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Abstract: In this paper we analyze the robustnessooting and tournament algorithms
against faulty comparisons. Sorting algorithms adiferently affected by faulty
comparisons depending on how comparison errorsaféact the overall result. In general,
there exists a tradeoff between the number of casp® and the accuracy of the result,
but some algorithms like Merge Sort are Pareto-d@mi over others. For applications,
where the accuracy of the top rankings is of higingportance than the lower rankings,
tournament algorithms such as the Swiss Systeraragption. Additionally, we propose a
new tournament algorithm named lIterated Knockowte3ys which is less exact but more
efficient than the Swiss Systems.
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1 Introduction

Sorting is a fundamental and often applied algoriih computer science. There
has been put much attention on the efficiency ebiing algorithm in terms of

number of comparisons or number of element switclFesome applications, like

sports tournaments or comparative evolutionary rétlygms, the comparison

function is a complex function that involves eitlematch between two players or
a simulation of two teams trying to achieve a givgoal [1]. In such cases,

especially when the opponents are of similar stienghe outcome of a

comparison can become indeterministic (e.g., duegports team winning over a
stronger team by being lucky).

Our motivation is thus to research sorting algonghfor these potentially failing
comparisons. We expect to have faulty comparisoestd random fluctuations in
the evaluation function that compares two elemeWfgh respect to randomly
occurring errors, we do not assume a hard limithennumber of occurring faulty
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comparisons. Instead we are looking for a methad ihrobust against such
problems, that is we allow a deviation from thefeetrresult, but the result should
be gracefully degrading based on the number ofdaul

The related work on this topic goes back to the0s9¢ection 2) and shows that
the problem has been identified in different fietdgh as mathematics, computer
science, and organizers of social studies or (3hegmaments.

In our work we examine the robustness of typicattisg and tournament
algorithms with respect to faulty comparisons. A kegpothesis was that a very
efficient (i.e., low complexity order) sorting algghm might be more susceptible
to errors from imprecise comparisons than the meeéficient sorting algorithms
which might implement a lot of implicitly redundacbmparisons. While our
results from an expreimental validation of sevetahdard sorting algorithms in
general support this hypothesis, there are stilesintrinsic factors in the way of
sorting that make an algorithm more or less robughese faults. We show that
therea is a tradeoff between accuracy and numbeomparisons and place the
results for Bubble Sort, Selection Sort, Heap SQuijck Sort, Merge Sort and
Insertion Sort on a two-dimensional map of bothecid. As shown in Secion 6,
Merge Sort provides a good accuracy for a reasenabmparion overhead.
Additionally, we have examined tournament systeath sas Round Robin, Swiss
System and propose an Iterated Knockout System $)KODhese algorithms are
especially of interest for sorting tasks wheredheuracy of the topmost places is
the most important while errors in the lower radksnot play a role. For this case,
IKOS has shown the highest efficiency.

The insights gained from this work (Section 7) niey a helping guideline for

selecting a sorting algorithm under noisy condgiolm particular they are useful
for implementing a fair but time-efficient tournamethat determines the best
teams. Another application can be in evolutiondgo@dhms with comparative

fithess functions, as for example in [1]. Since tliteess comparison often
requires a time-consuming simulation, cutting down the number of

comparisons (i.e., simulation runs) while keepihg accuracy for the upper part
of the population is an important issue.

2 Related Work

There exists a vast amount of literature on sor@hgprithms [2, 3]. In the
following we review work where the problem on rotmess and fault tolerance is
particularly treated.

Binary search with faulty information was formuldtas game theoretic problem
by Rényi [4] (a player must guess an object baseges/no answers from another
player that sometimes may answer incorrectly) apndJlam [5] (a very similar
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game where a player must guess a number in a gigege). A more
comprehensive overview on the historical developnuéresearch on this topic
can be found in [6].

Approximate voting is also supported by severabatgms supporting anytime
behavior, i.e., a process generations intermedgdalts which increase in their
accuracy over time. An example for such an algoriie Comb Sort [7], which

iteratively “combs” the elements similar to a bubkbrt approach. However, the
comb sort provides adjustment for specifically fegsing on a specific part (e.g.
the first few positions) of the list to be sorted.

Ravikumar, Ganesan, and Lakshmanan discuss théepralf finding the largest
element of a set using imperfect comparisons [Bf @&pproach is extended in [9]
to an algorithm for sorting elements with a compami function that may
sometimes fail, i.e., yielding the incorrect resulthe algorithm has a worst-case
complexity ofQ(nlog(n) + en), wheree is an upper bound for the total number of
errors. Based on these results, Long [10] presamialgorithm for searching and
sorting with a faulty comparison oracle. Given ttie assumption oadoes hold,
these algorithms provide a perfect ranking. Howgetlegre is no assessment on
the sorting quality if this assumption is invaliddt Thus, these algorithms are
fault-tolerant, but not necessarily robust.

