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Abstract: We solve probability maximization problems using an approximation scheme that
is analogous to the classic approach of p-efficient points, proposed by Prékopa to handle
chance constraints. But while p-efficient points yield an approximation of a level set of the
probabilistic function, we approximate the epigraph. The present scheme is easy to implement
and is immune to noise in gradient computation.
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1 Introduction

A probabilistic constraint is of the following type:

P(g(x,§) <0) > p, ey

where g : R" x R™ — IR¥ is a mapping, £ € IR” a multivariate random vector with
associated probability measure P and p € [0, 1] a user defined safety level. When
k > 1, the terminology joint probabilistic constraint is also frequently employed,
since we would like the random inequality system g(x,&) < 0 to hold with high-
enough probability.

We are interested in two general optimization problems associated with (1), namely
that of maximizing the probability function and a classic problem of optimizing
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under constraint (1). These appear under the following form:
max P(g(x,£) <0) subjectto x€X, and )

min ¢’x subjectto P(g(x,&) <0)>p, x€X, 3)

where X is a convex compact set. In many applications X is a polyhedral set
X ={x e R" : Ax < b}. We will make the assumption that g is jointly-quasi con-
cave and that £ admits a density (with respect to the Lebesgue-measure) disposing
of generalized concavity properties as well. Under these assumptions the mapping
x = ¢(x) :=P(g(x,&) < 0) also disposes of generalized concavity properties. In
particular problems (2) and (3) are convex optimization problems under these as-
sumptions.

In the present paper we will deal with the special case when g(x, &) = & — T'x. Then
the problems (2) and (3) become the following:

max P(Tx > &) subjectto Ax<b, 4)
and the probabilistic constrained problem
min ¢/x subjectto P(Tx> &) > p, Ax<b, (5)

where the decision vector is x. Given are the matrices A,T and the vectors b, ¢, of
corresponding sizes. The probability 1 > p > 0 is set, and the distribution of the
random vector & is known. We assume that the feasible domains are not empty and
are bounded. We assume that £ has a continuous, logconcave distribution. It follows
that the cumulative distribution function F(z) = P(z > &) is logconcave.

Probabilistic constraints arise in many applications such as water management, tele-
communications, electricity network expansion, mineral blending, chemical en-
gineering etc. (e.g., [21,41, 52, 53,55, 69,76, 78]). With the advance of info-
communication technologies, new areas of application are emerging, e.g., smart
grids and transportation systems.

For an overview of recent theory and algorithmic treatment of probabilistic con-
straints we refer to [9,49,50]. Other monographs dealing (partially) with probabilis-
tic constraints are [8,26,38] and [37], where the latter focussed more on algorithms.

A brief history of methods for solving probabilistically constrained problems

Programming under probabilistic constraints as a decision model under uncertainty,
has been introduced by [7]. In this paper the authors use the term chance constrained
programming for this model and its variants as well as extensions presented, among
others, in the paper [6]. However these early chance constrained models were based
on individual chance constraints, i.e., instead of a constraint of the type in problem
(3), the following type constraints were used: P(g;(x,&) <0) > p;, i=1,...,k.
Programming under probabilistic constraint with a random right hand side vector &
(as it stands in problem (5)), having stochastically independent components , was
first considered by [39]. The more general problem (3), where & is allowed to
have stochastically dependent components, was introduced by Prékopa [44,46] and
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further investigated by him and his followers. A significant step for the numerical
treatment of probabilistic constraints was laid out when convexity statements based
on the theory of logconcave measures were developed by Prékopa [45,47] and later
generalized by [3,4,63]. Recent advances in convexity statements for probabilistic
constraints are based on eventual convexity and can be found in [23,24,70]

In [52], Prékopa and co-authors developed a model (STABIL) for a planning prob-
lem in the Hungarian electrical energy sector, which is of the form (5). The resulting
stochastic programming problem is solved by a feasible direction method of Zou-
tendijk [81]. It should be noted however that Zoutendijk’s method lacks the global
convergence property as shown in [64]. We refer to the discussion in [40] for further
information.

