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Abstract. This paper develops the spectral propertiesiofijs@ comparison matrices (PCM)
used in the multicriteria decision making methotlechanalytic hierarchy process (AHP).
Perturbed PCMs are introduced which may result@versal of the rank order of the decision
alternatives. The analysis utilizes matrix theorgierive the principal eigenvector components
of perturbed PCMs in explicit form. Proofs are praed for the existence of rank reversals.
Intervals over which such rank reversals occuats® established as function of a continuous
perturbation parameter. It is proven that this mime@non is inherent in AHP even in the case
of the slightest departure from consistency. Tisallte are demonstrated through a sample
illustration.
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1 Introduction

The analytic hierarchy process (AHP) is a multgeié decision making method that
employs a procedure of multiple comparisons to i@dler alternative solutions to
a multiobjective decision problem. Ever since teedlopment of the AHP in the late
1970's by Saaty [14], a great number of criticigfthis approach have appeared in
the literature. One of its most controversial atpes the phenomenon of rank
reversal of the decision alternatives. Both propt;ma@nd opponents of the AHP
agree that rank reversal may occur, but disagrets degitimacy. The problem has
been considered by many authors and a persisteatalbas followed; see Watson
and Freeling [22], Saaty and Vargas [18], Beltod Gear [3], Vargas [21], Harker
and Vargas [10], Dyer [5], Saaty [17], Harker aratdas [11], Salo and Hamalainen
[19] and Pérez [13].

Despite the amount of work done on the subjectiettage virtually no papers
presenting a formal study of the algebraic eigarergigenvector problem of AHP's
pairwise comparison matrix (PCM). This paper pdegi a rigorous mathematical
presentation of this problem and gives proofs lfierexistence of rank reversal for
a certain case. The foregoing research has beamghat a rank reversal may occur
in AHP, () by introducing continuous perturbation(s) at awemore pairs of
elements of a consistent PCM (see e.g., WatsoRmamting [22], Dyer and Wendell



[6]), or, (i) by adding a new alternative to a perturbed PCat itha replica (copy)
of any of the old alternatives (see e.g., Beltoth @ear [2], Dyer and Wendell [6])
and (ii) due to the normalization when aggregating thayhtsiof the alternatives
from the data even if the PCMs are each consigietgtermine the overall priorities
of the alternatives (see e.g., Barzilai and Go[aly In this paper, intervals are also
established for the casg ¢ver which such rank reversals occur for situetiovhen

a PCM departs from perfect consistency even inamligrbitrarily small degree. The
paper considers PCM’s with a single criterion only.

Definition 1 A square matri’A of ordem is called aymmetrically reciprocal (SR)
matrix if its elements; are nonzero complex numbers and

aa;=1, forizj; ij=1,2,.n,
a,=1, fori=1,2,..n. (1)

Definition 2 A square matripA of ordem is called dransitive matrix if its elements
g; are nonzero complex numbers and

aa=a, forallijk 2)

Definition 3 A square matriA of ordem is aone-rank matrix if its elements; can
be expressed as

a;=pg, forallij. ®3)

Theorem 1 Let A=[ga;] beasquarematrix of order n, n>3. (i) If A istransitive, then
Aisaonerank SR aswell. (ii) If A isa SRmatrix, then A istransitive if and only
if itisa one-rank matrix.

(The proof of Theorem 1 is given in Farkas, Roézgh Stubnya [8].)

The concept of a SR matrix defined by relationway introduced by Saaty [14],
who used the term reciprocal matrix. We preferasighate this property according
to Definition 1 since reciprocal matrices are tlggigalent terms for the inverse
matrices. In the framework of AHP, Saaty [14] depeld such a SR matrik=[a;],
called gpairwise (paired) comparison matrix, entries of which represent the relative
importance ratios of the alternati&gover the alternativg,, i,j=1,2,...n, with respect

to a common criterion. Elements Afarepositive, real numbers. Saaty [14] called
A aconsistent matrix if the transitivity property (2) holds fé as well (cardinal
consistency). In the AHP, every decision maker khptovide ratio estimates for
each possible pair of the alternativegf 1)/2].

