
Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 199 –

Exploitation vs. Prevention:

The Ongoing Saga of Software Vulnerabilities

László Erdődi, Audun Jøsang

University of Oslo, Gaustadalléen 23 b, 0371 Oslo, Norway

laszloe@ifi.uio.no, josang@ifi.uio.no

Abstract: Online IT systems are frequently exposed to cyber-attacks. An Exploit is an

advanced attack tool that takes advantage of some software vulnerability to attack and

cause harm to IT infrastructures. Developers and manufacturers of operating systems and

hardware put huge effort into the prevention of vulnerability exploitation (e.g. Data

Execution Prevention, Control Flow Integrity, etc.). However, the number and severity of

attacks show that new exploit methods are continuously being invented despite the

increasingly sophisticated protection methods. The present article summarizes the current,

known and most relevant software vulnerability exploitation methods, as well as, the

possible methods used to protect against these exploits. Moreover, the effectiveness of both

the exploitation and prevention methods (as seen from both the attacker’s and the

defender’s sides) is analyzed to find a possible future direction, to eliminate exploit attacks

against an IT infrastructure.

Keywords: vulnerability; exploitation; protection; control-flow

1 Introduction

Software coding errors can become vulnerabilities that can allow malicious

exploits to take control over computer systems. Using deliberately malformed

input data attackers can cause unintended or unanticipated behaviors in a software

package that contains a particular type of vulnerability. Depending on the type of

vulnerability an exploit can be a sequence of commands, a chunk of data or a

piece of software to cause malicious code execution for the sake of the attackers.

Exploits can be categorized according to their capability (e.g. remote code

execution, DOS), the platform they can be applied to (e.g. Windows, Linux, IoS,

etc.) and also according to the way of execution (local, remote). Some websites

allow the public to register known exploits, such as, the exploit database [1],

where users can submit ready-to-use exploits. Exploitalert [2] is another website

that reports exploits with detailed data found on the Internet. Another exploit

collection is the Metasploit framework [3] which contains several exploits in a

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 200 –

unified form which makes the exploitation very easy and automatic for the

attackers.

Figure 1 shows the number of the available exploits over the years, according to

the Exploit database [1]. Even if this figure and the available sources do not

contain all the existing exploits, it is nevertheless, interesting to observe the trend.

The number of new exploits was on the top in December 2009 when nearly 600

new exploits were added during one month. The Data Execution Prevention

(DEP) [4] and the Address Space Layout Randomization (ASLR) [5] became

basic feature of operating systems around that time, which can explain the

significant decrease in the number of new exploits after 2009. Another reason for

the decrease can be the appearance of the dark web.

Figure 1

Number of recorded new exploits per month in the exploit database [1]

An exploit is usually able to take advantage of one particular vulnerability in a

particular piece of software, but there are some exceptions. A general exploit can

affect multiple platforms as it customizes itself for the actual version of the

software. Some exploits use two or more different vulnerabilities at the same time

to achieve their goals [6]. For a modern web browser exploitation, sometimes

three different vulnerabilities are necessary: one for obtaining the ASLR

randomization offset, one for exploiting the vulnerability and a third one to break

out from sandboxing.

From a vulnerability point of view, two major categories can be created according

to our categorization: The configuration error based and the software error-based

exploits. The exploit that takes advantage of a configuration error can use e.g.

default passwords, access hidden content or bypass protections by misusing the

system. In all of these cases the vulnerability is connected to inappropriate

configuration. In this paper we focus on the other case when the configuration is

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 201 –

correct, but the software code contains vulnerability. Since we use different

software layers that are based on each other the bug can be on different levels too.

The level of the bug significantly determines the difficulties of the detection and

protection possibilities. For example, a Content Management System (CMS) uses

a kind of server side scripting code which is executed by the webserver software

of the operating system. The web server software uses the operating system API

which is based on the kernel level code of the operating system. So a bug in a php

code, on the CMS level, has different effect than a bug in a kernel driver. Figure 2

shows the different layers.

Figure 2

Software code levels

If the vulnerability is e.g. in a kernel driver, then the exploit has the system right

to execute the malicious code. In the user space the exploits have the same right as

the application that contains the vulnerability. In these cases, e.g. a crafted PDF

file is the exploit itself that is opened by the PDF reader (application). If the

application provides services, then the attack surface will be increased. In the case

of a web server application the vulnerability can be inside the application code or

in the high level server side code (e.g. php based SQL injection). In other cases,

the Content Management System (CMS) contains the vulnerable server side code

(e.g. Drupal SQL injection [7]). Exploits can be created in all of these cases, but

obviously the form of the exploit is totally different for a kernel driver bug and for

a Drupal SQL injection.

