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1 Introduction

Let A=[a;] denote amxn matrix with all entries positive numberA. is called a
symmetrically reciprocalSR) matrix if the entries satiséya;=1 fori=j,i,j=1,2, ...n,
anda;=1,i=1,2, ...n. These matrices were introduced by Saaty [1]smrhilti-criteria
decision making method called the analytic hierammtocess (AHP). Here an entry
g; represents aatio, i.e. the elemers indicates the strength with which decision
alternativeA, dominates decision alternatifewith respect to a given criterion. Such
a pairwise comparison matrigPCM) is usually constructed by eliciting experts’
judgements. Then the fundamental objective is tivel@nplicit weightsw,,w,, ... W,

for the given set of decision alternatives accaydmrelative importance (priorities)
measured on a ratio-scale.



Let B=[b;] denote amxn matrix with all entries positive numbeBis called a
transitivematrix if b;b, =k, fori,j,k=1,2, ...n. In [2] it is proven that any transitive
matrix is necessarily SR and has rank one. Twaglyaelated notations will be used
for the weightsW=diagjw], i=1,2, ...n, is the diagonal matrix with the diagonal
entriesw,;,w,,...w,, and the (column) vector fro® with elementsv,,w,, ...w, is
denoted byw. Thus,W is a positive definite diagonal matrix if and oiflyw is an
elementwise positive column vector. With these timrtg, and defining thie vector
e'=[1,1, ...,1] to be the row vector &, any transitive matri can now be written
in the form

B=W‘1eeTW={%], i,j=12,..n. (1)

Using (1) it is easy to show that
BW™e=nWe )

From (2) it is seen that the only nonzero (domipamgenvalue oB is n and its
associated Perron-eigenvectdiis'e, i.e. a vector whose elements are the reciprocals
of the weights.

In decision theory, a transitive matixis termecconsistenmatrix. Otherwise
a PCM is termethconsistentSaaty [1] showed that the weights for a consif€M
are determined by the elementsj=1,2, ...n, of the principal right eigenvectarof
matrix B, if B is aconsistenmatrix, i.e. if it is transitive. This solutionifthe weights
is uniqueup to a multiplicative constant. Hence, this Pere@menvector becomes
u=We. (In the applications of the AHP these componaresisually normalized so
that their sum is unity.)

During the last decades several authors have athebparticular best ways for
approximating general(nottransitive) SR matriA. There are various possible ways
to generate approximations farin some sense. Saaty [3] proposed the eigenvector
approach for finding the weights, eveAifs an inconsistent PCM. Extremal methods
have also been considered, like the direct leastreg method [4], the weighted least-
squares method [5],[6], the logarithmic least-sgaanethod [7],[8], furthermore, the
logarithmic least-absolute-values method [9]. Aptiaal technique that is based on
the construction of the Gower-plots was also predashich produces the “best”
rank two matrix approximation # [10]. The most comprehensive comparative study
that has appeared thus far both in terms of thebeuwf these scaling methods and
the number of the evaluation criteria used wasgutes! by Golany and Kress [11].
They concluded that these methods have differeatmesses and advantages, hence,
none of them is dominated by the other.



2 The Least-Squares Optimization Method

The authors have developed a method that genexdtesst” transitive (rank one)
matrix B to approximate a general SR matfix where the “best” is assessed in a
least-squares (LS) sense [12]. There it is showhaltcommon procedure to find a
positive vector of the weights can be done by mizimg the expression

s’ (w):=|A-BJ} = ;z( a -%) . (3)

(Here, the subscrigt denotes the Frobenius norm; the square root o$uihe of
squares of the elements, i.e. the error.)

Given the subjective estimatasfor a particular PCM, it is always desired that
a;=W, /w;. In other words, theveightsw;, and thus theonsistency adjustmentg-b;,
i,j=1,2, ...n, should be determined such that the sum ottmsistency adjustment
error, S is minimized. In [12], with appropriately chosaitial values, the Newton-
Kantorovich (NK) method was applied for this optiation procedure due to its
computational advantages. There the authors addkéia stationary valwe, of the
error functionaB(w), called stationary vectarsatisfies the followingomogeneous

nonlinear equation
R(w)w =0, (4)

where

R(W) = W2(A —W "ee"W) - (A - W “ee" W) W™ (5)

is avariable dependergkew-symmetrimatrix. In [13] it is shown that expression (5)
can be more generally used in the approximatianarelypositivematrices (which
are not necessarily SR).

