - - - - - 
Tr.d. d-t [2,4

] 
- - - - - - - - - - 

Tr.d. d-c - - - - - [3,7
] 

- - - - - 

Tr.d. t-s - - [3,5
] 

- - - - - - - - 

Tr.d. t-v - - - - - - - - [2,4
] 

- - 

Tr.d. c-s - - - - - - - [2,4
] 

- - - 

Tr.d. v-s - - - - - - - - - - [3,7
] 

Tr.d. s-d - - - - [3,5
] 

- - - - - - 

Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;  
v: vibration test; s: soldering 

We applied our genetic algorithm with the following parameter settings: 

• sizeofPopulation: 100. 
• The number of the generations: 400. 
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• elites: 0.2. 
• When selecting the other instances, we can reselect elites, too. 
• The possibility for applying crossover on a generation: 1. 
• The percent of a generation should be resulted by crossover: 0.3. 
• The percent of the processes origins from the first parent in case of 

crossover: 0.5. 
• Only the instances with the worst fitness values should be replaced by the 

results of the crossover. 
• The possibility for applying mutation for a generation: 1. 
• The possibility for mutation in case of an instance: 0.38. 
• Crossover and mutation can not influence elites. 

For this problem the random selected values of 6 test cases are represented in 
Table 6 and the results of our algorithm for these cases are shown in Table 7. 

Table 6 
Random selected process numbers and operation time of the resources (the latter in time units,  

related to their actions, which are illustrated in Table 5 in case of the 6 presented stochastic examples) 

 1. test 2. test 3. test 4. test 5. test 6. test 
sensor type I (pieces) 17 16 13 14 13 18 
sensor type II (pieces) 17 23 21 22 15 21 
Temperature chamber 
(temp./vibr. test) 

8/11 6/10 6/10 8/12 5/9 6/11 

Cable producer 10 11 12 10 11 9 
Vibration chamber(temp./vibr. 
test) 

5/6 4/7 4/6 5/7 4/5 3/6 

Solderer 2 4 4 2 2 2 
Tr.d. d-t 5 5 5 4 5 3 
Tr.d. d-c 4 5 4 3 4 3 
Tr.d. t-s 3 3 5 3 4 4 
Tr.d. t-v 4 7 4 8 6 6 
Tr.d. c-s 2 2 4 4 4 2 
Tr.d. v-s 2 2 2 4 4 3 
Tr.d. s-d 7 6 3 6 4 4 
Tr: transport; Tr.d.: transportation device; d: depot; c: cable producing; t: temperature test;  
v: vibration test; s: soldering 

The velocity of convergence of the algorithm for our tests is illustrated in 
Figure 7. 

As the tables show, we got reasonable results. The makespan we got for the 
stochastic cases where the average values are the same as in case of the original 
problem, are around the values that we got for the original problem. Moreover, it 
can be seen that the results depend on the input values. 
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It is almost impossible to carry out sensitivity analysis for heuristic methods. 
However, we investigated how small changes in the input values influence our 
genetic algorithm. We chose an initial input, then we changed one-by-one only 
one operation time from the possible 8 (transportation operation times were 
treated together). Results are presented in Table 8. It can be realized that changes 
of originally higher values have bigger impact on the makespan. 

Table 7 
Makespan results for the genetic scheduler applied for the stochastic problem /in time units/ 

generation: 400, population size: 100, crossover rate: 0.3, mutation rate: 0.38 
Test 1. 567 
Test 2.  700 
Test 3. 724 
Test 4.  658 
Test 5. 529 
Test 6. 630 

 
Figure 7 

Some results in case of the stochastic problem, applying GA with the determined parameter values 
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Table 8 
Makespan results for the genetic scheduler for small changes in input values /in time units/ 

init. 1. 2. 3. 4. 5. 6. 7. 8. 
580 566 583 553 550 573 562 619 732 
init: initial parameter values 
1. cabling: 8→7 
2. soldering: 4→5 
3. temp.test by temp. chamber: 8→7 
4. temp.test by vibr. chamber: 9→10 

5. vibr.test by vibr.chamber: 4→5 
6. vibr.test by temp.chamber: 10→9 
7. transportation from depot to temperature test: 
3→4 
8. each transportation is increased by 1 time unit 

Conclusions 

In this paper we introduced a genetic algorithm-based scheduler, which is able to 
handle multiple projects with shared resource. These resources can be multi-
functional. The processes to schedule can have parallel structured parts. The 
genetic operators were created to result only feasible schedule. 

We found that in case of our model problem, minimum 400 generations, about 
100 instances of a population is needed, and both the crossover rate and the 
mutation rate have important role. Our test results for the static problem were the 
best with crossover rate 0.3 and mutation rate 0.38 by applying coarse resolution. 
When the problem was changed to be a stochastic one by using variables for 
operation times and process number − taking care for being their average value the 
same as in case of the static problem − the results indicated that the algorithm 
parameters have the same impact. Future works can determine in more detail how 
the results depend on the input. 
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