The CVE database [8] contains the distribution of different vulnerabilities. It

contains a huge amount of webserver-side coding vulnerabilities but the number

of lower level coding vulnerabilities like memory corruption is also significant.

This paper focuses on the lower level type of vulnerabilities, where the

exploitation is carried out directly within the virtual memory.

We can also categorize the exploits according to the vulnerability exposure date. If

the vulnerability was previously unknown, then the exploit would be called a zero

day (0day) exploit. In other cases, the vulnerability is known but the exploit is still

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 202 –

actual since the vulnerability is not patched everywhere or cannot be patched. In

this case it can be referred as 1st day exploit.

Protecting the system against a first day exploit is usually not a real challenge,

because the manufacturer has to provide a patch to remove the security gap after

the vulnerability disclosure. The main focus of the exploit prevention is to protect

the system against the 0day exploits, when concrete attack signatures cannot be

used. This is possible by providing a secure execution environment which

prevents the exploitation of an unknown vulnerability of the software. Several

exploitation and attacking techniques exist and the main focus is to stop the

exploitation without significant resource usage overhead. Since hardware based

techniques hardly slow down the normal execution speed they are more

preferable. In Chapter 2 different exploitation and protection techniques are

summarized, while Chapter 3 focuses on future potential exploitation techniques

and their analyses.

2 The Evolution of Software Vulnerability

Exploitation and Protection

2.1 Early Exploitations

In the early years of software vulnerability exploitation, the aim was to find some

coding error types that could lead to compromises, such as, arbitrary code

execution. In this context there is no specific protection against vulnerability

exploitation; everything is based on code correctness. The operating system

focuses on the fast and efficient code execution within the virtual memory without

any protection that considers coding errors. The program code and the shared

libraries are loaded into the virtual memory to a code segment of the virtual

address space having the operating system API. Each thread of the application has

its own stack segment that consists of the method call stack frames. The whole

process has some common heaps, where the dynamically allocated objects are

stored. Each object has a virtual method table that contains the actual addresses of

the virtual methods during runtime. For the sake of the effective and fast memory

allocation and free in runtime, every heap is organized as series of linked list

chunks with different sizes. A simplified figure of the virtual address space is

presented in Figure 3.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 203 –

Figure 3

Virtual address space layout

In the early years of exploitation, the security of a software was only provided by

the coding. If the code had no vulnerabilities, then the software would not be

compromised. Unfortunately, this not the usual case, and with a single coding

error, the attacker can force the software to execute malicious code. This

malicious code execution is possible using several well-known techniques, such

as, the stack overflow [9] the heap overflow [10], the format string vulnerability

[11] or the use-after-free bug [12].

In the case of stack overflow [9] a local variable of a method (e.g. a string or an

array) is overwritten inside the stack frame. Since the stack frame contains the

method return pointer too, the attacker can redirect the execution to an arbitrary

place by providing a new return pointer inside the local variable. By placing the

attack payload in the corrupted local variable on the stack, the attacker can

redirect the execution to the stack itself and the malicious payload is executed

there.

In the case of heap overflow [10] the overwritten variable is in the heap. By

overrunning a heap chunk the attacker will be able to modify the linked list

pointers of the current heap. During the process of merging the freed heap chunks

the chunk pointers are used for writing data. With an appropriate pointer

modification, the attacker can write arbitrary data to an arbitrary place when the

heap is freed. This is the way how the execution is redirected to the code where

the malicious content is previously placed.

In the case of format string vulnerability [11] the attacker provides a series of

formatting characters of which no data belong to for a printf type of functions.

Choosing the formatting parameters appropriately, the attacker can write almost

arbitrary data to an arbitrary place. By overwriting sensitive data in the virtual

memory such as the stack method return pointer or a virtual address table pointer

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 204 –

the execution is redirected to the attacker controlled place where the malicious

payload is executed.

The use-after-free exploitation technique [12], is based on the modification of an

object virtual method table pointer. If the vulnerability consists of an object that

can be used after being freed then the attacker can try to allocate a fake object to

the same place in the virtual memory where the original object was to redirect the

execution. To achieve this, the attacker has to allocate multiple fake objects, with

fake virtual method tables in the heap, that are pointing to the malicious code, that

has already been placed in advance (heap spraying). When a virtual method of a

freed vulnerable object is called, then the malicious code is executed.

It is easy to draw the conclusion from these early exploitations, that software

security cannot be based only on the code correctness; additional protections are

also necessary to avoid software bug exploitation.