In the present paper, with regard to the basipgnties of a PCM, investigations
are made for genersymmetrically reciprocalSR) matrice#\ with positive entries.
If matrix A is in SR, the homogeneous systenmofonlinear equations (4) can be
written in the form



W

Clac, 1 :
f =W, W,...,w )= | SFI S| B RFIALS
Wy W, kz_ll > =

i ik k k i

w, =0 i=212..n. (6)

Note that each of theequations in (6) represents a type of homogenfemasion in
the variables as

f(ew,cw, ...,cw)= € f(w, W, ..., W), £12,...,n, @

wherec is an arbitrary constant amd-1 is the degree of the homogeneous function
in (6). Substituting (7) for the set of equatiofi¥\{e get

lzi+_1_zﬂ+ﬂ w=0 i=12..n. ®)

Cia| w a w w®ow?
i ik k k i

It is apparent from (8) that any constant multipi¢he solution to the homogeneous
nonlinear system (4) would produce an other satufim circumvent this difficulty,
equation (4) can be reformulated, as any one afgtalar equations can be dropped
without affecting the solution set [12]. Denotigjth row of any matrixM by M.
and introducing the nonzero vectatk", let (4) have a positive solutiennormalized

so that'w=1. Then, for any, 1<j<n, apparently, the stationary vectois a solution

to the followinginhomogeneousystem oh equations

c'w=1l R.(Ww=0, k#j, lsks<n. (9)

Here it is convenient to ugel. Thusc'=[1,0, ...,0], i.e. the normalization condition
in (9) is thenwv,=1.

Although a great number of numerical experiments\&d that authors strategy
always determined a convergent process for thetbitation, however, a possible
non-uniquenessf this solution (local minima) have also expecieth. The occurrence
of such alternate stationary vectors for a PCMfivasreported by Jensen [4, p.328].
He argued that it is possible to specify PCMs t'tlave certain symmetries and high
levels of response inconsistency that result irtipialsolutions yielding minimum
least-squares error.” Obviously, an eventual oerwre of a possible multiple solution
may not seem surprising since it is well-knowrhia theory of nonlinear optimization
that $(w) does not necessarily have a unique minimum. lat\igilows now, some
respective results of the authors is discussethisiproblem.



3 On the Non-Uniqueness of the Solution to the bst-
Squares Optimization Problem

In this Sectiorsufficientconditions for amultiple solution to the inhomogeneous

system ofn equations (9) are given. The following matrice# play an important

role in this subject matter:

Definition 1 An nxn matrixZ=[z;] is said to bgersymmetridf its entries satisfy

2= Zucjpes bI=12,.00, (10)

i.e., if its elements are symmetric about the cerdiagonal (secondary diagonal).

Definition 2 An nxn matrix P, is called gpermutationmatrix and is described by
P = [ejl g, qn], where then numbers in the indicep=(j, j, ... j,), indicate a

particular permutation from the standard ordehefiumbers 1,2, n.,

It is easy to see that any permutation majis an orthogonal matrix, since

PR=1, (11)

wherel , denotes thexn identity matrix.

Definition 3 AnnxnmatrixM=[m], i,j=1,2, ..., is called aymmetric permutation
invariant (SPI) matrix if there exists amn permutation matri¥, such that

P'MP, = M. (12)

is satisfied [14].

Definition 4 By acirculant matrix, or circulant for short, is meant amxn matrix
C=[cy], j,k=1,2, ...n, where

— Cl,k+1—j’ If J < k1
i ‘{ Gy I 12K (13)



The elements of each row@fin (13) are identical to those of the previous row
but are moved one position to the right and wragpednd. Thus, the whole circulant
is evidently determined by the first row as

C =circ[c,,Cpy -Gy ) (14)

It is meaningful to use a different notation fapeecial class of the permutation
matrices. Among the permutation matrices the falgamatrix plays a fundamental
role in the theory of circulants. This refers te thrward shift permutation, that is to
the cyclep=(1,2, ...n) generating the cyclic group of ordgrsince its factorization
consists of one cycle of full length(see in [15])

Definition 5 The speciahxn permutatiormatrix , of the form
Q,=[e, & &. ¢ (15)

is said to be thelementary (primitive) circularmatrix, i.e.Q, = circ[0, 1, O, ..., 0].
The othemxn circulant permutation matrice®, of the form

Q =€ €8 &8 k=12,.n, (16)

are the powers of matri®, defined by (15).