Using an eigenvalue-eigenvector approach, foritefget of alternatives the AHP
develops weights (and thus the priority ranking)haf alternatives onratio scale.
Due to the properties of most of the decision grotsd occurring in practice thank
order of the alternatives, however, is usually generatednordinal scale. As it is
well known, an ordinal ranking is said to be cortlét contains no ties) if the
ordinal transitivity condition (ordinal consistendyolds, i.e.,

A - A andAﬁ -~ A imply A -~ A for all i,jk, 4)



where, the symbdh-A is interpreted a8 is preferred ta\.

Saaty [15, p.848] proved that the weight (priositpre) of an alternative, what he
called therelative dominance of theith alternativeA, is theith component of the
principal right eigenvector &, u;, provided thah is consistent, i.eA is a transitive
PCM. Theprincipal right eigenvector belongs to the eigenvalue afdat modulus.
The eigenvalue of largest modulus will be caheskimal eigenvalue. By Perron’s
theorem, for matrices with positive elements, treximal eigenvalue is always
positive, simple and the components of its assediatgenvector are positive (see
e.g., in Horn and Johnson [12]). Saaty [15, p.&&med to prove that this result
also holds for a SR matrix thatrist necessarily consistent, i.e., if it transitive.
At this point the question can be raised, whettlrenai the components of the
principal right eigenvector produce the true rglatlominance of the alternatives,
if the PCM is perturbed. Therefore, in this paperskall study the behavior of the
components of the principal eigenvectors of peddrBCMs.

In Section 2, PCMs of specific form are defined émeir spectral properties are
described. In Section 3, PCMs of general form ateoduced and their spectral
properties are developed. In Section 4, the isbuené reversal is examined for the
specific versus the simple perturbed case. Praefgigen for the intervals of rank
reversals. A sample illustration is provided in t8et 5. The characteristic
polynomials of PCMs of general form and the dewvelept of their principal
eigenvector components are presented in Appendicasl B.

2 Pairwise Comparison Matrices of Specific Form

Definition 4 A square matrix with positive entries is callegpecific PCM denoted
by A, if it is transitive.

According to Theorem 1, any transitive matrix canelipressed as the product of a
column vectou and a row vectov' as :

A=uv', )

where

vie1x x,.x .} andu’= e
1%, 4] PR

l:

11 1]

Introducing the diagonal matriD=diag1,1k,,1/,,...,1k, ;) and the vector
e'=[1,1,...,1], obviouslyD*AD=e€. It is easy to see that the characteristic
polynomial ofA, p,(4), can be obtained in the following from

p,(A)=detfil -A]=detfil -ee']=2""(1-n), (6)



wherel , is the identity matrix of order. From (6), it is apparent thAthas a zero
eigenvalue with multiplicityn-1 and one simple positive eigenvalden, with the
corresponding right and left eigenvectossand v', respectively. The relative
dominance of the alternatives are given by the @orepts oli. Conventionally, this
solution is normalized so that its components suomity.

3 Pairwise Comparison Matrices of General Form

In applied problems, decision makers give subjecjiddgements on the relative
importance ratios. As a common consequence, us@afbilure of the relation (2)
to hold is manifested in their PCMs. Hence, itnsg¢o be apparent to explore how
the maximal eigenvalue and its associated eigeowveetry when matrixA is
perturbed such that it remains in SR, howevetratssitivity is lost.

Definition 5 A square matrix with positive entries is callegesturbed PCM and
denoted byA,, if the matrix is symmetrically reciprocal and mnsitive.

Consider now the transitive matrix=De€ D™ with the elements,=1/a;=x/x;
i,j=0,1,2,..n-1. Let the elements of matri be perturbed in its first row and in its
first column in a multiplicative way. This pertud&R matrixA, can be written as

1 X0, X0, . . . xn,lénfl_
e T =
X0, Xy Xy
I T =
A,- X0, % % ’ @

1 X

% 19n 1 X1 X

whered,,0,,... 0,1 are arbitrary positive numbers wiilx1,i=1,2,...n- 1. Performing
a similarity transformation, the characteristicymamial ofA,, pfi(4), is obtained as

P () =detpl -A]=detfll -D*A D]=deK (%), (8)

where



deK ,(7)=

il -6, -6, ... -0 ]
Lo 1
51
o 1
52
1 -1
n-1

The matrixK (2)=Al .- D*A D may be interpreted in the form of a modified matri

with the notation

: T
andVp

o 16, . .. 146

To find the inverse of a matrix that is modified hyone-rank matrix [see the
determinant (A1) in Appendix A] through applyingetBherman-Morrison formula
[20, p.126] let us introduce the matfix(1) as

;
To(2) =2 +UVL.

