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Abstract: In this study we introduce different novel interpretations in the case of Linear
Parameter Varying (LPV) methodology, which are directly usable in modeling and control
design in diabetes research. These novel interpretations are based on the parameter vectors
of the LPV parameter space. The theoretical solutions are demonstrated on a simple, known
Type 1 Diabetes Model used in intensive care.

Keywords: Diabetes, LPV model, Affine LPV, qLPV

1 Introduction

We would like to dedicate this paper in honor of Prof. Antal Bejczy’s life achieve-
ments who was a pioneer of space robotics. Prof. Bejczy provided continuous
inspiration for us through his world leading work on the field of control and au-
tomation.
Modeling and control is extremely important in the research of Diabetes Mellitus
(DM) [1]. In the light of the fact that no cure exists for the disease, the avail-
able treatment for those, who suffer from insulin dependent diabetes (Type 1 DM
(T1DM), Double DM (DDM), etc.), the only chance in order to stay alive and/or
maintain their condition, is the treatment with externally injected insulin hormone.
The regular treatment is manual insulin administration by pre-calculated amounts
of insulin. It depends on the assumed carbohydrate intake of the patient. More
sophisticated solution is the Artificial Pancreas (AP) concept, in which the insulin
injections are made by an insulin pump device with rapid acting insulin based on
control algorithms and Continuous Glucose Monitoring (CGM). In recent years sev-
eral advanced control solutions have appeared in literature, which may successfully
deal with DM control. There were attempts with the fusion of modern and classical
control theory, like switching Proportional-Integral-Derivative (PID) control [2, 3],
with modern control theory, for example Model Predictive Control (MPC) [4, 5],
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or Soft Computing-based Control (SCC) [6, 7]. Moreover, Robust Control (RC)
theory also were considered by researches [8–10] in this scientific discipline. In or-
der to test and preliminarily validate the developed algorithms in silico models can
be used. The role of these mathematical models - so called patient models -, is to
simulate the glucose-insulin household of a real patient as realistically as possible.
Moreover, with different additional sub-models (like digestion, absorption, physical
activity, sensor, noise, etc. models), highly sophisticated in silico models can be
realized. Generally, one can consider large scale (macro size) models of biological
processes that are relatively slowly changing [11] in time. In case of such processes
Gain Scheduling Theorem (GST) can be used for modeling and control purposes.
From modeling point of view, one of the most powerful tools of GST is the Lin-
ear Parameter Varying (LPV) method. LPV approaches are useful tools in control
design for biological processes since their nonlinearities complicated by time delay
effects. LPV techniques are frequently used in RC [12]. In order to describe a sys-
tem with uncertainty, linear fractional transformation (LFT) can be used. In such
cases, LPV system becomes derivable from LFT, since the nominal system depends
on the uncertainties. Intuitively, this dependency can be described with function re-
lations. Moreover, this kind of dependencies can be produced if the elements which
cause the nonlinearity are getting out from the nonlinear system. In this way, a linear
system is obtained which will be the function of the pulled components. Regularly,
the selected elements on which the system depends are called scheduling parame-
ters [13]. A vector can be created from them, which is called scheduling parameter
vector, or shortly, parameter vector (ρ ∈ Rk).
In diabetes modeling uncertainty, which comes from the varying parameters, the
intra- and inter-patient variability is a crucial question. Robust control allows to
handle these uncertainties in a natural way. With LPV modeling linear RC methods
also can be used, besides that the properties of the original nonlinear model are still
valid [8,14]. Usually, in the physiological models the nonlinearities occur within the
system model and do not affect the output matrices. This is especially true in case of
diabetes modeling, since the nonlinearities are usually connected to the description
of different dynamical effects, insulin kinetics, etc. That means, that if a system
is described with its state-space (SS) representation the state matrix, A(t) will be
affected by nonlinearities. In order to hide this effect, the causing component can
be selected as scheduling parameter, in this way the nonlinearities in A(ρ(t)) can be
separated.
In this paper we are going to introduce novel interpretations and considerations
about the similarity of different diabetes models. Moreover, new quality definitions
will be derived based on the LPV parameter vector which can be used during mod-
eling and controller design.
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2 State space representations and LPV configurations

2.1 State space representations of a dynamic system

A general, nonlinear time varying (NLTV) system can be represented with the fol-
lowing functions [15–17]:

ẋ(t) = f (x(t),u(t))
y(t) = h(x(t),u(t)) (1)

where x(t) ∈ Rn is the state vector, f (x(t),u(t)) is a nonlinear state function, y(t) ∈
Rp is the output of the system and h(x(t),u(t)) is the nonlinear output function.
With reformulation this can be described in SS form:

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) =C(t)x(t)+D(t)u(t) (2)

where A(t) ∈Rn×n is the state matrix, B(t) ∈Rn×m is the input matrix, C(t) ∈Rp×n

is the output matrix and D(t) ∈Rp×m is the feed-forward matrix. The state matrices
in (2) can be united into a single system matrix:

S(t) =
(

A(t) B(t)
C(t) D(t)

)
(3)

where S(t) ∈ R(n+p)×(n+m). Thereby (2) in simpler form via (3):(
ẋ(t)
y(t)

)
= S(t)

(
x(t)
u(t)

)
. (4)

If the state matrices do not depend on time, Linear Time Invariant (LTI) system
occurs, described with the following SS equation:

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t) (5)

and can be written in the previous compact form (4), however, here S does not
depend on time:(

ẋ(t)
y(t)

)
= S

(
x(t)
u(t)

)
. (6)

Basically, with GST an LTV system can be described with infinite number of LTI
systems in continuous time domain and particular number of LTI systems in dis-
crete time domain, if only the elements of the state matrices vary over time, but the
structure of the SS representation is invariant. That means, the LTV systems run
through a ”trajectory” during operation over time - where the trajectory consists of
infinite number of LTI systems. Fixing the elements of the SS representation of a
LTV system at a given moment means that the LTV system is simplified to a LTI
structure. For example, S(t) exactly at 10 min will be equal to S(t10) = S10.
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2.2 LPV description and configurations

The literature distinguishes between the models according to the fact whether the
selected scheduling variables are not state variables (LPV) or they are state variables
also selected as scheduling parameters (quasi-LPV, qLPV). Nevertheless, there is
no difference between them from notation point of view. However, the eligible
interpretation of the cases is important to be noticed. In the sequel we introduce the
general form of LPV systems. Assume that the parameter vector is designated with
ρ(t). In such a case the usual notation for an LPV model is:

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t)
y(t) =C(ρ(t))x(t)+D(ρ(t))u(t) . (7)

Unification can be made similarly as in (3) and from (7):

S(ρ(t)) =
(

A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

)
. (8)

The compact form of general LPV system from (7) becomes:(
ẋ(t)
y(t)

)
= S(ρ(t))

(
x(t)
u(t)

)
. (9)

The classical approaches that use LPV form in modeling apply affine and polytopic
LPV system models [13, 16, 17]. However, in the recent years a soft-computing
based LPV modeling issue arose the TP transformation-based LPV modeling pos-
sibility [18, 19]. Because our quality interpretation can be used beside affine and
polytopic configurations, as well, we shortly described them below.

2.2.1 Affine LPV configuration

In this type, the LPV systems are the affine function of the parameter vector. If
the system is given with its SS representation, then it consists on two main parts: a
permanent, which is independent from the parameter vector and a varying, where
the dependency occurs.

A(ρ(t)) = A0 +
k

∑
i=1

ρi(t)Ai

B(ρ(t)) = B0 +
k

∑
i=1

ρi(t)Bi

C(ρ(t)) =C0 +
k

∑
i=1

ρi(t)Ci

D(ρ(t)) = D0 +
k

∑
i=1

ρi(t)Di

. (10)

The permanent matrices are the A0,B0,C0,D0, which represents the independent
parts from the parameter vector. The permanent and varying parts can be written in
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short form similarly as (3):

S(ρ(t)) =


A0 +

k

∑
i=1

ρi(t) ·Ai B0 +
k

∑
i=1

ρi(t) ·Bi

C0 +
k

∑
i=1

ρi(t) ·Ci D0 +
k

∑
i=1

ρi(t) ·Di

 (11)

and in this way the complex system matrix can be simplified as:

S(ρ(t)) = S0 +
k

∑
i=1

ρi(t) ·Si . (12)

The affine LPV system can be written in compact form similarly as (9).

