
Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 179 – 

An Intermediate Level Obfuscation Method 

Dmitriy Dunaev, László Lengyel 

Budapest University of Technology and Economics 

Department of Automation and Applied Informatics 

Magyar tudósok krt. 2, H-1117 Budapest, Hungary 

dunaev@aut.bme.hu, lengyel@aut.bme.hu 

Abstract: The essence of obfuscation is to entangle the code and eliminate the majority of 

logical links in it; that is, to transform the code so that it becomes complex enough for 

analysis and unauthorized modification. The developed theoretical apparatus allows us to 

describe an entangled program using concatenation of operational logics of the routines. 

Consequently, this approach considers not only the instructions or routines themselves, but 

the actions, or results, they produce. This allows us to consider obfuscation as the process 

of adding excessive functionality to the program. This paper is unique in presenting an 

obfuscation method at intermediate code level that is based on the theory of optimizing 

transformations. The focus is set on generation of fake intermediate level code, suppression 

of constants, and meshing of control flow transitions. 

Keywords: obfuscation; software protection; entangling transformations; fake context; 

intermediate code 

1 Introduction 

The general purpose of obfuscating techniques is to prevent, or at least hamper, 

interpretation, decoding, analysis, or reverse engineering of software. We may 

further state that more particularly, although not exclusively, the obfuscating 

techniques relate to methods and apparatus for increasing the structural and logical 

complexity of software. All that is done by inserting, removing, or rearranging 

identifiable structures of information from the software in such a way as to 

exacerbate the difficulty of the process of decompilation or reverse engineering 

[1]. 

The introduction of a non-black-box simulation technique by Boaz Barak [2] has 

been a major landmark in obfuscation. It has been proven that universal obfuscator 

does not exist [2, 8], since there exists a class of programs for which the virtual 

black box property is not feasible. According to [2], program obfuscation is an 

efficient transformation O of a program P into an equivalent program P’ such that 

mailto:dunaev@aut.bme.hu
mailto:lengyel@aut.bme.hu


D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 180 – 

P’ is far less understandable than P (i.e. P’ protects any secrets that may be built 

into and used by P). A virtual black box property states that any information that 

can be extracted from the text of P’ can be also extracted from the input-output 

behavior of P’. 

In the last years, Barak's techniques were subsequently extended, e.g. by solutions 

based on semi-honest oblivious transfer that do not rely on collision-resistant 

hashing [3], or by new applications of obfuscation for network coding techniques, 

such as fountain code that is a rateless erasure code [4]. 

There are many different practical approaches to obfuscation, which are described 

and summarized in [5]. Most of them are based on compiler technologies, and 

some methods require the presence of a source code of the obfuscated program 

[6]. Others operate at intermediate level or at machine code on the target platform 

[7]. Usually, one of three directions is followed: source code obfuscation, which is 

achieved through source code transformations; intermediate level obfuscation 

through transformations on some precompiled code; or machine level obfuscation 

through binary rewriting. 

Intermediate level obfuscation deals with a target-platform independent 

intermediate code. Such code is usually a description of the high-level statements 

with some simpler instructions that accurately represent the operations of the 

source code statements. It is important that this code will not be executed in a real 

processor, it is only an internal representation of a program. Since intermediate 

code uses simpler constructs than the high-level language, it is much easier to 

determine the data and control flow. In addition, this is very important for 

obfuscation algorithms. 

An advantage of intermediate level obfuscation is that we can create a target-

independent infrastructure. It means that for each platform that needs to be 

supported we only have to write the “machine code to intermediate code” and 

“intermediate code to machine code” translators, and the intermediate level 

obfuscator does not change. If we need to port our obfuscator to another platform, 

we only need to write another translator for a new processor. 