2.2 Early Protections

The early solutions focused on the protection of the critical data in the virtual

memory. For example, the stack frame return pointer overwriting, is aimed to be

protected by the stack cookie [13]. As the stack cookie is placed between the

method local variables and the method return pointer, any modification outside the

real memory range of the local variables results in the modification of the stack

cookie too. Therefore, the stack cookie modification indicates the stack frame

corruption for the operating system. If stack cookie is placed in each stack frame,

then this protection will be good enough to filter the stack frame corruption.

However, it comes with a significant speed performance penalty.

The heap chunk header exploitation is prevented by the secure heap chunk unlink

process [14] that validates the chunk header pointers before it is merged with

another chunk. The secure structured exception handling [15] is another special

defense that was introduced early against the exploitation of the exception

handling vulnerabilities. This protection validates the exception handler pointer

before it is executed.

In addition, several more robust protections appeared in the middle of the 2000s.

These protections such as the Data Execution Prevention [4] and the Address

Space Layout Randomization [5], aim to make software exploitation more

complicated in general. Data execution prevention enforces memory page rights

for the different types of segments in the virtual address space. Reading, writing or

executing the page data are all different types of operations and DEP ensures that

a memory page cannot be written and executed at the same time. DEP stopped

several previously mentioned exploitation methods such as the stack overflow,

since the payload can be written to a writable memory place but it cannot be

executed due to the stack DEP protection.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 205 –

Figure 4

Address Space Layout Randomization in Windows [4]

Address Space Layout Randomization [5] is about to prevent the reuse of the

already existing code parts in the virtual memory for malicious purposes. If the

locations of the different segments in the virtual memory are randomized every

time when the program is launched (Figure 4) then the attacker cannot rely on the

known memory addresses of the shared libraries. It is also important to provide

sufficient entropy for the randomization to prevent code reuse exploitations with

guessing the ALSR offsets.

2.3 Advanced Exploitations

With the introduction of Data Execution Prevention [4], exploit writers could no

longer place their own code to be executed. Attackers had to apply new techniques

and the main idea became to execute the already existing code parts in the virtual

memory that have the right to be executed, and that is the code reuse.

The first applied technique was the return to libc [16] type of exploitations where

the corrupted method is redirected to an operating system API by placing its

address as a return pointer in the corrupted stack frame. However, this technique is

can execute only one operating system method but, selecting the right method,

such as, the WinExec or Execve, with the right parameters can be sufficient.

A significant break-through for the code reuse was the invention of the Return

Oriented Programming (ROP) [17]. This technique divides the desired payload

into small code parts (gadgets) and searches for same code parts in the code

libraries in the virtual address space. Since the gadgets are part of the virtual

memory there is no need for own code to be placed, the payload is only a series of

the gadget addresses and their parameters. Each gadget contains some assembly

instructions with a ret type instruction at the end. When the corrupted method

exits, the execution will be directed to the first gadget by its address. Because of

the ret instruction at the end of the gadgets, the execution is directed to the next

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 206 –

gadget every time by taking the next address on the corrupted stack frame by the

ret instruction. ROP is proven to be Turing complete, the only limitation is the

gadget catalog provided by the virtual address space. According to our current

experiences there is no practical limitation, the attacker can almost always find

enough gadgets in the virtual address space to turn off the DEP and continue the

payload execution in the traditional way.

Jump Oriented Programming (JOP) [18] is a generalization of ROP and also

capable of bypassing the DEP protection in a very sophisticated way. Similarly, to

ROP, JOP executes the payload step by step by using small code parts called the

functional gadgets. Each functional gadget has an indirect jump instruction at the

end to redirect the instruction pointer to a special code part called the dispatcher

gadget. The functional gadget addresses are stored in the dispatcher table that has

to be placed in the virtual memory before the exploitation.

Figure 5

Return Oriented and Jump Oriented Programming [17] [18]

The dispatcher gadget maintains a register which always points to the next

functional gadget in the dispatcher table to be executed. Instead of relying on the

stack and the ret type instructions, JOP realizes its own stack like structure by the

dispatcher table and the concatenation of the gadgets are ensured by the indirect

jump instructions of the functional gadgets and the indirect call instruction of the

dispatcher gadget.

There exist some other forms of scattered code reuse technique and these are

under research such as the Sigreturn Oriented Programming (SROP) [19] or the

Call Proceeded Return Oriented Programming (CPROP) [20]. SROP is based on

the kernel context switching that saves the current execution context in a frame on

the stack. The saved execution context contains the saved registers, as well as, the

flags. In the case of stack overflow the instruction pointer is overwritten in the

saved execution context. This is how the execution is redirected when the OS gets

back the register values from the stack to resume the previous context. Contrary to

ROP, SROP exploits are usually portable across different binaries and can also

bypass ASLR in some cases.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 207 –

Call Proceeded Return Oriented Programming applies whole functions as a gadget

in order to bypass the control flow protections. With this approach every ret like

instruction is legitimate during the payload execution and cannot be discovered

with method return address validations.