2.2.2 Border of validity in case of affine LPV models

The elements of the parameter vector ρ forming the so-called Parameter Space (PS)
which is an abstract, arbitrary mathematical space. The dimension of it is equal to
the number of the selected scheduling variable.
Assume that the dimension is equal to k in general case, ρ ∈ Rk. The values of the
parameter vector ρ are varying over time, however, this varying is inside a particular
range determined by the minimum and maximum value of the given variable. This
validity range covers the meaningful parameter range based on physiological or
physical processes (e.g. positive masses). This attitude determines the ”Parameter
Box” (PB), which is a particular region in the PS. The affine LPV models keep their
validity only in this range (inside the PB) during operation. This configuration is
very advantageous from control engineering points of view, since

• The PB represents the workspace where the LTV system can be found during
operation and each of the points also can represent an LTI system at a given
moment;

• The control design tasks may be easier, because these regions are usually
small;

• In case of RC, the borders of the PB can be the borders of parameter uncer-
tainties;

• With affine LPV representation, nonlinearities can be hidden. Moreover, a
given time stamp represents an LTI system, which can be selected as ”oper-
ating system”, if its properties are appropriate from control design point of
view.

In Fig.1(a). we highlighted a 3D PS, where the ρ ∈R3 and the values of the schedul-
ing parameter are varying among the range which is determined by the minimum
and maximum values of the parameters. Mathematically, this can be reached, if the
parameter vector is:

ρ(t) =

ρ1(t)
ρ2(t)
ρ3(t)

=

[ρ−1 ..ρ+
1 ]

[ρ−2 ..ρ+
2 ]

[ρ−3 ..ρ+
3 ]

 . (13)
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2.2.3 Polytopic LPV configuration

Affine LPV configuration means a natural way to describe or highlight different
properties of a system, however, usually not directly used in controller design [20].
Nevertheless, the polytopic LPV configuration, which is directly derivable from
affine configuration (and gives a basis for the TP-transformation based design, as
well) is directly usable in such design methods. Practically, the polytopic LPV
theory is based on the barycentric theorem of Möbius, describing the position of
a point in a triangle with using the vertices of the triangle as reference points [21,
22]. Further, Warren and his colleagues have proved the possibility that in case of
arbitrary convex sets it is also true that with using the vertices of a convex set as
reference points the position of an arbitrary internal point can be described. This is
the key property which can be used in control engineering approaches [16].
As the affine LPV system is only operating inside the parameter box, the vertices
of the parameter box can be used as reference points to describe each system that
can occur during operation, namely, each such internal system will be the convex
combination of the vertices of the polytope, if the convexity criteria is satisfied. In
the case of a control system, the convexity depends on the following considerations.
An internal system S can be described with polytopic coordinates αi, if the system
representation belonging to αi, i.e. Si satisfy the following restrictions:

• The polytopic coordinates should be non-negative real values, αi ≥ 0;

• The sum of the polytopic coordinates should be equal to one,
q

∑
i=1

αi = 1;

• The internal system is the convex combination of the vertices of the polytope,

S =
q

∑
i=1

αiSi.

or shortly [15]:{
S =

q

∑
i=1

αiSi : αi ≥ 0,
q

∑
i=1

αi = 1

}
. (14)

Normally, when q > k we have a redundant representation that generally allows the
satisfaction of the restrictions. The barycentric coordinate function can be given in
the following way [16]:

”αi(ρ) =
ϒi(ρ)

∑i ϒi(ρ)
(15)

where ϒi is the weight function which belongs to the ith vertex for a ρ

point inside the convex polytope. The weight function can be calculated
as follows:

ϒi(ρ) =
vol(Πi)

∏ j∈ind(Πi)
(n j · (Πi−ρ))

(16)
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where vol(Πi) is the volume of the parallelepiped span by the normals
to the facets incident on vertex i, i.e., Πi, {n j} is the collection of nor-
mal vectors to the facets incident on vertex i, and ind(Si) denotes the
set of indices j such that the facet normal to n j contains the vertex Πi.
The volume of the parallelepiped can be computed as:

vol(Πi) = |det(nind)| (17)

where nind is a matrix whose rows are the vectors n j where j ∈ ind(Vi)
[16].”

Fig.1(b). shows an example whereon the aforementioned theories were taken into
account in case of 3 scheduling variables. In this case, the parameter space is 3
dimensional and it is visible that the parameter box is determined by the minimum
and maximum values of the parameter vector. Furthermore, the vertices of this box,
Si serve as reference points and αi are the convex coordinates at the same time. The
actual system inside can be calculated with the barycentric calculus, namely, the
actual system S(ρ(t)) will be the convex combination of the vertices, i.e.:

S(ρ(t)) =
8

∑
i=1

αi(ρ(t)) ·Si . (18)

Obviously, if the actual system reaches a vertex that means the convex coordinate of
the particular vertex will be equal to one, however, the others will be equal to zero.

