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Abstract: In this paper we analyze the robustness of sorting and tournament algorithms 
against faulty comparisons. Sorting algorithms are differently affected by faulty 
comparisons depending on how comparison errors can affect the overall result. In general, 
there exists a tradeoff between the number of comparisons and the accuracy of the result, 
but some algorithms like Merge Sort are Pareto-dominant over others. For applications, 
where the accuracy of the top rankings is of higher importance than the lower rankings, 
tournament algorithms such as the Swiss System are an option. Additionally, we propose a 
new tournament algorithm named Iterated Knockout Systems which is less exact but more 
efficient than the Swiss Systems. 
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1 Introduction 

Sorting is a fundamental and often applied algorithm in computer science. There 
has been put much attention on the efficiency of a sorting algorithm in terms of 
number of comparisons or number of element switches. In some applications, like 
sports tournaments or comparative evolutionary algorithms, the comparison 
function is a complex function that involves either a match between two players or 
a simulation of two teams trying to achieve a given goal [1]. In such cases, 
especially when the opponents are of similar strenght, the outcome of a 
comparison can become indeterministic (e.g., due to a sports team winning over a 
stronger team by being lucky). 

Our motivation is thus to research sorting algorithms for these potentially failing 
comparisons. We expect to have faulty comparisons due to random fluctuations in 
the evaluation function that compares two elements. With respect to randomly 
occurring errors, we do not assume a hard limit on the number of occurring faulty 
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comparisons. Instead we are looking for a method that is robust against such 
problems, that is we allow a deviation from the perfect result, but the result should 
be gracefully degrading based on the number of faults. 

The related work on this topic goes back to the 1960s (Section 2) and shows that 
the problem has been identified in different fields such as mathematics, computer 
science, and organizers of social studies or (chess) tournaments. 

In our work we examine the robustness of typical sorting and tournament 
algorithms with respect to faulty comparisons. A key hypothesis was that a very 
efficient (i.e., low complexity order) sorting algorithm might be more susceptible 
to errors from imprecise comparisons than the more inefficient sorting algorithms 
which might implement a lot of implicitly redundant comparisons. While our 
results from an expreimental validation of several standard sorting algorithms in 
general support this hypothesis, there are still some intrinsic factors in the way of 
sorting that make an algorithm more or less robust to these faults. We show that 
therea is a tradeoff between accuracy and number of comparisons and place the 
results for Bubble Sort, Selection Sort, Heap Sort, Quick Sort, Merge Sort and 
Insertion Sort on a two-dimensional map of both criteria. As shown in Secion 6, 
Merge Sort provides a good accuracy for a reasonable comparion overhead. 
Additionally, we have examined tournament systems such as Round Robin, Swiss 
System and propose an Iterated Knockout System (IKOS). These algorithms are 
especially of interest for sorting tasks where the accuracy of the topmost places is 
the most important while errors in the lower ranks do not play a role. For this case, 
IKOS has shown the highest efficiency. 

The insights gained from this work (Section 7) may be a helping guideline for 
selecting a sorting algorithm under noisy conditions. In particular they are useful 
for implementing a fair but time-efficient tournament that determines the best 
teams. Another application can be in evolutionary algorithms with comparative 
fitness functions, as for example in [1]. Since the fitness comparison often 
requires a time-consuming simulation, cutting down on the number of 
comparisons (i.e., simulation runs) while keeping the accuracy for the upper part 
of the population is an important issue. 

2 Related Work 

There exists a vast amount of literature on sorting algorithms [2, 3]. In the 
following we review work where the problem on robustness and fault tolerance is 
particularly treated. 

Binary search with faulty information was formulated as game theoretic problem 
by Rényi [4] (a player must guess an object based on yes/no answers from another 
player that sometimes may answer incorrectly) and by Ulam [5] (a very similar 
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game where a player must guess a number in a given range). A more 
comprehensive overview on the historical development of research on this topic 
can be found in [6]. 

Approximate voting is also supported by several algorithms supporting anytime 
behavior, i.e., a process generations intermediate results which increase in their 
accuracy over time. An example for such an algorithm is Comb Sort [7], which 
iteratively “combs” the elements similar to a bubble-sort approach. However, the 
comb sort provides adjustment for specifically focussing on a specific part (e.g. 
the first few positions) of the list to be sorted. 