The rest of the paper is organized as follows. In Section 2, we discuss the related 

work by pointing out negative and positive results in the state-of-the-art, and 

justifying the concepts of our research. In Section 3, we present the intermediate 

level obfuscation method. The focus is set on dynamic calculation of constants, 

generation of fake instructions, meshing of control flow transitions, and basic 

blocks partitioning. Finally, we draw conclusions and outline further work. 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 181 – 

2 Background 

Negative results 

The essence of obfuscation is to entangle the code and eliminate the majority of 

logical links in it; that is, to transform the code so that it becomes complex enough 

for analysis and unauthorized modification. A general method for obfuscating 

programs would solve many open problems in cryptography. However, Boaz 

Barak has presented families of functions that cannot be obfuscated, since there 

exists a predicate that cannot be computed from black-box access to a random 

function in the family, but can be computed from a non black-box access to a 

circuit implementing any function in the family [2,8]. A later paper of Goldwasser 

and Kalai [9] shows the impossibility and improbability of obfuscating more 

natural functionalities. 

Positive results 

The classes of functions for which obfuscation was ruled out in [2] and [9] are 

somewhat complex. Quite another issue is the fact that obfuscation can be 

performed for simpler circuits [10]. We see that in spite of negative results for 

general-purpose obfuscation, there are positive results for simple functionalities, 

such as point functions. Canetti [11] shows that under a very strong Diffie-

Hellman assumption, point functions can be obfuscated. Further works of Wee 

[12], Dodis and Smith [13] relax the assumptions required for obfuscation and 

consider other related functionalities. 

Our work 

In our approach, we do not restrict ourselves to point functions and do not assume 

simpler circuits. Obfuscation is understood as a program transformation technique, 

which attempts to convolute the low-level semantics of routines and aims to 

counteract the reverse engineering. We have shown in [14] that by restricting 

ourselves to automatic generation of additional fake operations, we cannot 

guarantee the absence of effectively optimized algorithm, which could restore the 

original sequence and deobfuscate the routine. However, the problem can be 

solved if we neglect Barak’s functionality principle; that is, let the functionality of 

obfuscated routine O(M) be different from the functionality of the original routine 

M. The solution lies in introduction of a global fake context. 

With respect to a routine, we define two contexts: local and global. Local context 

is private to a particular routine and expires (disappears) when the routine 

execution is finished. An example of such context is local variables stored on the 

local stack. Global context may be shared across routines and does not expire 

immediately after a routine execution. It can be composed from different global 

parameters, such as pointers to memory buffers, control flow graph parameters, 

and initializing values, provided as input to a routine. The problem of mixing 

contexts has been discussed in [17]. 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 182 – 

We have proven that the problem of determining the significance of operational 

logic in such obfuscated routine is NP-complete [14]. We have also worked out a 

general approach to intermediate level obfuscation method and presented a bird-

eye view of an obfuscation algorithm, pointing out general problems and 

proposing solutions [15]. 

3 Contribution 

For intermediate representation, we use a three-address code (TAC), since TAC is 

not specific to a language being implemented (unlike P-code for Pascal and 

Bytecode for Java). In addition, the TAC instruction set is sufficient in translation 

of assembly code [16]. However, there remain a number of problems, especially 

with input data analysis. 

The main problem is a proper selection (and isolation) of different kinds of data 

sets. It is obvious that e.g. constant values, abstract memory regions, and dead 

variables must be detected and separately processed by the obfuscating algorithm. 

For successful input data analysis at intermediate level, we need the following 

information about the routine to be obfuscated: 

1) three-address code representation of the routine; 

2) information about abstract memory cells accessed by instructions of three-

address instruction code; 

3) information about arguments passed to the routine (estimated values, number 

of parameters, etc.) 

 

Figure 1 

Proper mixing of contexts 

We believe that the restriction of input data to just two types – (1) that can be 

moved to a fake context, and (2) that cannot be moved there – is very limited. Our 

task is to ensure the non-optimizability of the obfuscated routine, and for that a 

more thorough input data analysis is required. Otherwise, we will not be able to 

ensure the proper context mixing (Fig. 1) and optimization resistance. Below we 

introduce the input data analysis process that includes the following steps: 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 183 – 

1) Separation of a set of “dead” local variables (set D). That means isolation of 

such variables that after a certain point are no longer used in the routine. For 

each point of the routine, we can associate a set D that reasonably can 

change its composition from point to point. 

2) Separation of a set of simple type variables (set C). By the simple types, we 

define the following (C programming language) base data types: char, short, 

long, longlong. Some of the variables from the set C will be moved to 

additional fake context for better mixing original and fake contexts (Fig. 1). 