For example, if the system reaches the vertex S1, the α1 = 1, further
8

∑
i=2

αi(ρ(t)) ·

Si = 0 and the actual system is:

S(ρ(t)) = α1(ρ(t)) ·S1 +
8

∑
i=2

αi(ρ(t)) ·Si = α1(ρ(t)) ·S1 . (19)
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Figure 1
Affine and polytopic LPV model examples in the 3D parameter space
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2.3 Specificities of LPV models in the field of diabetes research

According to the complex patient models the following general properties can be
considered:

• Inputs are not affected by nonlinearities; they have impulse attitude; mostly
consists of external insulin and glucose (or rate of appearence of glucose)
intake; do not directly affect the outputs (in state space representation this
means that the D vector contains only zero elements and it does not depend
on the parameter vector ρ);

• Output(s) are connected to the blood glucose level (or the blood glucose level
is the output itself); not affected by nonlinearities;

• Since the nonlinearities do not affect the inputs and the outputs, it is not nec-
essary to select their elements as scheduling parameters, which means that B
and C are independent from the parameter vector ρ; moreover, these usually
do not depend on time;

• The nonlinearities occur in the state matrix (A) regarding to glucose-insulin
dynamics, glucose and/or insulin absorption, effect and dynamics of insulin;
the intra- and inter-patient variabilities are represented in the elements of A
and usually these are time dependent; scheduling variables should be selected
from the elements of A in order to hide the nonlinearities and make the han-
dling of A convenient from control point of view.

From the aforementioned consideration it can be derived that the LPV-type diabetes
models have the following form which can be observed in several studies [8, 9, 14]:

ẋ(t) = A(ρ(t))x(t)+Bu(t)
y(t) =Cx(t)+Du(t) (20)

where the system matrix S is the following:

S(ρ(t)) =
(

A(ρ(t)) B
C D

)
(21)

and the state space representation in compact form is:

(
ẋ(t)
y(t)

)
= S(ρ(t))

(
x(t)
u(t)

)
. (22)

Equation (21) shows that in this form the LPV-type diabetes models only contain
dependency from the parameter vector ρ in the state matrix A and all time dependent
components are selected as scheduling variable.
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3 Different interpretations of quality based on LPV con-
figurations

3.1 Norm-based ”difference” definition in the Parameter Space

Each dimensions of the PS correspond to an element of the parameter vector (ρ ∈
Rk). Inside this abstract space each point can be determined by the corresponding
parameter vector. Furthermore, this abstract PS is an Euclidean vector space and
vector Lp norms can be interpreted. Assume two vectors ρa, ρb ∈Rk in the PS. The
L norm based distance between the vectors can be described as follows:

‖ρa−ρb‖2 = d2 . (23)

The defined d2 can be used in various way depending on the interpretation of the PS
which are presented in the next section.

3.2 Possible interpretations of the defined norm-based differ-
ence in the Parameter Space

The points of the PS which are determined by the parameter vector can be inter-
preted on their own as vectors, which elements consist of the parts of the system.
However, the parameter vectors can unequivocally determine an underlying LTI sys-
tem in the affine LPV case and a well-characterized LTI system in the polytopic
case. The following statements are general LPV model properties regardless it is
the affine or polytopic type LPV model.
When the goal is to emphasize particular properties of a system, each of the parts
representing these properties have to be selected as scheduling variables. For ex-
ample, if we investigate only the insulinemia (I) and blood glucose (G) from (A-1),
these have to be selected as scheduling variables and the PS will be 2 dimensional.
In this case, the introduced d2 is appropriate to define a ”difference” between the I
and G which belong to different points in the PS. Namely, a permanent reference
parameter vector ρre f can be defined with given constant I and G. The actual param-
eter vector ρactual varies over time. In this case d2 = ‖ρre f −ρactual‖2 determines
the 2-norm based difference of them and this can be interpreted as an ”error” or
”quality” signal, if ρre f and ρactual are different during operation. Generally, this
interpretation can be extended for any k dimensional parameter vector.
If the question is to design a controller the key point is what the selected scheduling
variables are. At this point several approaches and interpretations can be distin-
guished. The main ones are the following:

1. The selected scheduling variables are those properties which have to be mon-
itored during the operation. In this case, the 2-norm based difference can be
used as ”quality” signal and the performance of different controllers can be
compared with this quality signal in the PS.