(10)

Thus, the modified matriK (1) can now be described as

K (1) =To(1)-e€.

(11)

Itis shown in Appendix A that the determinant @ftrix K (1), i.e. the characteristic
polynomialpf(4), yields



n-1 n-1 n-1
pF(1)=deK (2)=2"3 o (1Y (1,50(1,31),; (1731)2 (1-6)}. (12)

i ii=1

Expression (12) shows clearly, that even if allmelats are perturbed in one
(arbitrary) row and in its corresponding columnnadtrix A, then,A, has a zero
eigenvalue with multiplicityn-3, if n>2 and a trinomial equation is obtained for the
nonzero eigenvalues. From (12), the charactegstimomial p7(1), can be rewritten

in the simplified form

py (A)=2"%*-m?-c}, (13)
where the constant ter@icontains the perturbation facteis1,i=1,2,...n-1, as
n-1 1 n-1 1 n-1
C=-(-1Y_ (1-6)1-5)+X (1-5)) (1-9).
i1 g i1 6 i1d

From now on, we restrict our investigations to PGaith one SR perturbed pair of
elements only, sa§=06#1, whileg=1 fori=1.

Definition 6 If one pair of elements,, anda,, of a specific PCM has the form
a,,=X,0, 8,;=1/x,0, ands>0, then it is called simple perturbed PCM, denoted b

In this special case, we have the simple pertunheix Ag as

1 X0 X : Xn—l-
1 5 % X1
X0 X X
1A 1 i X1
NI % | 14
1% % 1
anl -1 anl




Performing a similarity transformation [see (6) &), the characteristic polynomial
of Ag, pi(4), can be written as

pr(h)=detfil -AJ=detil -DAD]-=deK (2), (15)
where
-1 16 -1 ... 1
12,1 1 ...
5
-1 -1 A1 ... -1
deK (2)= .
-1 -1 -1 ... a1

Similarly to (9), the matrixX 4(1) in (15)

K{#)=Al -DAD, (16)

may be interpreted as a modified matrix

Kd)=2 +UVi-ed, (17)

with the notation

1 0 ...
016 ...0

Introducing



A 1-60.0
17% 2 0.0
T
T{A)=A +UVg= o o0 . o (18)
0 0 0.2
the modified matrixK (1) can be written as
Ko(2)=T (1) -e€. (29)
In this special case, the characteristic polynofdia) has the form
() =" 23 -2-Cy, (20)
where, the constant ter@,;, now becomes
1
CS:—(n-Z)(l-é)(l—g):(n—2)Q,
andQ is expressed as a function of the perturbatiotofacas
Q:5+%—2, 6>0 (9+1). (21)

Letr denote the maximal eigenvalue of a simple pertuR€M,Aq. Thenr can be
obtained from the equation [cf.(20)]:

r3-nr2-(n-2)Q-=0, (22)
whereQ is given by (21). Sinc®>0, from (22) it is easy to see thanh. The proof

can be found ifFarkas, Rézsa and Stubnya [8]. The componentseopitincipal
eigenvector can be obtained from the one-rank matri

adj(rl,,-A 9 =[u; ()], (23)

since any column of the adjoint gives the elemehtie principal eigenvector. In
Appendix B, we show that the elemeni¥(r), of the principal eigenvector for the
simple perturbed case are:



R r"Ar-(n-1)]
uyy(r) 1 s 1
—r" {r —( 1—3) [r—(n—2)]}

s
uy(M| %

I ; 1=3,4,..n, (24)
uio irns{r-(l_i]}
es &71 5
o oo
wOl |
S =r"r-(n-1)]
Uy,(r) X
.7 x; i=3,4,.n, (25)
us0| | Loy
X1
and
R r"3r+(5-1)]
o et
uy(n] | % 0
= X 1) i,j=3,4,...n (26)

uijs(r) 1, nZ{r_Z}
X1 n-2

4 The Issue of Rank Reversal

The concept of rank reversal is now introduced.diiter the simple perturbed matrix
A, defined by (14). In the specific versus the singeeturbed case, the maximal
eigenvalue of matrix Ag can be determined from (22), wheren (n>3) always