Notice in (16) that the relatia, = Q. holds for alk=1,...n-1, and, obviously,
Q,"=l,. It follows from (14) that a circula is invariant to a cyclic (simultaneous)
permutation of the rows and the columns, hence

Q/cQ, =C, k=12, ..n-1, 17)

whereQ, is a particular circulant permutation matrix. Thbg Definition 3, any
circulant matrix is an SPI matrix. Also, it caneadily shown that a circula@tmay
be expressed as a polynomial of the elementarylaint matrix in the form of

C=circ[c,, Gy, .G 1= G, + G 1+ CQ°F ..+ QT (18)



Definition 6 The speciahxn permutation matrixK,, which has 1's on the main
counterdiagonal and O's elsewhere, i.e.,

0 0. . . 0 f
00 10
K.=|. - . . (19)
01.. .00
1 0. . .00

is called acounteridentitymatrix.

Using (19), it may be easily shown that the follogvexpression,
KAK =AT, (20)

holds for a persymmetric SR matix

Remark 1The speciahxn permutation matrice€, andK ,, defined by (16) and (19),
respectively, are persymmetric matrices.

In the sequel we will providsufficientconditions for the occurrence of multiple
solutions to the inhomogeneous system efjuations (9).

Proposition 1 LetA=[a;] be annxn SR matrix with positive entries. Let a (positive)
stationary vector of the error functional (3) beiwld and be denoted by . If A is

a symmetric permutation invariant (SPI) matrix toeatain permutation matrir,,
thenP,'w" produces an alternate stationary vector, provttdatP,'w” andw” are
linearly independent. If this permutation is congaely repeated (not more than

times over) then the vectoF?Jw*,PIZV\i , FTn3V\7 ,... represent alterriatmsary
vectors, provided that they are linearly independen

Proof. Write the Frobenius norm of the nonlinear LSmfation problem (3) in the
form

St(w) = |A - W ee" W.. 1)



Let P, be an arbitraryxn permutation matrix. Considering the fact thatshen of
squares of the elements of a matrix is not affelsyeshy permutation of the rows and
the columns of this matrix the Frobenius norm dustsvary by postmultiplying the
matrix (A-W edW) by an arbitrarily chosen permutation matfix and then by
premultiplying it by its transpos,". Therefore,

S(w) =[P/ (A-Wee W) P,

FAR-PFW'PPBedpP pWH. (22)

2
F

Observe thatin (2B,’e=eande'P, =¢€". For an SPI matriR, by (12),P,’A P, =A
holds. Thus,

sw)=|A-P;w P, ed B WP| . (23)

In (23), the term®,"WP, andP,"W P, represent the permutations of the elements
of W andW %, respectively. After they have been permuted bypirmutation matrix
P.=[e, §,... ¢ ] the elements oP,"WP, (and the elements & "W 'P,) are:

Wi W, e, W (and their inverses). If the derived stationarytogev is linearly

independent of the vectB” w', i.e., ifP,” W = cw’, wherecis an arbitrary constant,
then

P'WP.e= P We

becomes an alternate stationary vector. By repmpétiis procedure we may get
P™We,

which constitutes an other stationary vector, mtedithat this solution is linearly
independent of both of the previous solutions. W&y, the process can be continued
as long as new linearly independent solutions bt@ed. This completes the praof.

Corollary 1 If annxn SR matrixA is a circulant matrix then its factorization catsi
of one cycle of full length by the circulant permions Qw", k=1,2, ...n, (i.e. if P,

is an elementary circulant matrix) and the totahhar of alternate stationary vectors
of the error functional (9) is.

It is well-known that any permutatiop=(j, j, ... j,), may be expressed as the
product of the circulant permutations(p,) (P, )(ps) --- (©,), Wherep, is a circulant
permutation ofs elements called ayclic group whereX'"_; s = n. Thus, after an



appropriate rearrangement of the rows and the gdyany permutation matrix,
may be written in the form oftslock diagonamatrix with the circulant®® of order
s, 1=1,2, ...t, being placed on its main diagonal as follows

'Q@
Q(%)

P, = ' . (24)

Q(S)
Using this notation, after performing an approgrisarrangement of the rows and
the columns, it implies that any SPI matdx defined by (12), can be partitioned in
the form

M=[M,],

where evergxs block,M, , i,j=1,2, ..,r, satisfies the relation

ij

Q®'M, Q% =M i,j =12, .1 . (25)

ij !