2. The selected scheduling variable are those properties which have to be con-
trolled and monitored during operation. In this case, we can interpret the
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2-norm based signal as ”error” signal. This type of error can be used during
the controller design.

3. The selected scheduling variables are those components which are time de-
pendent in LTV case. The parameter vector unequivocally determines the
underlying LTI systems which can occur from the general LTV system during
operation at given time moments. In this case, the defined 2-norm difference
can be used as ”metric” in order to compare LTI systems in the PS.

4. The selected scheduling variables are those components which are causing
nonlinearities in NLTV case. The general purpose of this approach is that the
linear controller design techniques become usable beside polytopic LPV sys-
tems. If each nonlinearity causing and time dependent parameters are selected
as scheduling variables, the parameter vector unequivocally (affine LPV case)
or satisfactorily (polytopic LPV case) determines an LTI system during oper-
ation at given time moments. In this case the defined 2-norm difference can
be used as metric in order to compare LTI systems in the PS.

In the following sections we detail the key aspects from the above mentioned points.

3.2.1 The 2-norm based difference as quality and error signal

The most important issue in these cases is the way how the parameters are selected
from the original model and the interpretation of them.
If the scheduling parameters are selected each-by-each and not grouped, then each
dimensions of the PS will be an individual variable with physiological or physical
meaning (e.g. the I and G parameter from (A-1)).
However, the scheduling variables can be grouped (e.g.,(25)). In this case the
scheduling variables can loose their original meaning and cannot be interpreted in-
dividually.
Nevertheless, the grouped scheduling parameters allow to interpret the 2-norm based
difference sophisticatedly. If the goal is to monitor how the specific properties of
the system vary over time and compare this vary with predefined requirements, the
2-norm based difference can be interpreted as quality signal. This approach can be
important in such application, where the different parts of the system cannot change
to drastically relative to each other. Naturally, in this case, these specific parts have
to be selected as scheduling variables.
It has to be noted that the observability should be considered in this case, since, the
selected parts have to be observable or estimable. Fig. 2(a). shows a 2 dimensional
parameter space. For example, a possible goal (beside other goals) of the applied
controller can be to hold permanently two system properties during operation. If
these properties (which are represented with different parts of the system) are se-
lected as scheduling variables, the performance of the controller can be assessed
based on the d2(t) signal.
During controller design the 2-norm based difference can be used as an ”error”
signal in the classical meaning. The appropriate selection and interpretation of
the scheduling variables are necessary. The observability and controllability of the
scheduling variables are important issues, as well.
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The first step is the selection of parts of the models as scheduling variables which
have to be controlled. However, in case of grouped multiply out (e.g. SIQ(t)/(1+
αGQ(t)) of (25) ) should be reasonable. The error signal ought to be known at every
time moment as the basis of control.
If the elements of the parameter vector are not observable, they have to be esti-
mated or approximated. The control signal affects the scheduling variables directly
or through coupling. Without connection, the scheduling variables cannot be influ-
enced by the control signal.
Beside these constraints, controller design is possible. For example, the recently de-
veloped Robust Fixed Point Transformation (RFPT)-based controller design method-
ology can be used [23]. The first stage is the investigation of the effect chain of the
control action, namely, how the control signal affects the controlled variables which
are here the scheduling variables ρ(t) = f (ρ(t)−,u(t)), where ρ(t)− is the a-priori
knowledge about the ρ(t) and u(t) is the control signal. With approximate inverse
kinematic description (ũ(t) = f (ρ(t),ρ(t)−)) and appropriate control laws a RFPT-
based controller can be designed. In this case the error signal can be the developed
by 2-norm based difference (d2), which arises when the nominal prescriptions of the
controlled variables (the scheduling variables) are not equal with the actual values
of them. Geometrically, the nominal prescriptions of the controlled variables can be
a permanent point of the PS (ρre f ) and the actual values ρact(t) are varying in time
during operation. Based on the arised error signal d2(t) a RFPT-based controller
can be designed [23].
In Fig.2(a). a 2D example can be seen, where d2(t) can be interpreted as the men-
tioned error signal. The comparability of the order of magnitudes of the scheduling
variables represent a significant point. The nature of the Euclidean norms determine
the particular difference signals affect mostly on the 2-norm based difference which
has the highest magnitudes (e.g. the ρre f erence,1−ρactual,1� ρre f erence,k−ρactual,k,
ρ ∈Rk, k 6= 1 determines that the 2-norm based difference will have strong connec-
tion with the variation of ρre f erence,1−ρactual,1). If the scheduling variables have to
be considered with the same ”weight” (they have the same importance), different
normalization and weighting techniques can be used [20].