Cutting-plane methods were also developed for the probabilistic constrained prob-
lem, approximating the level set M(p) := {x € R" : P(g(x,&) <0) > p}. The
method of Prékopa and Szantai [53] applies a Slater point to determine where to
construct the next cut. (Namely, the intersection of the boundary of M(p) on the
one hand, and the interval connecting the Slater point with the current iterate on
the other hand.) The method is related to that of Veinott [79]. In his solver built
for the STABIL problem, Szantai [61] developed a careful interval bisection algo-
rithm for safely computing the intersection point on the boundary of M(p) when the
probability values defining the probability constraints cannot be calculated with ar-
bitrary high precision. He also applied Veinott’s technique of moving the Slater
point in course of the solution process, which results in faster convergence and
makes the supporting hyperplane method equivalent to a method of Zoutendijk [81].
Mayer [37] proposed a central cutting plane method, an adaptation of Elzinga and
Moore [13]. Cutting-plane methods converge in less iterations than feasible di-
rection methods do, since former gradient information is retained. These methods
obviously require that one is able to compute the gradient of ¢ (x) := P(g(x,&) <0)
efficiently. Identifying conditions under which ¢ is differentiable has lead to the de-
velopment of two main research directions. The first direction exploits no specific
knowledge of & or its underlying distribution, but only differentiability properties
of its density and differentiability of g. Then under several additional assumptions,
including the assumption that B(x) := {z € R™ : g(x,z) < 0} is bounded in a neigh-
bourhood of x, one can represent the gradient of ¢ as an integral over B(x) and/or its
boundary dB(x). We refer to [35,36,65-67] and the references contained therein for
more on this research direction. We note here, that the condition that B(x) remains
bounded around a point x rules out the study of distribution functions. The second
research direction exploits specific knowledge of the underlying distribution of &
and tries to build a link between any component of the gradient of ¢ and the evalu-
ation of a quantity akin to ¢. This direction was explored in [22,44,54, 60, 73-75].
When combined with sophisticated software such as for instance Genz’ code [17,19]
for multivariate normal distributions, high dimensional problems can be solved with
significant efficiency (e.g., a case with k = 168 is examined in [72]).

In the supporting hyperplane method, the inaccuracy of evaluating ¢ needs to be
taken into account when computing the intersection point on the boundary of M(p).
We refer to [1] for such an approach. Still inaccuracy of V¢ may result in a cut
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cutting into the level set M(p). This leads to the development of the notion of upper-
oracle in [77] and specialized proximal ( [77]) and level ( [72]) bundle methods for
probabilistically constrained problems with underlying convexity structure.

A non-standard dual formulation for problems of type (5) was proposed by Komaromi
[27,28]. This is a max-min formulation, the inner problem being minimization of
a linear function over the level set M(p). For the solution of the dual problem, a
special feasible direction method is developed in [27].

We are going to focus on p-efficient point approaches. Other recent algorithmic
approaches for probabilistically constrained programming are the penalty approach
[14], scenario approximation [5], convex approximation [42], sample average ap-
proximation and integer programming [31-33,43], binarization approaches [29,30].

On p-efficient point approaches

When the mapping g is of the form g(x,z) := z — h(x), the probabilistic constraint
is said to be separable and properties of ¢(x) = P(g(x,§) < 0) := Fg(h(x)) re-
late directly to that of the multivariate distribution function F¢. In this setting,
Prékopa [48] initiated a new solution approach by introducing the concept of p-
efficient points. A point z is p-efficient if and only if F¢ (z) > p and there exists no
7 such that 7' < z, 7' # z, F¢(2') > p. Prékopa, Vizviri, and Badics [56] employ this
concept in the solution of problems of the type (5), where the random parameters
have a discrete finite distribution. They first enumerate all the p-efficient points,
and based on these, propose a convex relaxation of the problem. The relaxed prob-
abilistic constraint prescribes the existence of a point z in the convex hull of the
p-efficient points such that s(x) > z holds. The relaxed problem is then solved by
a cutting-plane method. In essence, the cuts generated correspond to facets of the
convex hull of the p-efficient points.