Bagchi presents a similar approach in [11]. Hisltfsalerant algorithm is
basically a binary insertion sort modified to copih errors also with a worst-
case complexity of2(nlog(n) + en).

Ajtai et al. [12] assume a different model for impise comparisons, where the
outcome of a comparison is considered unpredicifbhe elements differ by less
than a given thresholdl They present an algorithm that provides a coseding

of all elements which differ at least by

Giesen et al. [13] present a worst-case bounchfonecessary comparisons of any
approximate sorting algorithm (however without desing faulty comparisons)
that ranksn items within an expected Spearman’s Footrule digta

3 Why Robustness

In contrast to the well-established and well-defifeld of fault tolarence [14,
15], the notion of robustness differs by the fiefdesearch [16]:A biologist will
understand robustness in terms like adaptationhibtg, diversity, survivability,
and perturbations. A control theorist will expressbustness in terms of
uncertainty of mathematical models. A software hkger might focus on a
programs ability to deal with unusual usage or ss@put.”
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Robustness differs from fault tolerance in the wi#mat robustness is not
implemented against a rigid fault hypothesis [17].

Instead, robustness (against a particular propsugh as noisy sensor data, etc.)
points out that the system is capable of maintgirita function (at least in a
degraded, but acceptable way) despite various @weg perturbations.

When applying the concept of robustness for sortmg are looking for
algorithms that might degrade in its result, itee sorting order, but provide an
approximate result which is acceptable. Althoughcae use standard measures to
define if a result is more or less deviating frdme ttorrect sorting, the level of
acceptability heavily depends on the applicatiome &pplication we had in mind
was performing a sorting of candidates in a genafjorithm where the fithess
function is inaccurate [1]. In genetic algorithras, inaccurate sorting is likely to
have only a degrading effect on the runtime ofdlgorithm, i.e., slowing down
the convergence of the gene pool towards a solutibin high fitness. Hence,
there exist mutual tradeoffs between sorting speetihg accuracy and sorting
accuracy/speed of genetic algorithms.

For the sake of generality, we will analyze seveiting approaches yielding
different combinations of sorting performance aoduzacy.

4 Algorithms under Consideration

4.1 Sorting Algorithms

As a first step we will evaluate a number of staddsorting algorithms. We have
selected Bubble SdrtSelection Soft Insertion Soft Heap Soft Quick Sort
(using a simple randomized function to define th@)°, and Merge Sottfor our
test. The first three sorting algorithms are in tioenplexity order ofO(rf), i.e.,
they are typically very inefficient for a high nuetbof elements. The other three
algorithms are in the complexity ord®@(nlogn), thus more efficient.

The majority of the sorting algorithms consideredthis paper are symmetric
towards sorting the whole set in similar qualityn Axception is the Heap Sort

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Selection_sort
http://de.wikipedia.org/wiki/Insertionsort
http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Merge_sort
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algorithm and the Swiss system. Under the presefhdaulty comparions, Heap

Sort turned out to make more sorting errors inttigeranks rather than in the last
ranks. Therefore, we inverted the Heap Sort algoriin order to have the better
sorting in the top ranks.

4.2 Tournament Algorithms

The sorting problem is very similar to the taskoojanizing a tournament among
a number of participants. Participants are pairgd matches deciding which
participant is stronger and should therefore beeddiabove” the other one.

In contrast to sorting, tournament organizers uguainsider that comparisons are
neither deterministic nor consistently yielding teronger participant. In the
simplest form, the round robin tournament, everytipip@ant is paired against
every other participant. The results of each maigk points to the participants,
which are sorted according to their points in tinel.eNote that for example, a
participant could win a tournament even though heshe lost to the second
ranked participant.

A round-robin approach is usually very robust agamandom influences on the
comparison function, since the pairing does noteddpon the outcome of

previous comparisons. However, this approach reqd](”‘l) comparisons and
2

is thus as inefficient as the sorting algorithmshie complexity order ab(n?).