3.2.2 The 2-norm based difference as comparison of systems

Generally, LPV techniques are used in order to embed the uncertainties into a system
model or hide the system model nonlinearities by making the application of linear
controller design techniques possible. LPV models can be used in the classical con-
trol design solutions, however, the use of such models according to Linear Matrix
Inequality (LMI) based controller design methodologies are possible, as well. LMIs
are powerful mathematical opportunities of controller design techniques.
Almost each control design method can be formulated as a LMI problem and can be
solved via iterative numerical processes [17]. In recent years parallel with numeri-
cal computational evolution a wide range of LMI applications were discovered and
used in control engineering [16, 24].
However, the basic concept behind the LPV-LMI based modeling and control ap-
proaches consist in guaranteeing and exploiting the convexity properties. Basically,
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this means that it is enough to design such sub-controllers which can deal with the
LTI systems in the vertices of the convex polytope, and the convex combination of
such controllers can handle each occurring LTI system during operation, if the basic
LPV model was appropriate.
In order to use the developed 2-norm based difference as a ”metric” on the un-
derlying systems which are determined by parameter vectors inside the PS, several
control and mathematical constraints have to be considered. Particular parameter
vectors belong to each of the points inside the PS. Since, the parameter vector con-
sist of elements which were multiplied out from the SS model, a parameter vector
can determines an underlying system. The key questions are the type of the under-
lying systems regarding to the parameter vector and how can the parameter vector
be used to describe differences among the underlying systems. A few scenarios can
be considered dependent on the type of the original and the describing LPV system.
The reasonable original system can be NLTV, LTV and LTI beside the describing
LPV system (affine or polytopic).

• In LTI-LPV case, each of the points inside the PS is an LTI system and fully
determined by the parameter vector.

• In LTV case, a parameter vector determines the underlying system only, if
each time-dependent element is selected as scheduling variable.

• In NLTV case, if each time-dependent and nonlinearity causing element is se-
lected as scheduling variable, the parameter vector determines the underlying
system.

In all three cases, the parameter vectors determine an underlying LTI system. In
NLTV-LTV-LPV case, the original models become simpler. Furthermore, during
operation these get around a path inside the PS. The most typical application is
when the nonlinearity causing elements are selected as scheduling variables from
the NLTV system and the obtained LPV model is used in a LPV-LMI control ap-
plication. However, in this case, a parameter vector does not determine equivocally
the underlying system, since, the time-dependent components can cause hidden dif-
ferencies, which cannot be seen through the parameter vector.
Assume that the selection of the scheduling variables was appropriate and each pa-
rameter vector determines an underlying LTI system. That means the parameter
vector-based differences can be interpreted as a ”metric” on the occurring LTI sys-
tems for which these vectors belong. Namely, instead of the Frobenius-norm based
difference in the systems’ space the Euclidean-norm based difference in the PS can
be used to determine the ”difference” between the occurring LTI systems.

‖S(ρa)−S(ρb)‖F →‖ρa−ρb‖2 = d2 . (24)

In the convex polytope, every LTI systems are uniquely specified with their pa-
rameter vectors as a consequence of the aforementioned statements. However, the
LTI systems in the convex polytope can be calculated as the convex combination
of the vertices of the convex polytope. The key question then is the determination
of barycentric coordinates (αi ∈ Rq) via the uniqueness of the vertices of the given
polytope.
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Inside the convex polytope each occurring LTI system is over defined, since in a k
dimensional parameter space a q pieces coordinate is used to define them, where
q > k. That means, if the barycentric coordinates are arbitrarily defined, the oc-
curring LTI system description will not be unequivocal, since with the same set of
coordinates describes more then one system. In other words, because of the null
space problem (differences could occur in the null spaces of the given LTI system)
the parameter vector based metric cannot be used as a classic ”metric” and cannot
be unequivocally interpreted on the LTI systems behind.