Even if bypassing DEP is possible with the listed techniques, it is important to

state that the gadget addresses should be known in order to apply these techniques.

With ASLR this condition is not satisfied so attackers have to also consider ASLR

bypassing, which is always a challenge. In some cases, ASLR can be bypassed by

simple guessing the randomization offset [21] or by taking advantage of another

vulnerability that leaks the randomization offset [6]. Special techniques to bypass

ASLR and DEP together already exist: The Blind Return Oriented Programming

(BROP) [22] and Just in Time Return Oriented Programming (JIT-ROP) [23].

BROP maps the virtual address gadgets by systematic guessing, while JIT-ROP

does a just in time payload customization relying on an ASLR offset leak.

2.4 Current Exploitations

Secure software development is a fundamental question and several protections

exist. Even compilers, operating systems and hardware manufactures try to

mitigate software exploitation as much as possible, several exploits are still

successful. Analyzing the exploits found in the wild, published by researchers and

white hat hackers, it is clear that attackers have to consider the DEP and the ASLR

together as a basic elements of the modern operating systems nowadays. Some

browser exploits appeared at the end of 2016 and the most popular exploitation

method was the Just in time Return Oriented Programming. A Firefox/Tor exploit

(CVE-2016-9079) is revealed [24] at the end of 2016 that maps the WindowsPE

structure in runtime to find appropriate ROP gadgets. The ROP code turns off the

DEP with the kernel32.VirtualAlloc method then the rest of the payload is

executed in the conventional way. Another DEP and ASLR bypassing exploit is

related to the chakra JavaScript [6]. This exploit uses two different vulnerabilities.

CVE 2016-7200 is used for the ASLR bypass, the mshtml.dll randomization offset

is obtained with that bug, while CVE 2016-7201 is used to execute a short ROP

code to turn off the DEP. Both cases belong to the Just in Time Return Oriented

Programming category. ROP based exploits are used everywhere e.g. against

network devices too. A vulnerability (CVE 2017-3881) [25] in the Cisco Cluster

Management Protocol (CMP) processing code in Cisco Software could allow an

unauthenticated, remote attacker to execute code with elevated privileges.

Based on the currently available software exploits, it is obvious that the main

technique is still Return Oriented Programming. DEP and ASLR in combination

were thought to provide very strong protection, but the current examples show that

they can be bypassed routinely in several cases. The next step from the protection

point of view is to disable ROP, where a possible approach is to enforce the right

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 208 –

control flow during the code execution. In Section 3 several control flow

bypassing techniques will be analyzed.

2.5 Enhanced Protections

Because the software vulnerability exploitation is still successful several advanced

practical solutions are available to protect the systems, however these techniques

have to keep up with the new challenges. One of the most-frequently applied

ASLR bypass methods is guessing increasing the entropy of the Address Space

Layout Randomization [26], it is a kind of mitigation, since it decreases the

chance of a successful, brute-force, guessing attack. Forcing ASLR is another way

to achieve better protection. Microsoft tried to prevent 0day exploitation with the

Enhanced Mitigation Experienced Toolkit (EMET) [27] that provided some

special advanced protections such as the anti-ROP technique. In 2016 Microsoft

admitted that EMET is not proper for preventing 0day exploits and abandoned

further development efforts. Microsoft has also introduced some new protections

for the Edge browser [28] in 2016 such as the separated heap for the html objects

or the delayed free to prevent the exploitation of use-after-free bugs. Other

products, such as the Palo Alto exploit prevention [29], provides a wide choice of

different protections, such as, detection of heap spraying and detection of ROP.

Since the main intension is stop the ROP-like exploitation several ideas are about

to maintain and verify the correct control flow of a software [30]. One of the main

questions of the protection over the efficiency is the performance. It is quite

unfavorable if the exploit prevention comes with a performance penalty and slows

down the execution speed significantly. Similarly, to DEP one good direction

from performance point of view can be to provide hardware assisted anti-ROP

protection. Such a solution is the Intel’s Control Flow Enforcement (CFE) [31]

which is a very promising technology.

CFE provides two components for the protection: the shadow stack and the

indirect jump verifier. The shadow stack is a not accessible data storage place,

where the copy of the method return pointers are placed during runtime. Each time

a method exists, it obtains the return pointer from the normal data stack and the

shadow, then the two return addresses are compared as a control. With this

technique the execution of small code gadgets, with unintended ret instructions is

prevented. The indirect jump verifier is a procedure which controls the indirect

jumps during the code execution. The idea is to mark each legitimate indirect

jump instruction with a nop-like special instruction. Whenever an indirect jump is

executed this special nop-like instruction must follow it. If an unintended indirect

jump is executed, the operating system can observe it.