The Swiss Systems style tournament [18] is moriiefft than the round robin
tournament. The Swiss System is extensively usecthé@ss tournaments. When
there is noa priori knowledge of the participants’ strenght, the firstind of s
Swiss System tournament contains random pairimgsath game the winner gets
two points, loser gets zero, in case of a draw lgethone point. After this round
players are placed in groups according to theires§¢winners in the group “2”,
those who drew go in the group “1” and losers go the group “0"). The aim is
to ensure that players with the same score aregaigainst each other. Since the
number of perfect scores is cut in half each rotiddes not take long until there
is only one player remaining with a perfect scénechess tournaments there are
usually many draws, so more players can be har{dl&€dround event can usually
determine a clear winner for a section of at |d@splayers, possible more).

The drawback of the Swiss system is that it is aldgigned to determine a clear
winner in just a few rounds. Likewise, the worstfpeming participant is also
determined. The more a position differs from thistfior last position, the less
likely this position is correctly ranked. In othewords, the Swiss system has an
increasing exactness towards the first few andfiéagtranks.

-11-
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4.3 Iterated Knockout System

Some of the applications we had in mind only neewring of top half of the
elements (e.g., a genetic algorithm that dropsatididates below a threshold).
Therefore, we developed a specific algorithm ta sogiven number of ranks
starting from the “first place”:

1 start with an empty ranking list;

2 start a single-elimination tournament: each candidakes place in exactly
one pairing per round. The winners of each paifmgmote to the next
round. If the number of candidates is uneven, amliclate not being paired
passes on to the next round.

iterate 2 until there is only one candidate (thener of this tournament) left;
append the winner to the overall ranking list;

build the list of candidates (except the ones dliyganked) that have not lost
to anyone except for the already ranked candidates;

6 go to step 2. Results from already played pairargskept.

Thus, we subsequently pick players from the lidtl ¢lne ranking list contains all
the ranks of interest.

5 Evaluation Method

For an evaluation, we test these algorithms ontanith randomly generated
numbers in a range between 0 and 100. Array siaes heen varied between 10
and 200 according to typical target applicatiors. #ach comparison operation, a
random factor (the “noise”) is applied to both \edubefore the comparison
operation is performed. A 5% noise means for exantpat the value used for
comparison may vary up to +5% of the value rand®)1Thus, the probability
that a comparison may yield an incorrect resutthes higher the closer the two
values are. The average result of a sorting alyoriinder test is compared to the
correct sorting, that is without applying the ramdftuctuation before comparison.
For the comparison we apply two metrics: The finsé is based on Spearman’s
footrule as a measure of disarray [19], which iswated as the sum of absolute
differences between the resulting and correct rafke results are normalized by
the number of elements, thus, the deviation inresults always gives the average
distance in ranks of an element to its correct tjsi In order to account for
applications where the correct ranking of the lowamks is not important, we
apply also a different metric that apply a weigh dor deviations in the top half,
while ranking deviations in the lower half have a&ight of zero, thus do not
contribute to the metric.

-12-
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6 Results

Figure 1 visualizes the complexity of the differatgorithms with respect to the
number of comparions. As expected, we can obsaevinefficient O(n?)) sorting
algorithms like Bubble Sort, Selection Sort, anselion Sort to require by far the
most comparisons to create a ranking. The sortiggrithms Heap Sort, Merge
Sort, and Quick Sort are more efficient. The S\gstem needs even less number
of comparisons, but the Swiss System is no sowiggrithm since it does not
yield a perfect sorting of the result even withfper comparisons.

3500

3000 /

-+ BubbleSort N=10%
= SelectionSort N=10%

2000 Insertionsort N=10%
HeapSort N=10%

1500 - MergeSort N=10%

/ -+~ QuickSort N=10%
1000 —+— SwissSystem N=10%
° M

0 7 T T
0 10 20 30 40 50 60 70 80 90

Array Size

Average Comparisons

— KnockOut N=10%

Figure 1
Number of comparisons vs. array size for differgbrithms

When considering random fluctuations before congoawi the algorithms show
different performances as depicted in Figure 2. $ivss System, which was the
most efficient one in the previous analysis, comihk the cost of hight deviation
(disarray according to Spearman’s footrule). I3 tiiaph, also the performance of
a full Round Robin tournament is depicted. In tband robin tournament there
are N(n-1) comparisons, where each comparison gives a poirhe winner.
2
Afterwards, the ranking is established by the numfifepoints. Although not
being very efficient, faulty comparisons in the RduRobin tournament approach
are likely to cancel out to have their effect liatit Therefore, a Round Robin
turns out to be the most robust (but painfully loapproach. Interestingly,
Insertion Sort is both, slow and inaccurate. Thislie to the fact that one faulty
comparison can affect the ranking of all other eetas and thus leads to
subsequent errors.