3) Separation of a set of complex type variables (CO). Some of these variables 

will also be moved to additional fake context. 

4) Separation of abstract memory regions, which constitute indivisible memory 

elements that have already been used in the subroutine as a unit and will not 

be used as a unit any more (set CA). 

Let us consider the following example code: 

%еах := &struct_l 

param еах 

call some_func 

// 

// hereinafter only tags of struct_1 are being used, but 

not the structure as a unit 

// 

In this example, some_func function gets a pointer to struct_1 structure as a 

parameter. some_func works with the tags of struct_1 (e.g. modifies the 

values). Later on, the routine performs some actions depending on the values 

of structure tags. It means that after having called some_func the structure is 

no longer used as a unit, but its tags are used separately, so in fact they 

correspond to ordinary variables. Such tags (elements) constitute the CA set. 

Consequently, the CA set should be determined and assigned for each point 

of the routine. Like for CO, elements of CA can also be moved to a fake local 

context. 

5) Separation of abstract memory regions that constitute indivisible memory 

elements, but that are used separately within one or more basic blocks (set 

CB). These variables can be moved to the fake local context only within the 

boundaries of the basic block in which they are used. Subsequently, the 

values of these variables are to be restored. 

6) Separation of abstract memory regions with known values (the set V). The 

set V can be left empty if there are no such variables in the routine. 

The main point of the input data analysis is to ensure separation of different types 

of data for obfuscating method. The phases of obfuscation are the following: 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 184 – 

1) Dynamic calculation of constants and some certainly known values. 

2) Selection of a number of fake instructions per original. 

3) Generation of fake instructions. 

4) Generation of dead code. 

5) Meshing of control flow transitions. 

6) Partitioning of basic blocks. 

Let us consider the above steps in details. 

3.1 Dynamic Calculation of Constants and Known Values 

A reverse engineer may use signature search to make certain conclusions about 

the functional logic of the routine being analyzed. This step is necessary as an 

obstacle to a signature search. 

If a routine contains constants that are specific for implementation of some 

cryptographic algorithm [18], then its analysis becomes much easier, at least by 

the usage of a signature search. However, if there are memory regions, which 

content is exactly known in some fixed points of the routine code, one can 

increase the complexity metrics of a routine by introducing dynamic calculation of 

such values (to escape from constants). Thus, reverse engineering becomes more 

complicated. 

It is important to mention that in order to exclude the possibility of routine 

optimization and to make it optimizer-resistant, constants should not be fixed in 

code, but instead they are to be calculated during runtime. To provide parameters 

for runtime calculation, we use global (with respect to the routine) initializing 

values, which are a special type of fake arguments intended to conceal the 

constants. The main goal here is to complicate the signature search in the 

entangled code. For even greater complexity, not only the routine constants are to 

be concealed, but a number of other well-known constants, e.g. the magic 

initialization constants of MD5 and SHA-1 [18]: 0x98badcfe, 0x10325476, etc. 

Calculation algorithms can vary from a trivial addition to a sophisticated 

cryptographic algorithm. The choice of a particular algorithm depends on the 

desired execution speed (i.e. acceptable execution slowdown) of the obfuscated 

routine. Furthermore, it should be noted that using very complex and slow 

algorithms is not a good choice, since the growth of constants calculation 

complexity is not directly proportional to the growth of deobfuscation resistance 

(i.e. resistance to reverse-engineering). 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 185 – 

3.2 Selection of Fake Instructions per Original 

The fake per original (FPO) number is a global user-defined parameter. The 

obfuscation algorithm generates a FPO number for each original instruction; this 

number indicates the desired approximate number of fake instructions per single 

original. The greater the numerical value of this parameter, the more difficult it is 

to deobfuscate the routine and to determine its original operational logic. 