Even this protection seems to be impossible to bypass and some new designs have

already arisen, that have the potential to bypass it.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 209 –

3 Analysis of Control Flow Enforcement Bypassing

Exploitations

Control flow integrity protections such as the Intel’s Control Flow Enforcement

are promising plans to stop Return Oriented Programming without any speed

decrease. The main question from software vulnerability exploitation point of

view is still whether the software bug exploitation will be stopped or significantly

decreased by making ROP-like techniques totally impossible or is it just a step of

the exploitation-protection fight that makes exploitation techniques even more

sophisticated. There are several ongoing research projects on new software

vulnerability exploitation methods, such as, the Loop Oriented Programming [32]

or the Data Oriented Programming (DOP) [33] and also the Counterfeit Object-

oriented Programming (COOP) [34].

The main engine of the LOP is the loop gadget. The loop gadget is a special code

fragment that realizes a loop and calls a method with indirect call instruction in

each step. Figure 6 illustrates some theoretical examples of possible X86 loop

gadgets:

Figure 6

Minimal loop gadgets

In the two presented cases the codes contain a loop and the instructions inside are

repeated infinitely. Similarly, to JOP there is a register (edi in the first case and esi

in the second example) which points to a memory (dispatcher table) and the

pointer is moving to the next table entry in each step of the loop by the add

instruction. The gadgets also contain an indirect call and that is how the functional

gadgets are executed by reading the next address from the dispatcher table in

every step. A better loop gadget is presented in Figure 7. This code fragment not

only executes the functions in the dispatcher table but has a condition to quit from

the loop and finish the program.

Since every functional gadget is a whole legitimate function, there is no shadow

stack being compromised. Since each ret instruction has the call instruction pair,

thus every ret-like instruction will be legitimate. From the functional gadgets point

of view LOP has strict limitations. To bypass CFE only whole functions can be

used as functional gadgets and especially only those methods which have the

indirect jump marker at the beginning. Satisfying all these conditions CFE cannot

prevent LOP execution, since the stack return pointer is not compromised and all

the indirect jumps are legitimate. Figure 8 shows the control flow of LOP.

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 210 –

Figure 7

Loop gadget in msvcr.dll [32]

Figure 8

Loop Oriented Programming [32]

In the case of DOP [33] the main exploitation engine is the gadget dispatcher.

Similarly, to the previous code-reuse techniques (JOP, LOP) a special code part

controls the whole payload execution. The gadget dispatcher also has a loop but

the functional gadgets are invoked in a different way than in case of LOP. DOP

operates with six functional gadget types, but they implement different types of

instructions: arithmetic/logical operation, assignment, load, store, jump,

conditional jump. These functional gadget executions are repeated in various order

during the payload execution with different parameters. The gadget dispatcher has

a selector which sets which functional gadget should run in the next step and also

sets the parameter of the next functional gadget. Figure 9 shows the control-flow

of DOP.

Since the DOP functional gadgets implement general tasks, the gadget dispatcher

of the DOP has more tasks than the LOOP gadget. It does not only invoke the next

functional gadget, but sets the right parameters for the execution by customizing

the input for the functional gadget. A practical example of a DOP gadget

dispatcher is presented in Figure 10.

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 211 –

Figure 9

Data Oriented Programming [33]

Figure 10

Example gadget dispatcher of Data Oriented Programming [33]

The Counterfeit Object Oriented Programming [34] is based on the virtual method

calls of the Object Oriented Programming. Because of the inheritance, the object

class is determined runtime in the case of virtual method call execution and the

method addresses for each objects are stored in vtable structures. If the attacker

manages to redirect the execution to a special virtual function, called the main

loop, then they will be able to provide parameters to execute a Turing complete

program without violating the Control Flow Enforcement. In the case of COOP,

the dispatcher is the main loop and similarly to other loop techniques the task is to

execute the functional gadgets in the right order and with the right parameters.

The main loop as well as the functional gadgets are all legitimate virtual methods,

so they are no longer really gadgets but long legitimate code parts. Figure 11

represents a main loop candidate, which is a destructor.

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 212 –

Figure 11

A possible main loop for COOP [34]

As the attacker can set the nStudent parameter and the address pointing to the

student’s array, with the appropriate stack arrangement they can execute an

arbitrary payload. Figure 12 shows a possible arrangement of the stack [34]. In

Figure 12 the students array points back to the stack so the attacker can set the

number of virtual methods to be executed, the address of the virtual methods to be

executed, the order of the methods and also the method parameters.