Prékopa [51] considers a problem equivalent to (5), where the random vector has
a continuous logconcave distribution. He combines the cutting-plane method of
[56] with the supporting hyperplane method of Szantai [61]. The resulting hybrid
method simultaneously constructs inner and outer approximations of the level set
M(p). The supporting hyperplane method is used to generate p-efficient points in
the course of the solution process. (More general stochastic programming models
are also proposed in [51], but in the present paper we restrict ourselves to simpler
formulations.)

Dentcheva, Prékopa, and Ruszczynski [12] consider problems of type (5), where the
random parameters are integer valued. They prove that the probabilistic constraint
is essentially convex, in case the random parameters have an r-concave distribution.
The probabilistic constraint is formulated in a split form: A(x) > z, where z belongs
to (a discrete version of) the level set M(p). These authors construct a Lagrangian
dual by relaxing the constraint 4(x) > z, and observe that the dual functional splits
into the sum of two functionals. The addend functionals are the respective opti-
mal objective value functions of two simpler problems. The first auxiliary problem
is a linear programming problem, and the second auxiliary problem is about min-
imizing a linear function over (a discrete version of) the level set M(p). Once the
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dual problem is solved, a primal optimal solution can be constructed, though tech-
nical problems may occur and need to be overcome. These authors also develop
a new specialized method which separates the generation of p-efficient points and
the solution of the approximate problem based on known p-efficient points. The
new method, called cone generation, employs the time-honoured concept of column
generation. The inherent link with integer programming is given in [80].

Dentcheva, Lai, and Ruszczyniski [10] extend these results to general convex prob-
lems, and general (r-concave) distributions. The probabilistic constraint is formu-
lated in a split form, and the Lagrangian dual is constructed by relaxing the con-
straint A(x) > z. The dual functional splits into the sum of two functionals, like
in the special case discussed in [12]. The first auxiliary problem, however, is a
well-structured convex programming problem, instead of the linear programming
problem of [12]. The difficult part is still the second auxiliary problem, minimizing
a linear function over M(p). These authors develop a dual method, and propose
a way of recovering a primal solution. Moreover, they extend the cone generation
method to a general primal-dual method.

Dentcheva and Martinez [11] developed a regularized version of the dual method
of [10]. Moreover they developed a progressive augmented Lagrangian method that
is a primal-dual-type method. The latter method turns out to be more efficient as it
requires the solution of fewer minimization problems over the level set M(p).

A solution framework that includes and extends various existing formulations was
developed by Van Ackooij, Berge, de Oliveira and Sagastizabal [71].

Contribution

In the present paper, we construct polyhedral approximations of the epigraphs of
the probabilistic functions in problems (4) and (5). This is analogous to the use of
p-efficient points. But while p-efficient points yield an approximation of a level set,
we approximate the epigraph. We formulate dual problems that are analogous to
those of [12,27], and [10]. The present scheme yields very convenient duals, simple
formulations using conjugate functions.

The solution approaches proposed in [12] and [10] can be adapted to the present
approximation scheme and dual formulations. Finding a new approximation point
in the present scheme is easier than finding a p-efficient point in the schemes of [12]
or [10]. — In the latter schemes, finding a p-efficient point amounts to minimization
over the level set M(p). In the present scheme, an approximation point is found by
unconstrained minimization.

The present simple models and methods expose an important contrast between col-
umn generation methods and direct cutting-plane methods. Direct cutting-plane
methods for probabilistic functions are difficult to implement due to noisy gradient
computation. A practicable implementation requires sophisticated tolerance han-
dling. In contrast, the column generation approach is immune to noise in gradient
computation.