To provide higher deobfuscation resistance, any fake variable must not be 

disposed until it has been used at least once. Therefore, original instructions must 

interact with fake context, as well as fake instructions must interact with original 

context. Let us denote by MW_ORIG and MW_FAKE the sets of memory regions that 

original and fake instructions write to; MR_ORIG and MR_FAKE will stand for the sets 

of memory regions that original and fake instructions read from. So we get the 

formal description: 

MW_ORIG ∩ MW_FAKE ≠ Θ 

MR_ORIG ∩ MR_FAKE ≠ Θ (1) 

However, with increase of FPO, execution slowdown is increased as well. It is 

important to mention that a number of fake instructions is not necessarily exactly 

equal to FPO, so that FPO serves as some approximate value. Sometimes, the 

number of fake instructions can exceed FPO by several instructions in order to 

comply with the aforesaid. 

3.3 Generation of Fake Instructions 

When a fake instruction is generated, the obfuscating algorithm takes one of the 

following actions: 

1) Write the instruction to any free abstract cell from the set D. 

The term “free” in this context means that the cell is not filled with data. It 

should be noted that a fake abstract memory cell can have 4 states: FILLED, 

FREE, USED, and NOT_INITIALIZED.  If a cell is in a FILLED state, then 

we can write a new value to this cell only if its old (original) value is used 

for the new value calculation. If a cell is in FREE state, then we can write a 

new value to it without any restrictions. Iа a cell is in USED state, then it 

contains some value, which is necessary to perform some further operation. 

For example, such cell can contain a value used for dynamic calculation of 

some constants. The value written to a FREE cell can be read from any other 

abstract cell. If we read from a fake abstract memory cell, which is in 

FILLED state, then after having read the value we procced to changing the 

state of such cell to FREE. The cell with NOT_INITIALIZED state cannot be 

read. However, we can write some new value to such cell only if a new value 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 186 – 

is not computed as a result of some operation with the previous (unknown) 

value of this cell. 

2) Write the instruction to any abstract cell from sets C’, CA’ or CB’. 

The C', CA' and CB' sets are such memory cells, the content of which has 

been moved to a fake local context. Consequently, C', CA' and CB' are 

subsets of C, CA and CB, respectively. Writing the generated instruction to 

these abstract cells should be done as described in Point 1. 

3) Write the instruction by performing arithmetical operations. The sets are 

chosen as described in Point 2, but arithmetic operations are performed with 

original values of the cells. 

4) Write the instruction to the fake global context. The sets and operations are 

chosen as described in Points 1-3, but the instruction is interacting with the 

fake global context. 

5) Generate control flow transitions (jumps) to dead code. 

Such jumps should look “plausible” and should not differ from the original 

control flow transitions (CFTs). This means that conditions, at which the 

transitions take place, must seem feasible. It definitely requires the usage of 

the fake global context. 

3.4 Generation of Dead Code 

Dead code is a piece of code that is never executed. The task of an obfuscating 

algorithm is to ensure that neither a reverse-engineer (analyst) nor an automatic 

deobfuscation tool can prove that the specific piece of code is never executed 

(dead). It is obvious that such code should not differ a lot from the original 

instruction set or data. Its main purpose is to increase the complexity metrics of 

obfuscated code. Moreover, by injecting dead code we can counteract the alias 

analysis, analysis of values of the abstract memory cells, and consequently the 

determination of individual variables, structures, arrays, etc. 

In general, alias analysis determines whether separate memory references point to 

the same area of memory. This allows the compiler to determine what variables in 

the program will be affected by the given statement. Thus, we can significantly 

reduce the effect of optimizing transformations with respect to obfuscated routine 

through compliance with the conservativity principle of preliminary code 

analyzing algorithms. For example, we can counteract the alias analysis by using 

the following techniques: 

1) Initialization of abstract cells (including those used in original code) with 

pointers to other abstract cells. 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 187 – 

2) Creation of loop structures in a dead code, in which previously initialized 

(see point 1) abstract cells are used. 

In other aspects, the algorithms used in the dead code should be similar to those 

used in the original executable code. 

3.5 Meshing of Control Flow Transition Blocks 

A branch is a piece of code in a computer program which is conditionally 

executed depending on how the flow of control is altered at the branching point. 

Explicit branches in high-level programming languages (e.g. C/C++) usually take 

the form of various conditional statements that encapsulate the branches of code 

that should be executed (or not) upon some condition; low-level instructions that 

define corresponding branches of code are called jump instructions. A three-

address code has support for both conditional and unconditional jumps, which are 

essentially goto statements. 