Ravikumar, Ganesan, and Lakshmanan discuss the problem of finding the largest 
element of a set using imperfect comparisons [8]. The approach is extended in [9] 
to an algorithm for sorting elements with a comparison function that may 
sometimes fail, i.e., yielding the incorrect results. The algorithm has a worst-case 
complexity of Ω(n log(n) + e n), where e is an upper bound for the total number of 
errors. Based on these results, Long [10] presents an algorithm for searching and 
sorting with a faulty comparison oracle. Given that the assumption on e does hold, 
these algorithms provide a perfect ranking. However, there is no assessment on 
the sorting quality if this assumption is invalidated. Thus, these algorithms are 
fault-tolerant, but not necessarily robust. 

Bagchi presents a similar approach in [11]. His fault-tolerant algorithm is 
basically a binary insertion sort modified to cope with errors also with a worst-
case complexity of Ω(n log(n) + e n). 

Ajtai et al. [12] assume a different model for imprecise comparisons, where the 
outcome of a comparison is considered unpredictable if the elements differ by less 
than a given threshold δ. They present an algorithm that provides a correct sorting 
of all elements which differ at least by δ. 

Giesen et al. [13] present a worst-case bound for the necessary comparisons of any 
approximate sorting algorithm (however without cosidering faulty comparisons) 
that ranks n items within an expected Spearman’s Footrule distance. 

3 Why Robustness 

In contrast to the well-established and well-defined field of fault tolarence [14, 
15], the notion of robustness differs by the field of research [16]: “A biologist will 
understand robustness in terms like adaptation, stability, diversity, survivability, 
and perturbations. A control theorist will express robustness in terms of 
uncertainty of mathematical models. A software developer might focus on a 
programs ability to deal with unusual usage or users input.” 
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Robustness differs from fault tolerance in the way that robustness is not 
implemented against a rigid fault hypothesis [17]. 

Instead, robustness (against a particular property, such as noisy sensor data, etc.) 
points out that the system is capable of maintaining its function (at least in a 
degraded, but acceptable way) despite various unexpected perturbations. 

When applying the concept of robustness for sorting, we are looking for 
algorithms that might degrade in its result, i.e., the sorting order, but provide an 
approximate result which is acceptable. Although we can use standard measures to 
define if a result is more or less deviating from the correct sorting, the level of 
acceptability heavily depends on the application. The application we had in mind 
was performing a sorting of candidates in a genetic algorithm where the fitness 
function is inaccurate [1]. In genetic algorithms, an inaccurate sorting is likely to 
have only a degrading effect on the runtime of the algorithm, i.e., slowing down 
the convergence of the gene pool towards a solution with high fitness. Hence, 
there exist mutual tradeoffs between sorting speed/sorting accuracy and sorting 
accuracy/speed of genetic algorithms. 

For the sake of generality, we will analyze several sorting approaches yielding 
different combinations of sorting performance and accuracy. 

4 Algorithms under Consideration 

4.1 Sorting Algorithms 

As a first step we will evaluate a number of standard sorting algorithms. We have 
selected Bubble Sort1, Selection Sort2, Insertion Sort3, Heap Sort4, Quick Sort 
(using a simple randomized function to define the pivot) 5, and Merge Sort6 for our 
test. The first three sorting algorithms are in the complexity order of O(n2), i.e., 
they are typically very inefficient for a high number of elements. The other three 
algorithms are in the complexity order O(n logn), thus more efficient. 

The majority of the sorting algorithms considered in this paper are symmetric 
towards sorting the whole set in similar quality. An exception is the Heap Sort 

                                                           
1  http://en.wikipedia.org/wiki/Quicksort 
2  http://en.wikipedia.org/wiki/Selection_sort 
3  http://de.wikipedia.org/wiki/Insertionsort 
4  http://en.wikipedia.org/wiki/Heapsort 
5  http://en.wikipedia.org/wiki/Quicksort 
6  http://en.wikipedia.org/wiki/Merge_sort 
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algorithm and the Swiss system. Under the presence of faulty comparions, Heap 
Sort turned out to make more sorting errors in the top ranks rather than in the last 
ranks. Therefore, we inverted the Heap Sort algorithm in order to have the better 
sorting in the top ranks. 

4.2 Tournament Algorithms 

The sorting problem is very similar to the task of organizing a tournament among 
a number of participants. Participants are paired into matches deciding which 
participant is stronger and should therefore be sorted “above” the other one. 