holds [8]. The components of the principal eigemwecan be obtained from the
one-rank matrix (23). Since any column of this imagjives the elements of the



principal eigenvector, let us choose title column, hence, I¢tn. Suppose that for

two consecutive elements,andu,,, of the principal eigenvector ofspecific PCM
ui <ui+l (27)

holds. Furthermore, suppose that for the correspgnivo elementsy®(r) and

uf,, (r), of the adjoint matrix (23), i.e., for those betprincipal eigenvector of a
simple perturbed PCM

us(n)>up (1) (28)

holds. If this case occurs, then, the rank ordén@glternatives; andA,,, has been
reversed. This phenomenon is calledridrek reversal of the alternatives which are
in question.

It is well known in the cardinal theory of decisioraking that an opposite order of
the corresponding components of the principal eigetor cannot be yielded. In
contrary to this, in the sequel, we give proofs ttee occurrence of such rank
reversals in the AHP between the alternatiyeandA,. For this purpose, it will be
sufficient to compare the order of the first twomgmnents of the principal
eigenvectors.

For the specific case, the maximal eigenvalueAotqualsn. The first two
components of the principal eigenvectoroére as follows [cf. (5)]

1, =
% (29)
i.e., the components of the principal eigenvecterraonotonously increasing for
x;<1, whereas they are monotonously decreasing*dr InTheorem 2, necessary
and sufficient condition is given for the occurremt a rank reversal in the specific
versus the simple perturbed case.

Theorem 2 Let A=[a;] be a transitive (consistent) pairwise comparison matrix of
order n, n >3. Between the alternatives A, and A, when the elements a,, and a,, of
are perturbed, a rank reversal occursif and only if

r71+% 5—%
1>x > =1- , for 6>1, (30)
r-1+o o+(r-1)
or
r—1+1 1—
1<x 0 1,9 _ for 0<s<1, (31)

1< =1+
r-1+0 o+(r-1)



Proof. Using (B5) given in Appendix B, after performitite necessary algebraic
manipulations the first two elements of tite column of adj(l ,-D*AD), i.e., the
cofactors corresponding to the first two elemerithenth row ¢I,-D*AD) are
obtained as [cf. (26)]

{adj(rlnfD’lASD)}ln:r”’3[r7(176)] : {adj(rlnfD’lAsD)}Zn:r”’3[r7(17%)]. (32)

Taking into account (B6) given in Appendix B, thesf two components of the
principal right eigenvector of the simple perturli®@M, A, are proportional to A
rank reversal occurs if the elements in (33) aragtanously decreasing fé¢ and
A..<1, or they are monotonously increasingXprl [cf. (29)].

1 1
r-1+0 ; —(r-1+=).
Xl( 5) (33)

Depending on than whethéiis greater unity, of is less than unity, two cases are
distinguished:

(i) if 0>1 andx,;<1, then the elements in (33) are monotonodstyeasing if x,
resides in the interval given by (30), and

(ii) if 0<9<1 andx,>1, then the elements in (33) are monotonoirslseasing if x,
resides in the interval given by (31).

This means that the conditionriecessary. Furthermore, since all operations in the
proof can be performed in the opposite directiba,dondition isufficient as well.

We note that according to (21) and (225 dependent on the value®fThis fact,
however, has no impact on thdstence of the intervals (30) and (31), over which
a rank reversal occurs. m]

Concerning the other elements of the principalreigetor, they can be obtained by
making similar considerations. As a result, forsthelements we have

W= "2 i34.n (34)

in )ﬁfl n-2

From (34), it is obvious that rank reversal canootur between any pair of the
alternativesAg,A,,...A,. The occurrence of a rank reversal between aligasa®
andA,, i=3,4,...n, or betweer, andA,, i=3,4,...n, could be analyzed in a similar way
as was shown above. This investigation, howeveéeftiso the reader.

5 A Sample lllustration

A widely used concept of measuring the degree n$istency of a perturbed PCM
in the AHP framework is to calculate tlwensistency index, Cl. Saaty (1977)
introduced the following formula



r-n

Cl P (35)
The consistency ratio, CR, can be computed by comparing té with the
corresponding random consistency indBk, derived from a sample of 500, of
randomly generated PCMs using the scale of [1/9,118...,8,9] (see in Saaty [16]).
He proposed that if this consistency r&iR=CI/Rl is less than or equal to 0.10, then
the results be accepted. Otherwise, the probleraldhme studied again and its
corresponding PCM revised. He also stated thatasatall error does not affect the
order of magnitude of the alternatives and herreerelative dominance would be
about the same.