-13-
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Deviation from the perfect result

Figure 3 examines the robustness of the sortingtaadhament approaches for
different levels of noise. The array size was chasebe constant 50. The most
robust methods are (sorted according to their roless): Round Robin,
Tournament, Bubble Sort, Merge Sort, Quick Sortapi8ort, and Selection Sort.
The Swiss System is an interesting case, for losenievels, it is among the worst
methods, however, for noise of 30% and more, thsS@&ystem is the third best
one, since its results degrade slower than the atberithms.

~+- BubbleSort

-#- SelectionSort

e = ,/. .
// Insertionsort

10 HeapSort

8 -+ MergeSort

6 / -+~ QuickSort
A /// —— SwissSystem

/ — RoundRabbin
o8
—

10 20 30 40 50 60 70
Noise in %

Average Deviation

Figure 3
Vulnerability to noise in comparison function

Figure 4 maps the different algorithms accordingtheir average number of
comparisons and the average resulting deviatioe. Adise parameter had been
chosen to be 10% and the array size was 50 forctihraparison. We observe that
Merge Sort dominates Quick Sort, Heap Sort, S@rcdort and Insertion Sort. In
other words, Merge Sort is Pareto-optimal among #®t. The Round Robin
tournament dominates Bubble Sort and Selection. Hamally the Swiss system

4=
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dominates the IKOS approach (which was set to @alst the upper half). Thus,
the algorithms of choice are Round Robin if accyrae of most importance,
Swiss Sort if efficiency is of most importance, afdrge Sort for a combination
of both. Quick Sort has only slightly worse restitan Merge Sort.

1400
1200
1000

800

600

Number of comparisons

400

200

25 3
Average Deviation

Figure 4
Mapping of different algorithms according to conipan effort and resulting deviation

Figure 5 analyzes the robustness to noise in thgpadson function with respect
to the top half rank results. Thus, ranking erinrthe lower half do not influcence
the result. Here, our proposed IKOS algorithm shavisetter efficiency, since it
was designed for this case.

16

14

—+-BubbleSort
12 - SelectionSort
Insertionsort

10 —— HeapSort

-~ MergeSort
-#- QuickSort
—— SwissSystem
— KnockOut

— RoundRobin

Average Deviation

10 15 20 25 Noisein% 30 35 40

Figure 5
Robustness to noise in top half rank results
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Figure 6 depicts the mapping of different algorighaccording to comparison
effort and resulting deviation in top half rank ukts. Likewise in the analysis
before, the noise parameter had been chosen t0%eahd the array size was 50
for this evaluation.

1400
1200 * Rob * Bubble # Selection
21000
8
g
£ 800
8
5
é 00 # Insertion
5
=z
400 Heap
200 *
* |KOS * Swiss
0 T T T T T T
1 15 2 25 3 35 4 45
Average Deviation
Figure 6
Mapping of different algorithms according to conipan effort and resulting deviation in top halfkan
results

Again, Round Robin and Merge Sort are Pareto-optimsabefore. IKOS and
Swiss System, however, switch places. With onlgtgly more comparisons than
Swiss System, IKOS is able to provide a result Wwhiess prone to noisy
comparions.

Conclusion

This paper contributes in two ways to the statéhefart. The first contribution is
the analysis of existing sorting algorithms accegdto their robustness against
imprecise or noisy comparisons. In contrast toteelavork which introduces new
algorithms that overcome a defined number of faatiynparisons, our approach
did not aim at a fault-free sorting but rather at approximate sorting with a
minimum overhead. This is especially of interest &pplications where an
expensive and noisy comparison function is usezktablish a ranking. If only the
ranking of the first few elements is of interedgaaithms designed for (sports)
tournaments are an intresting option. Apart frorart@aments such a ranking
function is of interest for the evaluation phase genetic algorithms when
evolving a comparative fitness function. Therefave, have also presented a new
tournament algorithm that provides an ordering énentally starting from the
top ranks.

The sorting and tournament algorithms under congiie have been evaluated
according to their sorting complexity and resultwacy. The results show that

-16 -



Acta Polytechnica Hungarica Vol. 6, No. 5, 2009

round robin tournament, merge sort, and the Swystem are Pareto-optimal
according to the overall ordering and that rourimdournament, merge sort, and
the presented IKOS algorithm are Pareto-optimabmiing to a sorting of the top
half of elements.

The presented algorithms have been selected forlibst robustness, but, except
for IKOS, have not been especially designed fos taise. We think that there is
potential for further improving the sorting algbrts by adding mechanisms
dedicated to implement robustness.
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