- 109 -



Cs. |. Fabian et al. Probability maximization by inner approximation

2 Problem and model formulation

Using the distribution function F(z), let ¢(z) = —log F(z). Of course it is a convex
function, due to the logconcavity of F(z). Taking into account the monotonicity of
the distribution function, Problem (4) can be written as

min ¢(z) subjectto Ax—b <0, z—Tx<0. (6)

This problem has an optimal solution, due to our assumption that the feasible do-
main of (4) is not empty and is bounded. Introducing non-positive multiplier vectors
v, u to the respective constraints, we formulate the Lagrangian relaxation of (6):

inf { ¢(z) =" (Ax—b) —u" (z=Tx) }
= irzlf{q&(z)—uTz} —HI;f(—yTA—HtTT)x +y7b.

The first addend is by definition —¢*(u), where ¢* is the convex conjugate of ¢.
The second addend is finite iff —y” A +u” T = 0. Hence the Lagrangian dual of (6)
can be written as

max {("b—¢*(u)} subjectto —y A+u’T =07, 7
yus

According to the theory of convex duality, this problem has an optimal solution,
since the primal problem (6) has an optimal solution.

Concerning the probabilistic constraint, let 7 = —log p. We formulate (5) as
min ¢! x subjectto Ax—b<0,z—Tx<0, ¢(z) - <O0. 8)

This problem has an optimal solution, due to our assumption that the feasible do-
main of (5) is not empty and is bounded. Introducing the multiplier vectors —y >
0, —u >0, v > 0 to the respective constraints, we formulate the Lagrangian relax-
ation of (8):

1anf{ cIx—yl(Ax—b)—ul (z—Tx)+Vv(¢(z) — ) }
= irzlf{vd)(z) —ul'z} +inf (" —yTA+u"T)x  +y"b—vr.

The first addend is by definition —(v¢)*(u). The second addend is finite iff ¢! =
yT'A —uT T. Hence the Lagrangian dual of (8) can be written as

max { y'b—vr—(v)*(u) } subjectto y,u<0,v>0,c" =y"A—u"T. (9

Remark. The function (v,u) — (v§)*(u) = sup, {u’ z—v¢(z)} is convex by defini-
tion, and given (V,4) in the effective domain, a gradient can be computed by finding
the optimal z.

In this paper we focus on unconstrained problems. The proposed algorithms can be
extended to the constrained case.
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Polyhedral models

Suppose we evaluated the function ¢(z) in the points z; (i = 0,1,...,k). These
result the function ¢ (z), an inner approximation (polyhedral convex upper approx-
imation) of ¢(z), in the usual way: given z, let

k k k
¢(z) =min Y 4¢(z;) suchthat 4;>0, Y 4, =1, Y Az=z (10)
i=0 i=0 i=0
If z € Conv(zp, . . .,z), then we have ¢ (z) = 4o by definition.

The following problem is the current polyhedral model of (6):
min ¢(z) subjectto Ax—b<0,z—Tx<O0. an

We assume that (11) is feasible, i.e., its optimum is < +oo. This can be ensured by
the selction of the vectors zg,...,z;. The convex conjugate of ¢ can be computed
by taking into account a finite set only, hence

of (1) = max {u"z;—¢(z)}. (12)

0<i<k

— The above observation is in accordance with Chapter X Section 3.4 of Hiriart-
Urruty and Lemaréchal [25]. — Of course —¢; is a cutting-plane approximation
(polyhedral concave upper approximation) of —¢*. Hence the following problem is
a cutting-plane model of (7):

max OTb—f(u)} subjectto —y"A+u’'T=0". (13)
U<

It is easy to check that (11) and (13), considered as linear programming problems,
form a primal-dual pair. We are going to examine the primal problem.

Linear programming formulation

Introducing the notation ¢; = ¢(z;) (i=0,... k), the primal model problem (11) can
be formulated as follows. — Dual variables corresponding to the different constraints
are indicated in the right-hand column.

min Z (Pi}.,'
such that 2A; >0 (i=0,...,k),

YA =1, 1 Y eR (14)
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Let us assume that the primal model problem (14) has a feasible solution. Let
(AX0,...,Ax, %) and (O, %,7) denote an optimal solution and an optimal dual so-
lution, respectively — both existing due to our assumption. Let moreover

Aizi (15)

M»

0

i

[
Observation 1. We have ¢:(z) = ¥ ¢A; = 9 +u'z
i=0

Proof. The first equality follows from the equivalence of (14) on the one hand, and
(10)-(11) on the other hand.