In contrast to sorting, tournament organizers usually consider that comparisons are 
neither deterministic nor consistently yielding the stronger participant. In the 
simplest form, the round robin tournament, every participant is paired against 
every other participant. The results of each match give points to the participants, 
which are sorted according to their points in the end. Note that for example, a 
participant could win a tournament even though he or she lost to the second 
ranked participant. 

A round-robin approach is usually very robust against random influences on the 
comparison function, since the pairing does not depend on the outcome of 

previous comparisons. However, this approach requires ( )1

2

n n−  comparisons and 

is thus as inefficient as the sorting algorithms in the complexity order of O(n2). 

The Swiss Systems style tournament [18] is more efficient than the round robin 
tournament. The Swiss System is extensively used in chess tournaments. When 
there is no a priori knowledge of the participants’ strenght, the first round of s 
Swiss System tournament contains random pairings. In each game the winner gets 
two points, loser gets zero, in case of a draw both get one point. After this round 
players are placed in groups according to their score (winners in the group “2”, 
those who drew go in the group “1” and losers go into the group “0”). The aim is 
to ensure that players with the same score are paired against each other. Since the 
number of perfect scores is cut in half each round it does not take long until there 
is only one player remaining with a perfect score. In chess tournaments there are 
usually many draws, so more players can be handled (a 5 round event can usually 
determine a clear winner for a section of at least 40 players, possible more). 

The drawback of the Swiss system is that it is only designed to determine a clear 
winner in just a few rounds. Likewise, the worst performing participant is also 
determined. The more a position differs from the first or last position, the less 
likely this position is correctly ranked. In other words, the Swiss system has an 
increasing exactness towards the first few and last few ranks. 
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4.3 Iterated Knockout System 

Some of the applications we had in mind only need a sorting of top half of the 
elements (e.g., a genetic algorithm that drops all candidates below a threshold). 
Therefore, we developed a specific algorithm to sort a given number of ranks 
starting from the “first place”: 

1 start with an empty ranking list; 

2 start a single-elimination tournament: each candidate takes place in exactly 
one pairing per round. The winners of each pairing promote to the next 
round. If the number of candidates is uneven, one candidate not being paired 
passes on to the next round. 

3 iterate 2 until there is only one candidate (the winner of this tournament) left; 

4 append the winner to the overall ranking list; 

5 build the list of candidates (except the ones already ranked) that have not lost 
to anyone except for the already ranked candidates; 

6 go to step 2. Results from already played pairings are kept. 

Thus, we subsequently pick players from the list until the ranking list contains all 
the ranks of interest. 

5 Evaluation Method 

For an evaluation, we test these algorithms on a set with randomly generated 
numbers in a range between 0 and 100. Array sizes have been varied between 10 
and 200 according to typical target applications. For each comparison operation, a 
random factor (the “noise”) is applied to both values before the comparison 
operation is performed. A 5% noise means for example that the value used for 
comparison may vary up to ±5% of the value range (100). Thus, the probability 
that a comparison may yield an incorrect result is the higher the closer the two 
values are. The average result of a sorting algorithm under test is compared to the 
correct sorting, that is without applying the random fluctuation before comparison. 
For the comparison we apply two metrics: The first one is based on Spearman’s 
footrule as a measure of disarray [19], which is calculated as the sum of absolute 
differences between the resulting and correct ranks. The results are normalized by 
the number of elements, thus, the deviation in our results always gives the average 
distance in ranks of an element to its correct position. In order to account for 
applications where the correct ranking of the lower ranks is not important, we 
apply also a different metric that apply a weight of 2 for deviations in the top half, 
while ranking deviations in the lower half have a weight of zero, thus do not 
contribute to the metric. 
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6 Results 

Figure 1 visualizes the complexity of the different algorithms with respect to the 
number of comparions. As expected, we can observe the inefficient (O(n2)) sorting 
algorithms like Bubble Sort, Selection Sort, and Insertion Sort to require by far the 
most comparisons to create a ranking. The sorting algorithms Heap Sort, Merge 
Sort, and Quick Sort are more efficient. The Swiss System needs even less number 
of comparisons, but the Swiss System is no sorting algorithm since it does not 
yield a perfect sorting of the result even with perfect comparisons. 