In general, jump instructions have unconditional and conditional forms where the 

latter may be fulfilled or not, depending on some conditions. The truthiness of this 

condition is typically evaluated and temporarily stored by some previous 

instruction, but not necessarily the one immediately before. Usually, this 

temporary information is stored in a flag register. 

3.5.1 Unconditional Jumps 

Fig. 2 shows an example of a meshed CFT block that represents an unconditional 

jump. Blocks 1, 2, 3, 4, 5, and 6 are basic blocks. Considering the memory map, 

Block 3 directly follows Block 4, while other blocks are contained separately. On 

this figure, full straight lines denote unconditional jumps in direction of the arrow. 

Dashed lines denote true jumps, i.e. the CFTs that actually take place in the 

original routine. Dotted lines denote transitions that do not take place in the 

routine. 

On Fig. 2, we see three different types of jumps denoted by straight, dashed, and 

dotted lines, respectively. However, since CFT conditions are dynamically 

calculated using a global context, for a reverse engineer the transitions are equally 

likely, and therefore the reverse engineer cannot distinguish them. Moreover, 

Blocks 2, 5 and 6 may contain either dead code, or a piece of code that is actually 

executed. It should be noted in particular that Blocks 3 and 4 form a single 

memory region, so Block 3 can be totally fake. In this case, it does not matter 

whether the control flow is transferred to Block 3 or to Block 4. 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 188 – 

 

Figure 2 

Meshed unconditional jump 

3.5.2 Conditional Jumps 

As we know, there are six logical conditions (comparisons): greater, less, equal, 

not equal, greater or equal, less or equal. We can make comparisons between 

variables, while the value of one of them is fixed. For example, if (a > 3) goto L. 

We will call this kind of comparison a constant comparison. 

Comparisons can also be made between variables, while the values of both of 

them are unknown. For example, if (a > b) goto L. We will call this kind of 

comparison a variable comparison. 

In computer programs, both types of logical comparisons are widely used, and if 

reverse engineered, can contain sensitive information for better understanding of a 

logical and functional structure of a program. Consequently, logical comparisons 

must be taken into account during obfuscation process. 

A three-address code instruction if (a > 3) goto L can be represented as shown on 

the listing below: 

if (a<0) goto L1; 

; Garbage code 

if (a<2) goto L2; 

; Garbage code 

if (a>6) goto L3; 

; Garbage code 

if (a<4) goto L4; 

; Garbage code 

if (a>=4) goto L5 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 189 – 

Labels L1, L2, and L4 denote the code that will be executed if the original 

condition a > 3 is not satisfied. Labels L3, and L5 denote the code that will be 

executed if the condition is satisfied. 

 

Figure 3 

Number scale with generated constants 

The proposed method of obfuscating constant comparisons is described below. At 

first, integers are selected on a number scale in such a way that among these 

integers there must be numbers greater and less than the original constant C. The 

distance between any adjacent selected integers is equal to two. Fig. 3 represents a 

number scale with original constant C and generated constants K[i], where 

i=[1..m]. 

Propositions: 

1 CaCa  (2) 

1 CaCa  (3) 

1 CaCa  (4) 

1 CaCa  (5) 

CaiCa   (6) 

CaiCa   (7) 

iCaiCa   (8) 

iCaiCa   (9) 

)1(&)1(  CaCaCa  (10) 

)1(&)1(  CaCaCa  (11) 

For better understanding of meshing method, let us consider the logical 

comparison a > C as an example. Here follows an algorithm for meshing this 

logical comparison: 

1) Choose m and generate K[i], where i=[1..m]. 

2) Select i. 

3) Select one operation out of five: a>K[i], a<K[i], a=K[i], a≥K[i], a≤K[i].  

4) For selected operation do the following: 

a) If a>K[i] or a≥K[i] was selected: 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 190 – 

For K[i]>C we should generate a CFT to code that should have been 

executed when original condition a>C is true, and then label i as “used”, 

so that it will not be used at the next iteration. Otherwise we can have an 

ambiguous situation when a can be at the same time greater than, less 

than, or equal to C. In case of ambiguous situation, we should mark i as 

usable with all operations except for a>K[i] and a≥K[i]. In this case 

garbage code is to be generated, and further condition testing is requited. 