Figure 12

Stack arrangement for COOP [34]

Figure 13 shows the execution flow of COOP: taking advantage of a vulnerability

the attacker redirects the code execution to the main loop and sets the stack

pointer to a place where the main loop parameters are placed previously. COOP

seems to be a very powerful technique against CFE as most of the programs

currently use OOP.

According to our analysis it is important to distinguish between three different

techniques considering the evolution of software vulnerability exploitation: In the

first group we classify the techniques where the attacker can place and execute his

own payload, like stack overflow, or classical use after free exploitation. Our

second group contains the normal code reuse techniques, where the attacker

executes the already existing code parts of the virtual memory, assembling the

payload from small code parts that are not necessarily intended instructions called

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 213 –

the gadgets. We call that group ROP-like techniques. Our third group contains the

latest exploitation techniques where the payload is assembled from legitimate

functions and the execution is controlled by a code part containing a loop. We

refer this technique as LOP-like techniques. Table 1 contains a summary of the

different techniques and their main techniques of incursion.

Figure 13

Counterfeit Object Oriented Programming [34]

Table 1

Software exploitation techniques

 Classical

techniques

ROP-like

techniques

LOP-like

techniques

Method of

payload execution

The payload to be

executed is placed

directly by the

attacker

The payload is

consist of small

code parts

(gadgets) from

the virtual

address space

The payload consist

of legitimate methods

from the virtual

address space

DEP bypass No Yes Yes

ASLR bypass Not necessary With additional

vulnerability or

memory leak

With additional

vulnerability or

memory leak

Shadow stack

verification

bypass

Stack overflow: No ROP: No

JOP: Yes

Yes

Indirect jump

verification

bypass

Use after free: No ROP: Yes

JOP: No

Yes

CFE bypass No No Yes

Turing

completeness

Yes Yes, but depends

on the gadget

catalog

Yes, but depends on

the method catalog

Example

techniques

Stack overflow, use

after free

ROP, JOP LOP, DOP, COOP

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 214 –

The latest exploitation techniques are definitely able to bypass the Control Flow

Enforcement technique [31]. So it is clear that if CFE will be used in the future

then attackers will turn to LOP-like techniques. On the other hand, it is important

to mention that there is no practical experience on the usability of these

techniques.

Table 2

Control flow bypassing exploitations

 Loop Oriented

Programming

Data Oriented

Programming

Counterfeit

Object Oriented

Programming

Control gadget

name

Loop gadget Gadget

dispatcher

Main loop

Control gadget

functionality

Calls the

methods step by

step according

to the dispatcher

table

Selects the type

of function first

and call them

step by step

Calls the virtual

methods step by

step with their

parameter

according to the

stack arrangement

DEP bypass Yes Yes Yes

ASLR bypass With additional

vulnerability or

memory leak

With additional

vulnerability or

memory leak

With additional

vulnerability or

memory leak

Shadow stack

verification bypass

Yes Yes Yes

Indirect jump

verifier bypass

Yes Yes Yes

CFE bypass Yes Yes Yes

Turing

completeness

Yes, but

depends on the

method catalog

Yes, but depends

on the method

catalog

Yes, but depends

on the virtual

method catalog

LOP-like techniques have to satisfy three conditions according to our analysis:

1) The virtual address space must have proper loop-like gadget

2) Possibility to redirect the code execution to the loop with the appropriate

parameters

3) Appropriate method catalogs to execute the desired payload

The first and the third conditions are influenced by the content of the virtual

address space. The second condition is influenced by the type of the vulnerability,

as well as, the characteristics of the loop-like gadget dispatcher. Table 2

summarizes and compares the main behavior of the LOP-like exploitation

methods. As it can be seen in Table 2 all three methods use a very similar idea:

There is a loop which gets the control by a vulnerability with an initial setting.

Then the loop continuously invokes legitimate methods from the virtual address

space according to the previously placed method table and parameters by the

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 215 –

attacker. However there is no hardware assisted Control Flow Enforcement yet,

but the presented three exploitation techniques seem to be a real option to bypass

CFE.

According to our analysis, preventing such an attack type is only currently

possible during compilation time. From the point of view of the requirements the

following things would be necessary to avoid such exploitations:

1) The key element of the exploitation is the loop-like gadget. The compilers

should check and at least provide a warning message if a loop like gadget

is available after the compilation.

2) Avoiding unwanted code redirection would be a basic prevention, but

considering the current state this cannot be guaranteed. Almost all type of

software vulnerabilities can achieve unwanted control flow change. Since

software vulnerabilities cannot be totally excluded the prevention cannot be

built on this either.