Apply now the above considerations to an SPI ma&riwhich isin SR. Perform a
(simultaneous) rearrangement of the rows and thextts ofA. Let the resulting
matrix be denoted b&. Then, obviously, foA the following relation holds

Q'A% = A
ij

ij?

ij=12, ... (26)

Hence, in case &=s, the matrixA has circulant SR matrices of ordgrfor the
bIocks,f&.i , on the main diagonal, where the oglerodd (otherwise an SR matrix

|
cannot be a circulant), or all eIementsAfii are ktyud, if the orders is even.

It follows from the definition of an SR matrix thahy other block;\ij , 1€], 5=9),
might be a circulant of ordey satisfying

A, =AT, (izj), (27)

J



where}',_;s=nand ,&;T denotes the transpose of the block contaih@getiprocals
of the elements o&ij. If for any pairj{, s#s, i,j=1,2, ...f, then the off-diagonal

block,A. , is ansxs rectangular block. Since fgf-s,

ij?

Q(S)T IZ\U- Q(Si) = A‘ij (28)

holds, a sufficient condition 1‘013\ij is that its elemteare equal.

Corollary 2 LetA be amxn positive SR matrix whose rows and columns have bee
appropriately rearranged to be an SPI matrix. l(pbaitive) stationary vector of the
error functional (3) be determined. Let this santibe denoted bw". Then the
permutation’w', P’ W ,P°w , ... are also solutions, whefe' is defined by (24).

The total number of the alternate stationary vaaisrsolutions to equation (9) cannot
exceed the least common multiplesgs,, ...s. (see the proof in [13].)

Proposition 2 LetA=[a;] be amxn SR matrix with positive entries. Let a (positive)
stationary vector of the error functional (3) béetdimined and let this solution of eq.

(9) be denoted by ™® =[1, W, ..., W ]. I is a persymmetric matrix, then

1 1
w2 = —_——, ...,1], 29
[wnfz Wil } 29)

is an alternate stationary vector as an otherisolof equation (9), provided that the
latter solutionw®@ is linearly independent af'®, i.e., if

WO E O)WL), =12, .n. (30

Proof. Write the Frobenius norm of the nonlinear LSmf#ation problem (3) in the
form

St (w) = |A - W e’ W.. (31)

Consider the&xn counteridentity (permutation) matri,, defined by (19). Sinck



is an involutory matrix, thereford 2 =I,. Let P, be an arbitraryixn permutation
matrix. Recognize that, =P, P,"= P, K ,K,P,". Now apply the same technique that
was used for the proof of Proposition 1. Thus, gy write that

(32)

Sw) =K AK KW Kee KWK [ =A "KW KeeKwk .

Making use of (20), the transpose of the matrixhia right hand side of (32) is,
apparently,

Sw)=|A-K WK ge 'K W K |

g (33)

It is obvious from (33) that the elements of therixd W 'K, are composed of the
elements of a vectavr'®, which also constitutes a stationary vector. i golution
is linearly independent of' @, then it must represent an alternate stationartpvas

. 1 . - .
the entries ok WK, are—q--,—5, ... 1. If (30) is satisfied, then they are linearly
n—=1 n—2
independent. This completes the proof. o

Corollary 3 Suppose that for the stationary veatdf the equality

w® w®
h h (| = TCITE )
{LW*“’ R WO =1 W W W] (34)

n-=1 n-2

is satisfied, i.e., the relation

W@ = (W) (W), i=12, ...,n, (35)

holds. Then, (34) providemesolution to the nonlinear optimization problem (8)
this case no trivial alternate stationary vectan b found. It should be noted,
however, that one might not call this solutionraquesolution until thenecessary
conditions for the non-uniqueness problem of tHetem of equation (9) have not
been found, because, at this point, the existehaa other stationary value cannot
be excluded.

To summarize the results of the developments nmetthési Section the following
theorem givesufficientconditions for the occurrence ofn@n-uniquestationary
vector of the error functional (3) as a solutioretpation (9).



Theorem 1 LetA be a generaixn SR matrix with positive entries.