For the nearest right-hand adjacent constant K[2], the following 

condition is to be generated: a≥K[2]. 

b) if a<K[i] or a≤K[i] was selected: 

If K[i]<C, then we should generate a CFT to the piece of code that 

should have been executed when original condition a>C is false, and 

then label i as “used”. If K[i]>C, then we have an ambiguous situation. 

5) Iterate steps 2-4 in a loop until all i-s are labeled as “used”. 

For a≥C the steps are similar to those described above with the only difference: if 

conditions a>K[i] (a≥K[i]) for K[i]>C, and a<K[i] (a≤K[i]) for K[i]<C are not 

satisfied, then consequently a=C and hence the condition a≥C is satisfied. 

Similarly we can write this algorithm for a<C and a≤C. 

Proposition. 

A set of conditions, generated by the above meshing algorithm, coincides with the 

original condition. 

Proof. 

Let us prove this proposition with respect to condition a>C. The proof for other 

conditions is similar. 

For all K[i]>C, the algorithm generates a>K[i] (or a≥K[i]). If the conditions are 

satisfied, the control flow is transferred to in the same block as if the original 

condition a>C were satisfied. Since difference between two neighboring K[i]-s is 

equal to 2, we get: |K[1]-C|=|K[2]-C|=1. Thus, it follows: 

])..1[],[(&]2[(:][ miiKaKaCiKCa   (12) 

For all K[i]<C, the algorithm generates a<K[i] (or a≤K[i]). If the conditions are 

satisfied, the control flow is transferred to in the same block as if the original 

condition a>C were not satisfied. Since |K[1]-C|=|K[2]-C|=1, we get: 

])..1[],[(&(:][)( miiKaCaCiKCa   (13) 

■ 

The proposed algorithm can be supplemented by a code duplication technology. In 

fact, if one creates multiple polymorphic duplicates of code that is executed if the 

condition a>C is true, and the control flow is transferred to different duplicates in 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 191 – 

generated branches, then obfuscated code significantly better resists automatic 

deobfuscation tools. 

For hiding constants, as well as for increasing the complexity metrics of a routine, 

we can use a method based on the following identity: 

kCkaCa **   (14) 

The * operation here is not a multiplication, but denotes any operation that 

satisfies (14). For example, 

kCkaCa   (15) 

It must be specially noted that this method should be used with great caution, 

because it can possibly lead to an overflow error, and consequently the identity 

(14) will not hold true anymore. In this case we can use another operation, such as 

the following: 

kCkaCa   (16) 

Herewith, the overflow error which arose in (15), will not arise in (16). 

This method is suitable not only for constant comparison, but for variable 

comparison as well. 

3.6 Partitioning of Basic Blocks 

Basic blocks obtained at routine transformations are ranked by the following 

algorithm: 

1) Determine the maximum number of functions that a basic block (BB) can be 

partitioned to: MAX_NL-1. Here MAX_NL stands for a maximum nesting 

level; this serves as an external parameter of the obfuscation algorithm. The 

greater the MAX_NL is, the more functions will be obtained from the BB. 

 

Figure 4 

Assigning nesting levels to groups of instructions in a basic block 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 192 – 

2) Nesting levels are assigned to groups of three-address code instructions 

within the BB as shown on Fig. 4. 

3) Zero-nested instructions NL=0 remain at their original positions. These 

instructions are supplemented with additional instructions that assign 

arguments (parameters) for the subsequent nested functions. 

4) Instructions of the first nesting level NL=1 are transferred to a separate 

function. The operands of these instructions are replaced with the appropriate 

function arguments (parameters). As in the previous step, the function 

instructions are supplemented with instructions that assign arguments 

(parameters) for the subsequent nested functions. 

5) Step 4 is repeated for all nesting levels sequentially until NL=MAX_NL. 

Summary and Conclusions 

In comparison with other known algorithms of obfuscation (Table 1), the 

intermediale-level obfuscator presented in this paper looks very promising. Its low 

complexity results from easiness of analysis of three-address code and simplicity 

of implementation of entangling transformations on the intermediate level. Other 

areas of comparison include the following: 

1) Portability is an indicator of transferability of an implemented algorithm 

from one machine to another. 