3) Preventing the creation of dispatcher table is also not realistic. With OOP

different user controlled objects can be created in the heap. The only thing

that is necessary from the attacker’s point of view is to place the dispatcher

table in a predictable place. This can be carried out together with a memory

leak.

Figure 15

Loosing side effects of virtual methods

According to our analysis the only option to prevent such exploitations, is to

prevent the loop like gadget compilation. On the other hand, in some cases, such

as, in Figure 12, the loop like code block was created on purpose (iterating

through the students). In such cases, our suggestion is to append the code and zero

all registers, except for the return value in each step of the loop (Figure 15). With

this solution the virtual methods negate the unwanted side effects that the attacker

can use in these exploitations.

Conclusions

Based on previous experiences, we cannot simply let system security be based on

the assumption of having perfect software, without vulnerabilities, to avoid

software vulnerability exploitations. Additional advanced protections are

necessary. From a performance point of view, hardware based solutions are

preferred, such as DEP. However, ROP, which is the most popular technique of

today’s exploitations, can bypass DEP. Control Flow Integrity techniques, such as,

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 216 –

CFE, aim to prevent ROP-like techniques, but new exploitation ideas, such as,

LOP, DOP or COOP, have appeared recently. In this study, the main stages of

software bug exploitations are analyzed, with a special focus on the behavior and

capabilities of the cutting-edge techniques. We conclude, currently, it is not clear

if there is any protection that is capable of stopping the exploitation of unknown

software bugs; the best thing that can be done on the protection side, is to mitigate

the potential for successful exploitation.

To avoid LOP-like exploitations, we suggested possible solutions to mitigate the

risk of such attacks. According to our analysis the most feasible way of preventing

loop oriented programming type attacks, can be implemented during the

compilation stage. With code blocks presented in Figures 7 and 8, the compiler

should try to avoid them, or at least provide a warning message if such code is

created. For other loop like code blocks, such as, in COOP the compiler should try

to insert extra code, that force the virtual methods to negate the side effects. With

these added instructions, the attackers would not be able to create useful gadget

chains.

References

[1] Offensive Security. Offensive securitys exploit database archive.

https://www.exploitdb.com/

[2] Exploitalert website. http://exploitalert.com

[3] Blogger technology. Metasploit. https://blgtechn.blogspot.no/2012/08/

metasploit.html

[4] Microsoft. A detailed description of the data execution prevention (dep)

feature in windows xp service pack 2, windows xp tablet pc edition 2005,

and windows server 2003, https://support.microsoft.com/en-

us/help/875352/a-detailed-description-of-the-dataexecution-prevention-

dep-feature-in-windows-xp-service-pack-2-windows-xp-tablet-pcedition-

2005-and-windows-server-2003, 2006

[5] R. Seka Lixin Li, James E. Jus. Address-space randomization for windows

systems. http://seclab.cs.sunysb.edu/seclab/pubs/acsac06.pdf, 2012

[6] B. Pak. Microsoft edge (Windows 10) - ’chakra.dll’ info leak / type

confusion remote code execution. https://www.exploit-db.com/

exploits/40990/, 2017

[7] D. Dörr. Drupal 7.32 - sql injection (php), 2014, https://www.exploit-

db.com/exploits/34993

[8] Cve details - the ultimate security vulnerability datasourse.

http://cvedetails.com

[11] E. Levy. Smashing the stack for fun and profit. Phrack Mag, 49(14), 8 1996

https://blgtechn.blogspot.no/2012/08/%20metasploit.html
https://blgtechn.blogspot.no/2012/08/%20metasploit.html
https://www.exploit-db.com/

Acta Polytechnica Hungarica Vol. 17, No. 7, 2020

 – 217 –

[12] M. Kaempf. Smashing the heap for fun and profit. Phrack Magazine,

57(11), 8 2001

[13] Scut / team teso. Exploiting format string vulnerabilities.

https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf, 2001

[14] CWE Common Weakness Enumeration. Cwe-416: Use after free.

https://cwe.mitre.org/data/definitions/416.html, 2012

[15] P. M. Wagle. Stackguard: Simple buffer overflow protection for gcc. In

Proceedings of the GCC Developers Summit, pp. 243-256, 2003

[16] J. N. Ferguson. Understanding the heap by breaking it.

http://www.blackhat.com/presentations/bh-usa-07/Ferguson/Whitepaper/

bh-usa-07-ferguson-WP.pdf

[17] Microsoft. Preventing the exploitation of structured exception handler (seh)

overwrites with sehop. https://blogs.technet.microsoft.com/srd/2009/02/02/

preventing-the-exploitationof-structured-exception-handler-seh-overwrites-

with-sehop/, 2009

[18] S. El Sherei. Return to libc. https://www.exploit-db.com/docs/28553.pdf

[19] H. Shacham, E. Buchanan, R. Roemer, and S. Savage. Return-oriented

programming:Exploitation without code injection.