Nevertheless, the calculation of the barycentric coordinates (S =
q

∑
i=1

αiSi) are con-

nected to the selected vertices of the convex polytope and equivocally defined by
15-17. With this condition, the defined metrics can be valid on the occurring LTI
systems in case of polytopic LPV systems, as well.
The developed parameter vector based metric can be used in modeling and control
as a ”quality marker”. For example, if a given LPV model is used during identifi-
cation, the identified model S(ρident) can be compared to a reference model S(ρre f )
in order to estimate the efficiency of the identification procedure. Furthermore, this
can be an on-line estimation as well, when the system under identification is de-
scribed with S(ρactual(tp)). This procedure can be characterized by the developed
‖d2‖2(t) instead of the Frobenius-norm based difference. If the goal is to monitor
the variation of the system during operation compared to a reference system, the
previous solution can be used here as well. Further usabilities and interpretations
will be developed in our future work.
Fig.2(b). shows a 2D example about the aforementioned interpretations. The PB
is the rectangle which is determined by the ρmin,1,2 and ρmax,1,2 in the PS. Further,
this is the validity border of the affine LPV model. At the same time, the rectangle
forms a convex polytope. Inside the polytope each occurring LTI system can be
calculated as the convex combination of the vertices of the convex polytope. Each
aforementioned interpretations and issues are demonstrated on a biomedical engi-
neering example regarding diabetes.

4 Example of the developed approach: Modeling of di-
abetes

4.1 Selected diabetes model and an LPV form of it

We have selected a simple diabetes model developed for the Intensive Care Unit
(ICU) treatment by Wong et al. in [25, 26]. The model is a 3rd order one described
by (A-1). The model equations can be handled as in (20-22), which means only
the state matrix depends on the parameter vector (A(ρ(t))). The main aspect of the
model is to describe the glucose-insulin dynamics of an inpatient who suffers from
T1DM and is nurtured on the Intensive Care Unit (ICU) [25, 26]. It is expected that
this simple model -after preliminary identification-, can provide the current and the
future Blood Glucose (BG) level of the patient with a precision that is good enough
for the realization of the tight glycemic control (TGC). Detailed description of the

– 183 –



Gy. Eigner et al. LPV-based quality interpretations on modeling and control of diabetes

0 ρ1,min ρ1,max
0

ρ2,min

ρ2,max

ρre f

ρact(t0)

ρact(tn)

ρact(tp)

d2(tp)

ρ1(t)

ρ
2(

t)

(a)

0 ρ1,min ρ1,max
0

ρ2,min

ρ2,max

S(ρre f )

S(ρact(t0))

S(ρact(tn))

S(ρact(tp))

d2(tp)

S(ρ1,min,ρ2,min)

S(ρ1,min,ρ2,max)

S(ρ1,max,ρ2,min)

S(ρ1,max,ρ2,max)

ρ1(t)

ρ
2(

t)

(b)

Figure 2
Examples of the possible interpretation of the 2-norm based difference

model can be found in the Appendix of the current paper.

4.1.1 qLPV model of the original Wong model

We selected the following scheduling parameters as the elements of the parameter
vector based on our previous work [27]:

ρ(t) =

ρ1(t)
ρ2(t)
ρ3(t)

=



SIQ(t)
1+αGQ(t)

SIGE

1+αGQ(t)
1

1+αII(t)

 . (25)
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It can be seen, that the ρ(t) contains grouped variables. The goal here was to use
this LPV model in classical LPV-LMI controller design. Each nonlinearity causing
element was selected as scheduling variable. Based on (A-1 and 25), the qLPV
model of the original Wong model can be described as follows:

A(ρ(t)) = A0 +A1ρ1(t)+A2ρ2(t)+A3ρ3(t) =−pG 0 0
0 −k k
0 0 0

+
0 −1 0

0 0 0
0 0 0

ρ1(t)

+

0 −1 0
0 0 0
0 0 0

ρ2(t)+

0 0 0
0 0 0
0 0 −n

ρ3(t)

B(ρ(t)) =


1 0 0
0 0 0

0
1

VL
−p4Ib


C(ρ(t)) =

[
1 0 0

]

. (26)

After defining the border of the parameter box, namely the convex polytopic space,
the polytopic model form of the qLPV model can be easily obtained based on the
affine qLPV form of (26). We have selected tight ranges in every dimension in order
to catch the dynamics as precise as possible:

ρ(t) =

ρ1(t)
ρ2(t)
ρ3(t)

=

[ρ−1 ..ρ+
1 ]

[ρ−2 ..ρ+
2 ]

[ρ−3 ..ρ+
3 ]

=

[0..5]
[0..5]
[0..5]

 . (27)

4.2 Presentation of the results

The main goal was to test the usability of the developed ”metric” without physio-
logical constraints. In this demonstration we used the consideration of Sec. 3.2.2.
Fig.3. shows the changing of the elements of the parameter vector ρ(t) and the
developed 2-norm based difference. On every diagram, the dashed line represents
the fixed value, which belongs to the ρre f = [0.2, 0.01025, 0.98]T . It can be seen
regarding to the input selected as a symmetrical repeating impulse (P(t) = 100 at
every 140min for 7min long and uex(t) = 100 at every 130min for 6.5min long) that
after the first period’s decay, the parameter vector have taken the same values in
each cycle, which means the same LTI systems occur over time in each cycle.
Fig.4. shows the same signals as Fig.3. on one diagram in order to compare the
orders of magnitudes. It can be seen that based on Sec. 3.2.1 those signals that
reflect mostly in the ‖d2‖2 have the highest amplitude. Since, in this case the ρ1(t)
has the highest amplitudes, the ‖d2‖2 correlated mostly with ρ1(t). If each schedul-
ing variables have to be considered with the same weight, normalization procedures
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can be done [20]. However, we did not apply such methods as the goal was only
demonstration.
If the parameter vectors fully determine the underlying LTI systems during oper-
ation, the parameter vector based metric can be used to compare the ”difference”
between these systems. Fig.5. shows this issue in case of the selected model and
parameter vector, namely, instead of the Frobenius-norm based ”difference” the de-
veloped metric can approximately provides similar results. Naturally, the signals
are not the same, since the numerical computations are different. However, the
maximum root mean square error (RMSE) was 5.4e−5.
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Figure 3
Varying of the scheduling variables and the norm-based error signal

Conclusions

In this study we introduced norm based ”difference” interpretation regarding to LPV
systems, based on the properties of the LPV parameter space. We have defined how
to use these interpretations as error and quality criteria during modeling and control
and demonstrated our theoretical findings by a concrete example on diabetes mod-
eling and control of ICU patients. Our future work will focus on the investigation
of how this approach can be implemented to the actual LMI based control design
methods in order to realize more precise controller for the practice.
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Comparison of the magnitudes of the scheduling variables and the norm-based error signal
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icance of LPV modeling of a widely used T1DM model. In EMBC 2013 –
35th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 3531 – 3534. IEEE EMBS, 2013.

[15] D.W. Gu, P.H. Petkov, and M.M. Konstantinov. Robust Control Design with
Matlab. Springer, London, 2nd edition, 2013.

[16] A.P. White, G. Zhu, and J. Choi. Linear Parameter Varying Control for Engi-
neering Applicaitons. Springer, London, 1st edition, 2013.
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Appendix

The Wong-model consist of the following equations [25, 26]:

Ġ(t) =−pGG(t)−SI(G(t)+GE)
Q(t)

1+αGQ(t)
+P(t)

Ẋ(t) =−kI(t)− kQ(t)

İ(t) =−
nI(t)

1+αII(t)
+

uex(t)
V

(A-1)

The following table contains the parameters, their descriptions and their values
which were used in this study regarding to the Wong-model [25, 26].

Table A-1
Detailed desriptions and values of the parameters of the Wong-model

Notation Unit Description Value
G mmol/L Plasma glucose above equilibrium

level
-

Q mU/L Concentration of insulin bounded to
interstitial sites

-

I mU/L Plasma insulin resulting from exter-
nal input

-

P mmol/L/min Total plasma glucose input -
uex mU/min External insulin input -
GE mmol/L Plasma equilibrium level 10.5
pG 1/min Endogenous glucose clearance 0.01
SI L/mU/min Insulin sensitivity 0.001
V L Insulin distribution volume 12
k 1/min Effective life of insulin in the com-

partment
0.0198

n 1/min First order decay rate from plasma 0.16
αI L/mU Plasma insulin disappearance 0.0017
αG L/mU Insulin effect 0.0154

– 190 –