2) Flexibility is an indicator of the possibility of usage of the algorithm in 

different development environment or programming language. 

3) Scalability is an indicator of degree of controllability of obfuscation process 

by the user. 

Table 1 

Comparison of different obfuscation techniques 

 

Collberg Wang TAC IL Obfuscator 

Portability no yes yes 

Flexibility medium medium high 

Scalability high low high 

Complexity high medium low 

Collberg’s algorithm [19] cannot be named as portable, because it was designed 

directly for use with the Java Virtual Machine. Intermediate level obfuscation 

algorithm is most flexible, since it is most isolated from high level programming 

constructs. Wang’s algorithm [20] shows low scalability, because it uses very 

specific constructs. However, Wang’s algorithm has a very high resilience, but 

specific opaque constructs are not protected at all, which is a significant 

drawback. The problem we have faced with Collberg’s algorithm was that a high 

number of parameters controlling the algorithm makes empirical testing almost 

impossible. The intermediate level obfuscator, however, has just several 

parameters, and consequently we can control its output. 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 193 – 

It should be specially noted that the presented method preserves its optimization-

resistance only if there is no essential difference between routines, implementing 

original and fake operational logic. For example, if the instructions of the original 

routines used floating-point type operands, and fake instructions only work with 

integer numbers, then in such case the separation of original and fake instructions 

can be done automatically in polynomial time. 

The great advantage of the presented intermediate level obfuscation method is that 

it can be applied to partitioned routines. Even if there is no possibility to add a 

fake global context to the original routine as a whole, it can always be done with 

respect to the partitioned routines with nesting level greater than zero. For that, we 

can use parameters of nested functions to pass pointers to buffers containing a 

fake local context. The resulting nested routines can be “scattered” in different 

parts of the application in an arbitrary manner. 

Neither Collberg nor Wang provide a method for multiple obfuscation; that is, 

after having been obfuscated once, the program cannot be obfuscated again. The 

presented algorithm allows to obfuscate already obfuscated programs, or to 

obfuscate the selected routines of a program. By that, we obtain a multistage 

obfuscation technique. 

In general, the presented method can be used to protect software from 

unauthorized analysis and modification, and consequently to prevent its reverse 

engineering. The algorithm based on this method is completely automatic and can 

therefore be used as a part of a software protection utility. The main advantage of 

this method compared to its counterparts is its platform independence. Doing 

obfuscation at intermediate level allows us to use the same software module at 

different hardware platforms. 

This paper has set the ground for a new understanding of obfuscation. This 

research, furthermore, besides advancing academic research has major practical 

implications in software development, in counteracting software piracy, and in 

information protection. Intermediate level obfuscation raises the barriers to 

someone decompiling and stealing your code, and by that discourages casual 

attacks and makes one’s intellectual property less likely to be stolen. 

Future research of the authors will include, but will not be limited to, working out 

methods of translation from machine code into an intermediate representation and 

back. Such translation mechanisms must be implemented using machine-level 

obfuscation techniques, which would further increase the security of the program. 

Acknowledgement 

This work was partially supported by the European Union and the European 

Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt. Balatonfüred. 



D. Dunaev et al. An Intermediate Level Obfuscation Method 

 – 194 – 

This work was partially supported by the Hungarian Government, managed by the 

National Development Agency, and financed by the Research and Technology 

Innovation Fund (grant no.: KMR_12-1-2012-0441). 

References 

[1] Popa, M. (2011) Techniques of Program Code Obfuscation for Secure 

Software. Journal of Mobile, Embedded and Distributed Systems, Vol. 3(4) 

[2] Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S., 

and Yang K. (2001) On the (im)possibility of Obfuscating Programs. In 

Proceedings of the 21
st
 Annual International Cryptology Conference on 

Advances in Cryptology, CRYPTO'01 (London, UK) pp. 1-18, Springer-

Verlag 

[3] Hessler A., Kakumaru T., Perrey H., Westhoff D. (2012) Data Obfuscation 

with Network Coding. Computer Communications, Vol. 35(1), pp. 48-61 

[4] Bitansky N., Paneth O. (2012) From the Impossibility of Obfuscation to a 

New Non-Black-Box Simulation Technique. In Proceedings of IEEE 53
rd

 

Annual Symposium on Foundations of Computer Science (FOCS), pp. 223-

232 

[5] Balakrishnan A., Schulze C. (2005) Code Obfuscation Literature Survey. 