 

Figure 1 

Number of comparisons vs. array size for different algorithms 

When considering random fluctuations before comparison, the algorithms show 
different performances as depicted in Figure 2. The Swiss System, which was the 
most efficient one in the previous analysis, comes with the cost of hight deviation 
(disarray according to Spearman’s footrule). In this graph, also the performance of 
a full Round Robin tournament is depicted. In the round robin tournament there 

are ( )1

2

n n−  comparisons, where each comparison gives a point to the winner. 

Afterwards, the ranking is established by the number of points. Although not 
being very efficient, faulty comparisons in the Round Robin tournament approach 
are likely to cancel out to have their effect limited. Therefore, a Round Robin 
turns out to be the most robust (but painfully slow) approach. Interestingly, 
Insertion Sort is both, slow and inaccurate. This is due to the fact that one faulty 
comparison can affect the ranking of all other elementes and thus leads to 
subsequent errors. 
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Figure 2 

Deviation from the perfect result 

Figure 3 examines the robustness of the sorting and tournament approaches for 
different levels of noise. The array size was chosen to be constant 50. The most 
robust methods are (sorted according to their robustness): Round Robin, 
Tournament, Bubble Sort, Merge Sort, Quick Sort, Heap Sort, and Selection Sort. 
The Swiss System is an interesting case, for low noise levels, it is among the worst 
methods, however, for noise of 30% and more, the Swiss System is the third best 
one, since its results degrade slower than the other algorithms. 

 

Figure 3 

Vulnerability to noise in comparison function 

Figure 4 maps the different algorithms according to their average number of 
comparisons and the average resulting deviation. The noise parameter had been 
chosen to be 10% and the array size was 50 for that comparison. We observe that 
Merge Sort dominates Quick Sort, Heap Sort, Selection Sort and Insertion Sort. In 
other words, Merge Sort is Pareto-optimal among this set. The Round Robin 
tournament dominates Bubble Sort and Selection Sort. Finally the Swiss system 
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dominates the IKOS approach (which was set to sort only the upper half). Thus, 
the algorithms of choice are Round Robin if accuracy is of most importance, 
Swiss Sort if efficiency is of most importance, and Merge Sort for a combination 
of both. Quick Sort has only slightly worse results than Merge Sort. 

 

Figure 4 

Mapping of different algorithms according to comparison effort and resulting deviation 

Figure 5 analyzes the robustness to noise in the comparison function with respect 
to the top half rank results. Thus, ranking errors in the lower half do not influcence 
the result. Here, our proposed IKOS algorithm shows a better efficiency, since it 
was designed for this case. 

 

Figure 5 

Robustness to noise in top half rank results 
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Figure 6 depicts the mapping of different algorithms according to comparison 
effort and resulting deviation in top half rank results. Likewise in the analysis 
before, the noise parameter had been chosen to be 10% and the array size was 50 
for this evaluation. 

 

Figure 6 

Mapping of different algorithms according to comparison effort and resulting deviation in top half rank 

results 

Again, Round Robin and Merge Sort are Pareto-optimal as before. IKOS and 
Swiss System, however, switch places. With only slightly more comparisons than 
Swiss System, IKOS is able to provide a result which less prone to noisy 
comparions. 

Conclusion 

This paper contributes in two ways to the state of the art. The first contribution is 
the analysis of existing sorting algorithms according to their robustness against 
imprecise or noisy comparisons. In contrast to related work which introduces new 
algorithms that overcome a defined number of faulty comparisons, our approach 
did not aim at a fault-free sorting but rather at an approximate sorting with a 
minimum overhead. This is especially of interest for applications where an 
expensive and noisy comparison function is used to establish a ranking. If only the 
ranking of the first few elements is of interest, algorithms designed for (sports) 
tournaments are an intresting option. Apart from tournaments such a ranking 
function is of interest for the evaluation phase in genetic algorithms when 
evolving a comparative fitness function. Therefore, we have also presented a new 
tournament algorithm that provides an ordering incrementally starting from the 
top ranks. 

The sorting and tournament algorithms under consideration have been evaluated 
according to their sorting complexity and result accuracy. The results show that 
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round robin tournament, merge sort, and the Swiss system are Pareto-optimal 
according to the overall ordering and that round robin tournament, merge sort, and 
the presented IKOS algorithm are Pareto-optimal according to a sorting of the top 
half of elements. 

The presented algorithms have been selected for their best robustness, but, except 
for IKOS, have not been especially designed for this case. We think that there is 
potential for further improving the sorting algorithms by adding mechanisms 
dedicated to implement robustness. 
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