() If A is acirculant matrix, or

(i) if A=[A;] is a block SR matrix witlsxs blocks, wheréA; are circulant SR
matricesA; are circulant matrices forj, s =sandA; has equal entries farj,
s#s and all blocks satisfy (27), or

(i) if A is apersymmetrianatrix, and for a given solution the relation

WoE——, i=12,..n, (36)
W

n+1—i

is satisfied, and
(iv) if a (positive) solution to equation (9), umdbe condition (i), or (ii), or (iii),
represents atationary vectow =[1,w,, ...w,] (a local minimum),

then, this solutiomw”, of the nonlinear least-squares optimization peob(3) is a
non-uniquestationary point.

4 Numerical lllustrations

The illustrations presented in this Section welected to demonstrate the results of
our paper. The numerical computations are mad&lagtfematica”. Seven examples
for given positive SR matriced,, (PCMs) are discussed in some detail below. For
these examples Saaty’s reciprocal nine-point sl ...,1/2, 1, 2, ..., 9] is used for
the numerical values of the entriesfafThe numerical experiments reported below
include computation of the Hessian matrices. Iimeease they were found to be
positive definite, thus ensuring that each statipnalue computed was a local
minimum.

EXAMPLE 1. The first example concerns data oPb3CM and demonstrates the
occurrence of alternate optimaAifis a circulant matrix. Since matrxis in SR by
definition, for sake of simplicity the entries belthe main diagonal are not depicted.
This response matrik, is specified as



Leta=9. Applying the (elementary) circulant permwatmatrix,P,=Q,, k=1,2, ..,5,
the following linearly independent solutions (fiskernate minima) are obtained (see

Corollary 1):

w'® =[1,03354, 19998 05000 .29814

wT® =[1,59623 14909 88890 .29814

wT® =[1,59623 19998 06708 .39993

wT® =[1,03354, 01125 06708 .01677

wT® =[1,02500 14909 05000 .01677

with the same errorS(w’)"” = 238951 i= 12...,5

Since each of the above stationary vectar¥, i=1,2, ...,5, directly gives the first
rows of their corresponding “best” approximatingnk one) transitive matrices, thus
these approximation matricd,i=1,2, ...,5, t&A, could now be easily constructed.

EXAMPLE 2. The second example refers to a 6x6 POhse rows and columns
have been rearranged appropriately. This respoasixr, is specified as

1
1/9
9
1/5
1/4
3

9
1
1/9

V9 :

9
1

3 V4:

V5 3

1/4 US5:

7

17

Observe thak, contains two 3x3 circulant SR block matrices alismmain diagonal.
Note thatA, consists of a circulant off-diagonal block of s&e3 as well. Using an
appropriate permutation matriR,, consisting of two circulant permutation matrices
along its main diagonal the following linearly inmndent solutions (three alternate

minima) are obtained:



w® =[1,55572, 19022 58397 .39612.25186
wT? =[1,05257, 29215 13230 .307Q0. 2 08p5
wT® =[1,03423 01799 07128 .04529. 10508

with the same erro§(w")"” =187968 i= 123

As for EXAMPLE 1, the “best” approximating transii matricesB,”, i=1,2,3, to
A, could readily be constructed. EXAMPLE 2 demonssahe occurrence of a
multiple solution for an SR matri&, which is neither circulant nor persymmetric.
The reason that even in such a case alternaterstativectors may occur is attributed
to the SPI property (see Definition 3) of the SRriraA,, which could be permuted
by elementary circulants since it consists of cygloups.

EXAMPLE 3. The third example contains data of a PGM whose rows and
columns have been rearranged appropriately. Thjorese matri, is specified as

1 9 V9: 9 : 1 9 148

19 1 9 ¢ 9 i 19 1 9

9 1/9 1 ! 9 ! 9 19 1
A,=[1/9 Y9 ¥9: 1 : 9 9 9
1 9 Y9! ¥9: 1 9 19

19 1 9 P ¥9: 19 1 9
9 19 1 : Y9: 9 19 1]

Observe thal, consists of two 3x3 circulant block matrices al@iagnain diagonal
and a single element on its midpoint. Note thahas a 3x3 circulant off-diagonal
block with the same entries as those of the bloaltioes along the main diagonal.
Using an appropriate permutation matRy, consisting of two circulant permutation
matrices on its main diagonal and the unity antigpoint (in other words, there are
three cyclic groups here: two of size three andfoapoint), the following linearly
independent solutions (six alternate minima) ataiokd:



wT® =[1,26729, 21324 08259.17821.76524. 49210
w? =[1,04689, 12535 03873 .23077.08357. 35886
wT¥ =[1,07978 03741 03090 .28629. 18410. 06467
w® =[1,06431 27613 59584 .23077. 18410. 49210
w® =[1,42940 15551 92657 .28629.7 6524 35886
wT® =[1,03621 02329 21578.17821.08357. 06667

with the same erro§(w’)"” =32.003Q i= 1...,6

Similarly to the previous examples the “best” apjimating transitive matrice®,",
i=1, ...,6, toA; may be constructed easily.