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_

Shacham_Return_Oriented_Programming.pdf

[20] T. Bletsch, X. Jiang, and V. Freeh. Jump-oriented programming: A new

class ofcode-reuse attack. In 17th ACM Computer and Communications

Security, 2010

[21] E. Bosman and H. Bos. Framing signalsa return to portable shellcode. In SP

’14 Proceedings of the IEEE Symposium on Security and Privacy, pp. 243-

258, 2014

[22] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern

defenses. https://people.eecs.berkeley.edu/daw/papers/rop-usenix14.pdf,

2014

[23] H. Shacham, M. Page, B. Pfaff, Eu-Jin Goh, N. Modadugu,and D. Boneh.

On the effectiveness of address-space randomization.

http://benpfaff.org/papers/asrandom.pdf, 2004

[24] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. Hacking

blind. http://www.scs.stanford.edu/sorbo/brop/bittau-brop.pdf, 2015

[25] L. Davi, C. Liebchen, K. Z. Snow, and F. Monrose. Isomeron: Code

randomization resilient to (just-in-time) return-oriented programming. In

NDSS Symposium 2015, 2015

http://www.blackhat.com/presentations/bh-usa-07/Ferguson/Whitepaper/
https://blogs.technet.microsoft.com/srd/2009/02/02/
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_

L. Erdődi et al. Exploitation vs. Prevention: The Ongoing Saga of Software Vulnerabilities

 – 218 –

[26] Ars Technica. Firefox 0-day in the wild is being used to attack tor users.

https://arstechnica.com/information-technology/2016/11/firefox-0day-used-

against-tor-users-almost-identical-to-one-fbi-used-in-2013/, 2016

[27] A. Kondratenko. Cve-2017-3881 cisco catalyst rce proof-of-concept.

https://artkond.com/2017/04/10/cisco-catalyst-remote-code-execution/.

2017

[28] K. Johnson and M. Miller. Exploit mitigation improvements in windows 8.

https://media.blackhat.com/bh-us-12/Briefings/M_Miller/ BH_US_12_

Miller_Exploit_Mitigation_Slides.pdf

[29] Microsoft. The enhanced mitigation experience toolkit.

https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-

experience-toolkit, 2012

[30] M. V. Yason. Understanding the attack surface and attack resilience of

project spartans (edge) new edgehtml rendering engine.

https://www.blackhat.com/docs/us-15/materials/us-15-Yason-

Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-

Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf, 2015

[31] Paloalto Networks. Traps administrators guide.

https://www.paloaltonetworks.com/documentation/33/endpoint/endpoint-

admin-guide, 2017

[32] J. Tang. Exploring control flow guard in windows 10. http://sjc1-te-

ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.

pdf, 2016

[33] Intel. Control-flow enforcement technology preview.

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-

enforcementtechnology-preview.pdf, 2016

[34] Y. Li, B. Lan, H. Sun, C. Su, Y. Liu, and Q. Zeng. Loop-oriented

programming: A new code reuse attack to bypass modern defenses. In 2015

IEEE Trustcom/BigDataSE/ISPA, pp. 91-97, IEEE Computer Society

[35] H. Hu, S. Shinde, S. Adrian, Z. Leong Chua, P. Saxena, and Z. Liang. Data-

oriented programming: On the expressiveness of non-control data attacks.

https://www.comp.nus.edu.sg/ ~shweta24/publications/dop_oakland16.pdf

[36] F. Schuster, T. Tendyck, C. Liebcheny, L. Davi, A. Sadeghiy, and T. Holz.

Counterfeit object-oriented programming- on the difficulty of preventing

code reuse attacks in c++ applications.

syssec.rub.de/media/emma/veroeffentlichungen/2015/03/28/ COOP-

Oakland15.pdf, 2015

https://media.blackhat.com/bh-us-12/Briefings/M_Miller/
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yason-Understanding-The-Attack-Surface-And-Attack-Resilience-Of-Project-Spartans-New-EdgeHTML-Rendering-Engine-wp.pdf
https://www.paloaltonetworks.com/documentation/33/endpoint/endpoint-admin-guide
https://www.paloaltonetworks.com/documentation/33/endpoint/endpoint-admin-guide
http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10
http://sjc1-te-ftp.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10
https://www.comp.nus.edu.sg/