The second inequality is a consequence of complementarity. A; > 0 implies that the
reduced cost of the ith column is 0 in (14), hence & + ' z; = ¢;. It follows that

k k

k k
Z Oidi = Z (19+u Zt A Z Z iZi-

3 Column generation

We solve (6) by iteratively adding improving columns to the primal model (14). An
optimal dual solution (i.e., shadow price vector) of the current model problem is
(9, 1,5).

Given a vector z, we can add the corresponding column (1,z,0) with objective com-

ponent ¢(z). This is an impoving column if its reduced cost is positive; formally, if
P (z) > 0 holds for

p(x) = (0,1) (1,)—9() = D + T z—9(2). (16)

The vector yielding the best reduced cost can be found by maximizing p(z). Let R
denote the optimal objective value.

If ® is small, then (¥,Z) is a near-optimal solution to (6). Otherwise an improving
column can be constructed to (14).

A practical way of finding an improving column

In order to maximize the reduced cost, we can apply a steepest descent method to
—p(z), a natural starting point being Z. However, we found the computational effort
prohibitive. Hence we propose to perform just a single line search. As theoretical
motivation, we put forward the following well-known theorem. (It can be found
in [34] or [57].)

Theorem 1. Let the convex function f : R" — R be twice continuously differen-
tiable. Assume that

al <V’f(z) <ol  (zeR"), (17)
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where 0 < a < @, 1 is the identity matrix, and the relation U =<V between matrices
means that V. — U is positive semidefinite. We minimize f using a steepest descent
method, starting from a point 2°. Let z',...,7/,... denote the iterates obtained by
applying exact line search at each step. Denoting F = min, f(z), we have

P -7 < (19 [50)-7]. 8)

Remark. Similar results can be proven for the case when approximate minimizers
are found in the line search procedures. See a discussion on Armijo’s rule in [34].

Corollary. Provided Theorem 1 is applicable to f(z) = —p(z), we can construct a
fairly good improving vector in the column generation scheme. Namely, let (0 <
B < 1) be given. Taking a finite (and moderate) number of steps with the steepest
descent method, we find a vector 7 satisfying

p@R) = (1-B)R.

Proof. Substituting f(z) = —p(z) and z° = Z in (18), and introducing the notation
p=1—a/m, we get

R-p() <P/ [R-P@)]. (19)
(We have ¥ = —R_by definition.) From ¢(.) > ¢(.) and Observation 1, we get
PR =0+uz2-¢@2) >0 +uz—¢( =0
Due to non-negativity, p (z) can be discarded in (19), and we get
p() = (1-p) .
Selecting j such that p/ < B yields an appropriate 7 = z/. 0O

Setting j = 1 always resulted in a good improving vector in our computational ex-
periments. The above discussion is only meant as motivation for performing a single
line search, showing that the procedure works in an ideal case. The condition (17)
obviously does not hold for every z with f(z) = —p(z). However, in the case of
normal distribution, there exists a bounded box Z such that the probability weight
outside Z can be ignored. For the sake of simplicity let us assume that the polyhe-
dron 7 = {Tx|Ax < b} is bounded, and that 7 C Z. Then we’ll always have Z € Z,
provided the primal model (14) has been properly initialized. Starting from 7 € Z,
we perform a single line search. Due to special characteristics of the function ¢(z)
and due to u < 0 being boundable, this line search can be restricted to a bounded
neighborhood of Z. Such restriction would justify assumption (17). However, we
implemented a simple approximate line search without restriction, and still found
that iterates fell into a relatively small box.

4 Implementation issues

For the implementation of our method and computational study we used MATLAB
with the IBM ILOG CPLEX (Version 12.6.3) optimization toolbox.
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The master problem

We assume that the distribution is standard normal. Let r denote the number of the
components of the random vector (equal to the number of the rows of the matrix 7).