EXAMPLE 4. The fourth example shows data of a 8X@WPwhose rows and
columns have been rearranged appropriately. Thjorese matri, is specified as

(1 9 w9: 9 9 9 9 9]
79 1 9 ¢ 9 9 9 9 9
9 19 1 : 9 9 9 9 9

A,=|1/9 V9 YV 9: 1 9 19 9 19
19 19 ¥9: 19 1 9 19 9
19 19 ¥9: 9 19 1 9 19
19 ¥9 ¥9: 19 9 19 1 9
/9 9 ¥9: 9 19 9 19

P

Observe here thdt, contains two circulant block matrices along itsmaiagonal of
size 3x3 and 5x5, respectively. Note tAatconsists of a rectangular off-diagonal
block of size 3x5 with identical entries. It reprats a “trivial’circulant matrix. By
applying an appropriate permutation matiX, which consists of two circulant



permutation matrices along its main diagonal, therfollowing linearly independent
solutions (fifteen alternate minima) are obtained:

w® =11,11943 10028 33427.20231 59230 53371 59800
w? =[1,09972 11910 20175.59066 53224 59136 33334

w® =[1,08396 08373 4 9593.4 4687. 4 9651 2 7988 16P39

w'T™ =[1,08396 08373 4 9651.2 7988 16939 4 9593 4 4587

with the same erro§(w’)"” =29.3584 i= 1...,15

Now, the “best” approximating transitive matric&?, i=1, ...,15, toA, may be
constructed easily.

EXAMPLE 5. The fifth example exhibits data of a SREM. SinceA is in SR by
definition, for sake of simplicity the entries beithe main diagonal are not depicted.
This response matrik; is specified as

19 V9
1

= w o

A=

= ©O© 0o o»

Observe thaf\ is a persymmetric SR matrix. Applying Propositiyrihe following
linearly independent solutions (two alternate mijirare obtained:

wT® =[1,09988 06409 05834 .44176
wT? =[1, 7.5719, 68926 44229 44176

with the same erro§(w")? =16.0449 i= 12



The “best” approximating transitive matric&, i=1,2, toA, are:

1 09988 06409 05834 .44176
1 06417 05841 442

BY = 1 09103 6892¢,
1 7.5719
1

and

1 75719 68926 44229 .44176
1 09103 05841 058

BY? = 1 06417 06409
1 0998
1

Observe here that neithgf® norB,? is a persymmetric matrix. The two independent
solutionsw'® andw’@, are in the first rows and they also appear idbsecolumns

of B,Y andB."® in opposite order.

EXAMPLE 6. The sixth example shows data of a 6x@&/PGinceA is in SR by
definition, for sake of simplicity the entries beithe main diagonal are not depicted.

This response matri&, is specified as

(1 9 87 6 19
1139 6
11 3 7

Ag = 11 87
1 9
- 1_

Observe thad, is a persymmetric SR matrix. By applying Coroll@rghe following

solution (a local minimum) is obtained:

w =[1,08753 17818 30458 .62006.542]1

with the errorS(w’) = 188874



The “best” approximating transitive matrig,, to A; is:

[1 08753 17818 30458 .62006 . 542371
1 20358 34799 70843 .62006
1 17094 34799 30458

B, = 1 20358 1781
1 0875
1

Observe here that ndBy is a persymmetric matrix, i.e. its entries aremsyatric about
its counterdiagonal (secondary diagonal). Therefouch a case, no trivial alternate
stationary vector can be found. It is easy to clileakeach of the conditions (35) for
the elements of the stationary vector (which atbénfirst rowandin opposite order
in the last column of matriB,) holds.