CS701 Construction of Compilers, Computer Sciences Dept., University of 

Wisconsin 

[6] Ceccato M., Di Penta M., Nagra J., Falcarin P., Ricca F., Torchiano M, 

Tonella P. (2009) The Effectiveness of Source Code Obfuscation: An 

Experimental Assessment. In Proceedings of the 17
th

 International 

Conference on Program Comprehension (Vancouver, Canada), pp. 178-187 

[7] Fang H., Wu Y., Wang S., Huang Y. (2011) Multi-Stage Binary Code 

Obfuscation using Improved Virtual Machine. In ISC (X. Lai, J. Zhou, and 

H. Li, eds.), Lecture Notes in Computer Science, Vol. 7001, pp. 168-181, 

Springer Verlag 

[8] Barak B. (2004) Non-Black-Box Techniques in Cryptography. PhD thesis, 

Department of Computer Science and Applied Mathematics, Weizmann 

Institute of Science 

[9] Goldwasser S., Kalai Y. T. (2005) On the Impossibility of Obfuscation with 

Auxiliary Input. In Proceedings of the 46
th

 Annual IEEE Symposium on 

Foundations of Computer Science, IEEE Computer Society, pp. 553-562 

[10] Lynn B., Prabhakaran M., Sahai A. (2004) Positive Results and Techniques 

for Obfuscation. Advances in Cryptology. Lecture Notes in Computer 

Science, Vol. 3027, Springer Verlag, pp. 20-39 

[11] Canetti R., Goldwasser S. (1997) Towards Realizing Random Oracles: 

Hash Functions that Hide All Partial Information. Advances in Cryptology. 



Acta Polytechnica Hungarica Vol. 11, No. 7, 2014 

 – 195 – 

Lecture Notes in Computer Science, Vol. 1294, Springer Verlag, pp. 455-

469 

[12] Wee H. (2005) On Obfuscating Point Functions. In Proceedings of the 37
th

 

Annual ACM Symposium on Theory of Computing, pp. 523-532 

[13] Dodis Y., Smith A. (2005) Correcting Errors without Leaking Partial 

Information. In Proceedings of the 37
th

 Annual ACM Symposium on 

Theory of Computing, pp. 654-663 

[14] Dunaev D., Lengyel L. (2014) Formal Considerations and a Practical 

Approach to Intermediate-Level Obfuscation. WSEAS Transactions on 

Information Science and Applications, Volume 11, pp. 32-41 

[15] Dunaev D., Lengyel L. (2012) Overview of an Obfuscation Algorithm. In 

Proceedings of the International Conference on Computer Science and 

Information Technologies, CSIT'2012 (Lvov, Ukraine), pp. 36-38 

[16] Grune D., Langendoen K. G., Jacobs C. J., Bal H. E. (2001) Modern 

Compiler Design. Worldwide Series in Computer Science, Chichester, New 

York, Weinheim: J. Wiley and sons 

[17] Dunaev D., Lengyel L. (2013) Aspects of Intermediate Level Obfuscation. 

In Proceedings of the 3
rd

 Eastern European Regional Conference on the 

Engineering of Computer Based Systems, ECBS'2013 (Budapest, Hungary) 

pp. 138-143 

[18] National Institute of Standards and Technology (2002) “Secure Hash 

Standard”, Fips 180-2, Federal Information Processing Standard, 

publication 180-2, tech. rep., Department of Commerce 

[19] Collberg C., Thomborson C., Low D. (1997) A Taxonomy of Obfuscating 

Transformations. Technical Report 148, Department of Computer Science, 

University of Auckland 

[20] Wang C., Hill J., Knight J., Davidson J. (2000) Software Tamper 

Resistance: Obstructing Static Analysis of Programs. Technical Report CS-

2000-12, 2000 