First we look for an appropriate zo € IR” vector whose inclusion makes the primal
model problem (14) feasible. This is done by solving the problem

max t
suchthat 1r —Tx <0, (20)
Ax <),

where r € R, and 1 € IR” denotes a vector consisting of ones. If (20) has no feasible
solution then the original problem is also infeasible. On the other hand, if the objec-
tive value is not bounded then probability 1 can be achieved in the original problem.
Let zo = 1¢*, with #* denoting an optimal solution of (20).

Let Z C IR” denote a bounded box such that the probability weight outside Z can
be ignored. In our case the distribution is standard normal, hence we consider an
r-dimensional box Z that it is symmetrical with respect to the origo. In our experi-
ments we worked with a box such that P(Z) ~ 0.99.

Let 2" = ('™, ..., Z"*) denote maximal vertex of Z. To ease the solution of the

primal model problem (14), we initialize it by adding the following vectors (besides
20, above)

2 = (0,20, (l=1,...r),
41 =0, 21
Zrp2 =2

Consequently we have k = r+2 in (14).

We solved the master problem with the CPLEX simplex solver, applying the opti-
mality tolerance 1E —4.

The oracle

In accordance with Section 3, our aim is to maximize the reduced cost (16). Since
9 is constant in a given iteration the oracle has to find an approximate solution to
the problem max, {#' z— ¢(z)}. This problem can be reformulated as minimizing
the function ¢ (z) — ! z. Here ¢(z) = —logF(z) and F(z) is the multidimensional
normal distribution function. ¢(z) is a convex function, due to the logconcavity
of F(z). We implemented the approximate form of the steepest descent method
described in Section 3. We perform a single line search (j = 1) and even in this
single line search, we stop with an approximate minimum. Namely, we apply the
golden section ratio, see, e.g. [34]. We perform only 1 or 2 golden section ratio
steps.
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The steepest descent direction can be found by calculating the gradient vector of the
function:

V(¢(z)—u'z) =V(z) —i=—Vlog (F(z)) —i=— —1. (22)

Consequently we need to calculate the function value and gradient vector of the
multidimensional normal distribution function F(z). For this computation we use
the formulas in section 6.6.4 of Prékopa’s book [49]. By using these formulas the
calculation of the gradient of a multidimensional probability distribution function
can be reduced to computing conditional distribution function values.

The numerical computation of multivariate normal distribution values was performed
with the QSIMVNYV Matlab function implemented by Genz [18].

5 Computational study

Before describing test problems and discussing computational results, let us illus-
trate condition (17) with a small example.

Preliminary examinations

We illustrate the well-conditioned nature of the objective in case of a two-dimensional
standard normal distribution with moderately dependent marginals (covariance 0.5).

Figure 1
Smaller eigenvalue of the Hessian V2¢(z)
(=6 <z1,20 < +6)

We depict the eigenvalues of the Hessian matrix of ¢ (z) = —log F(z), where F(z) is
the distribution function. We calculated the smaller and the larger of the two eigen-
values of the Hessian, while both components of z fall into the interval [—6, +6].
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Figure 2
Larger eigenvalue of the Hessian V¢ (z)
(=6 <z1,22 < +6)

Figure 1 depicts the smaller eigenvalue. Contour lines from top right are le—5, le —
4 1e —3,1le — 2. In the area not filled with gray, the smaller eigenvalue is above
le—35.

Figure 2 depicts the larger eigenvalue. Contour lines from top rightare 1,1.2,1.4,1.6.
In the area not filled with gray, the larger eigenvalue is below 1.6.

These experiments illustrate that there is a fairly large safe domain over which ¢(z)
is well-conditioned.

Test problems

First we considered eight test problems published in [62] by T. Szantai. These prob-
lems occur at a coffee company. The company is marketing three different blends
of coffee. There is a rigid set of requirements for each of the blends according their
acidity, caffeine content, liquoring value, hardness and aroma. On the first day of a
particular month the company found that its available supply of green coffees was
limited to 8 different types. These green coffees vary according to price, quantity
available and the above mentioned five taste characteristics. The demands for the
company’s 3 blends during the coming month are random variables with given ex-
pected values, standard deviations and correlation coefficients. The company is con-
fronted with the problem of determining an optimum combination of avaliable green
coffees for next month’s roasting operation. So they have to formulate a stochastic
programming problem to satisfy all of the random demands with a prescribed (high)
probability and pay the smallest possible price for the green coffees. All data and
numerical results according to probability level 0.9 can be found in the paper [62].
In this paper we will call these problems ’Coffeel’, ..., "Coffee8’.