EXAMPLE 7. The authors carried out a comprehenaivalysis for a large set of
different 3x3 SR matrices. Although in the applications of the AHP thesennat
represent the simplest cases only, yet they seém &mlequate to show us a certain
tendency of the occurrences of non-unique solutiottse nonlinear LS optimization
problem (3). For this purpose we utilize some af @sults presented in Section 3.
Let these response matricksbe given in the form

1 a b
A.=(1/a 1 a|
1/b 1/a 1

Observe tha#\, is persymmetric. Here the entrigsorrespond ta,,~a,, and
entry b corresponds ta,,. Using Saaty’s nine-point scale for a great nundfer
appropriately chosen 3x3 PCMs the multiple statipmeactors (global minima) have
been determined and are displayed in Figure 1 tireeentire range of the possible
values of these entries (recall that the respeeintey inA expresses the relative
strength with which decision alternatikedominates alternativg). Here a particular
solution represents, in factgiobal minimum. Namely, by the NK method, applying
a heuristics approadil solutions were generated and examined in a nuateviy
for each interval by using “Mathematica”. Considew Figure 1. Here the selected
scale-values of the entriesg,—=[1, 2, ... ,9] (or fol,,=[1/9,1/8, ... ,1]) are plotted as
function of the NE corner entrg,.. The locations of the black dots indicate the
numerical values with which a 3x3 PCRA, becomes a circulant matrix (here at these
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1/9 9
ay,=2 | |
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Figure 1. Domains of multiple optima for 3x3 SR niggsA (PCMs)



points there are three alternate optima). Thevaterdrawn by heavy lines indicate
the regions over which linearly independent sohgi@ccur (here, there are two
alternate optima). The regions drawn by solid linecate the intervals over which

there is one solution (a global minimum). Bozo4l6][lised the resultant method for
analyzing the non-uniqueness problem of 3x3 SRiceatrlt is interesting to note

that on applying our method to EXAMPLE 7 exactlg ftame results are obtained,;
giving confidence in the appropriateness of boftraaches.

Figure 1 exhibits a remarkable tendency concerthiadjkelihood of a multiple
solution. Note that with a growing level of incosteincy (as the entrieg,=a,; are
increased relative to the enty,) the range of values over which a multiple solutio
occurs will be greater and greater. Note thaafgr9, only multiple solution occurs
within the whole possible range of the values dfyea, ;. One may recognize from
this chart that initially (i.e. at low levels ofdansistency of the matrik,) the optimal
solution (global minimum) is unique. It is interi@gtto note that up to a turning point
the solution yieldsv'™=[1,1,1] evaluated at the entriesabndb=1/a. If, however,
the entries oA\, are increased t@;,=a,,=3.6215 andy,,=1/a,,=1/a,,= 0.2761, then
three other independent stationary vectors achieveninimum in (3) also (thus at
this intersection point there are four alternaténog). ForA., the numerical values
of the entries, ,=a,; anda,; when a unique solution switches to a multiple oty
or reversed, when it switches back to a unique @arepe determined explicitly (see
in the Appendix the formulation of the system ofilieear equations which considers
a more general case than is discussed by EXAMPLE 7)

Conclusions

A system of nonlinear equations has been used¢ondi@e the entries of a transitive
matrix which is the best approximation to a genpadwise comparison matrix in a
least-squares sense. The nonlinear minimizatiobl@noas the solution of a set of
inhomogeneous equations has been examined foiidgiseness properties. Sufficient
conditions for possible non-uniqueness of the gmiub this optimization problem
have been developed and the related proofs havebakn presented. For a great
number of different sized positive SR matrices hgwdertain properties, the results
have been demonstrated by the numerical experinfamther research will include
the investigation for finding the necessary cowodii for the non-uniqueness of the
solution to the nonlinear optimization problem.
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Appendix
Suppose that the positivex n SR matrixA is specified as

1 a
1

PR
LYo

PR e

1

Let the entries oA be denoted bg=a,=a,, j=2,...n-1, andb=a,,, the linearly independent
solutions to equation (9) given in Proposition2nbH® andw" @, respectively, and the solution
(34) byv'. At a stationary point o8(w) where a multiple optima occurs the elements ef th
unknown vectorsy'®, w'@, v" and the entries @& can be determined by solving the following
constrained nonlinear optimization problem [foraatjzular problem, the size of matéxhas

to be properly adjusted, the weightandv, should be inserted in the equations according to
relation (35) and recall that'® can be obtained from (29)]:

z":i+ L L w, =0 i=2..n,
=lw? a w w?ow?

i ik k k 1 ]

A A v, =0, i=2..n,
k=L \/_2 akvkz v3 V_B

i i L

where W':={w;W,, ...W,}, v':={v,,v,, ...V}, and ¢":={1,0,0, ...,0}.
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