Secondly we considered an extended version of the coffee blending problem. In
this extension the company is marketing five different blends of coffees and so the
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multivariate normal probability distribution is five dimensional. This problem will
be called *Coffee9’ in this paper.

Finally we considered a cash matching problem with fifteen dimensional normal
probability distribution. In this problem we are interested in investing a certain
amount of cash on behalf of a pension fund that needs to make certain payments
over the coming 15 years of time. Details of this problem can be found in [10]
and [20]. This problem will be called ’CashMatching’ in this paper.

Numerical results

We solved each test problem with different right-hand sides of the cost constraint.
Our computational results are reported in Figures 3 - 5.

Our test problems had originally been formulated as cost minimization under a prob-
abilistic constraint. We converted the problems to probability maximization. The
right hand-sides of the cost constraints had been set in such a way that the corre-
sponding optimal probability levels would be those listed in the column ’prescribed
probability level” of our tables. For these computations we used Szantai’s computer
code [61].

1 GSR steps per iter | 2 GSR steps per iter
prescribed
Problem probability | Genz | itNum p Genz|itNum p
level
0.8] 103 7| 0.7998| 105 6| 0.7994
0.85 78 3| 0.8501 90 3| 0.8504
Coffee 1 0.9 93 6| 0.9002] 136 11| 0.9005
0.95 70 5 0.5493] 116 7| 0.9504
0.98] 80 6| 0.9798] 144 11| 0.9803
0.99 70 6| 0.9896] 102 8| 0.9900|
0.8] 132 9| 0.7998| 208 12| 0.8000|
0.85] 107 7| 0.8499] 138 9| 0.8499
Coffee 2 0.9 134 9| 0.9000| 166 9| 0.9000|
0.95] 120 8| 0.9500] 119 7| 0.9500
0.98 93 7| 0.9800] 126 8| 0.9800|
0.99 84 8| 0.9897 69 6| 0.9897|
0.8] 167 10| 0.8000f 148 8| 0.8000|
0.85] 129 8| 0.8500| 198 11| 0.8500]
Coffee 3 0.9 120 8| 0.9000] 152 8| 0.9000|
0.95] 167 11 0.9500] 1359 9| 0.9500|
0.98] 105 8| 0.9800| 149 9| 0.9800|
0.99 71 7| 0.9897| 57 5| 0.9857
0.8] 158 9| 0.8000] 207 11| 0.8000]
0.83] 172 10) 0.8500f 174 9| 0.8500|
Cotieea 0.9] 150 9| 0.9000] 135 8| 0.9000|
0.95] 139 9| 0.9500| 153 8| 0.9500|
0.98] 117 9| 0.9800| 115 7| 0.9800
0.99 69 7| 0.9897| 35 3| 0.9897|
Figure 3

Computational results for problems *Coffeel’, ..., "Coffee4’
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1 GSR steps per iter | 2 GSR steps per iter
prescribed
Problem probability | Genz | itNum p Genz |itNum p
level
0.8 112 7| 0.7999] 131 7| 0.8000
0.85] 114 7| 0.8500] 125 7| 0.8500|
Coffecs 0.9] 110 7| 0.9000] 135 7| 10,9000
0.95] 112 7| 0.9500] 135 8| 0.9499
0.98| 109 8| 0.9800] 113 7| 0.9800
0.99 71 6| 0.9897 63 5| 0.9897
0.8] 75 5| 0.8000] 104 6| 0.7999
0.85 77 5| 0.8502] 119 7| 0.8497|
Coffee 6 0.9 74 5| 0.9004| 109 6| 0.9003
0.95 81 6| 0.93504 99 6| 0.3506
0.98| 145 11| 0.9806] 84 5| 0.9797|
0.99 82 6| 0.9900] 39 2| 10,9894
0.8] 110 7| 0.7999] 127 7| 0.7999
0.85 97 6| 0.8499] 145 8| 0.8500
Coffee 7 0.9 65 4 0.8997] 110 6| 0.8999
0.95 70 4| 0.9500| 75 4| 0.9500]
0.98 89 6| 0.9799] 108 6| 0.9800]
0.99 a3 4| 0.9899 48 3| 0.9900
0.8| 147 8| 0.8001] 105 5| 0.8000)
0.85 71 4 0.8493] 106 5| 0.8501]
Coffec 8 0.9 75 4| 0.8999] 106 5| 0.8999
0.95 80 4 0.9501] 108 5| 10,9500
0.98] 114 7| 0.9801] 114 5| 0.9801
0.99 a3 3| 0.9901] 28 1| 0.9854
Figure 4
Computational results for problems ’Coffee5’, ..., *Coffee8’

We solved each problem with two settings of the oracle, performing either 1 or 2
Golden Section Ratio (GSR) steps in course of each line search. — The correspond-
ing data are shown under the headers *1 GSR step per iter’ and 2 GSR steps per
iter’. In each case, we list the number of calls to the Genz subroutine (under the
header *Genz’), the number of oracle calls (under the header ’itNum’), and the op-
timum found (under the header 'p’).

In each case, most of the computation time was spent in the Genz subroutines. In
case of the ’Coffee’ problems, performing 2 GSR steps per iteration resulted in
slightly less calls to the Genz subroutine than 1 GSR step did. Interestingly, the
’CashMatching’ problem was solved significantly faster when performing a single
GSR step per iteration, instead of two steps. All these results indicate that approxi-
mate solution of the column generation problems is sufficient.

The Z vectors returned by the oracle always fell into a relatively small box, thereby
remaining in the safe domains where the respective objective functions are well-
conditioned.

- 118 -



Acta Polytechnica Hungarica Vol. 15, No. 1, 2018

1 GSR steps per iter | 2 GSR steps per iter

prescribed
Problem probability | Genz | itNum p Genz|itNum p
level

0.8] 104 5| 0.7997 136 6| 0.7998
0.85 98 5| 0.8502] 110 5| 0.8502]
0.9 20 4| 0.9000] 109 5| 0.9001
Coffeed
0.95] 115 6 0.9506| 155 7| 0.9506
0.96| 94 5| 0.9604] 132 6 0.9604
0.97] 115 7| 0.9705] 101 5| 0.9706|

0.8] 634 24| 0.7957| 783 29| 0.7982]
0.83] 873 35| 0.8483| 1078 40| 0.8430|
0.9 581 24| 0.8981| 725 28| 0.8982]
0.95] 330 13| 0.9462| 441 17| 0.9470|

CashMatching

0.98] 159 6| 0.9755| 324 13| 0.9767|
0.99] 213 8| 0.9863] 333 14| 0.9865
Figure 5

Computational results for problems *Coffee9’ and *CashMatching’

6 Conclusions

The proposed probability-maximization approach is based on a polyhedral approx-
imation of the epigraph of the probabilistic function. Finding a new approximation
point in the present scheme is easier than finding a p-efficient point in the classic
scheme of Dentcheva, Prékopa and Ruszczyriski [12]. In the present scheme, an
approximation point is found by unconstrained optimization. In LP terms, this is a
column generation scheme where new columns are found by maximizing reduced
cost.

The inner approximating model of the epigraph is immune to noise in gradient
computation, in the following sense. Suppose that at iteration k, the next iterate
Zk+1 18 just a rough approximate solution of the relevant subproblem (reduced cost-
maximization). As long as ¢ (z; 1) is computed with reasonable accuracy, the model
remains a true inner approximation.

Our computational experiments indicate that rough approximate solution of the sub-
problems is sufficient for convergence. We also provide theoretical explanation of
this observation. — A randomized version of the present algorithm is proposed with
convergence proof in [15].
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