Givenn, and specifying a value f@l, from (35), the maximal eigenvalugof a
simple perturbed PCMA ¢, given by (14) can be obtained as

r=n+Cl (n-1), (36)

then, from (22), for the terQ we have

n-1
Q:ﬁrZCI. (37)

Next, using (21), the roots of the following eqoatcan be calculated from
92-(2+Q)o+1=0. (38)

Finally, using (30) and (31), the intervals for thedues ofx, over which a rank
reversal occurs are

1 1
(n-1)(2+ChHy+= r-1+=
0 , for 0>1, (39)

>X1> =
(n-1)(2+ChH+6 r-1+o
and

1 1
-1)(A+Ch+= r-1+=
|-G s o)

1< = , for O<o<1.
(n-1)(1+Ch+o r-1+0

Consider a simple perturbed PCM of ordes3, that departs from consistency
arbitrarily small. LetCl=0.01. Using the appropriate table in Saaty [16f t
correspondingrl=0.58. ThusCR=0.017. From (36), (37), and (38), the computed
parameters are=3.02,0=0.1824,=1.5279, 1§=0.6545, respectively. Using (39)
and (40), the values a&f, with any of which a rank reversal occurs lietia interval
0.7538 to 1.3266. This result demonstrates that tduthe fact thatAg is an
inconsistent PCM even in the slightest degree tlyette exists a relatively large



interval, over which rank reversal occurs betwdemativesA, andA,. That is, the
fundamental ordinal transitivity relation given I04) is being violated by this
phenomenon. The occurrence of such a rank reveiight be serious in practice
when an undesired alternative is chosen by thesidecimaker as the best.

At this point the question might be raised as tethbr it would be meaningful to
revise a given perturbed PCM and then, to makenateto reduce it€R measure.
Itis remarkable, that meanwhile in the literatseyeral other more promising ways
have been proposed for improving the measure ohisistency of a general PCM
(see Salo and Hamalainen [19], Genest and Zhara{PBozoki and Rapcsak [4]).
The study of these approaches is, however, ldéftegeader.

Conclusions

This paper presented a matrix theory based andtysike eigenvalue-eigenvector
approach of the AHP. It was shown that this apgrgaoduces a perfect solution to
the decision making problem if the PCM is consistelowever, the method cannot
give the true ranking of the alternatives if theMP& inconsistent, i.e., if it igot
transitive. Therefore, if a PCM is inconsistengrin the slightest degree, then the
principal eigenvector components do not give tlie trelative dominance of the
alternatives. Obviously, this result can be extentdd®?CMs with arbitrary number
of perturbed pairs of elements, since, in the pralapplications of the AHP, neither
the cardinal consistency, nor the ordinal consgter the expert’s judgements can
be ensured a’priori.

Appendix A

In order to obtain the characteristic polynonmig{4), of the perturbed PCM,, [see
(8)], let us write the determinant of the modifieatrix K (1) given by (9), in the
following form

deK (1)=def(il ,+U V) -ec|-detql U V)defi (il +U V) ted] (A1)
It is easy to show that

det]  +WzT]=det] , +Z"W],

whereW is an xm) matrix andZ" is an (mxn) matrix. Rewriting (A1), then using
(10) and (11) we get

deK o(1)=detql ,+U VD[1-€"(ll  +UV}) te|=def ()16 T} (e (A2)

The inverse of a matrix modified by a low-rank rmatmay be written in the
following form (see in Woodbury, [23])



T =@ n+UPVFI)’1:%I —%UP(/1|2+VI,UP)*1V,I. (A3)

n

Using (A2) and by performing the necessary opematia (A3) (see in [8, p.426]),
the characteristic polynomial of the perturbed PiSMbtained in the form

n-1 n-1 n-1
pP()=in? is_n,12+(n_1);j (1—59(1—%)—; (1—%)2 @-0)  (A%Y)

Remark. It is easy to show that, if the number of the rd¢arsd their corresponding
columns) which contain at least one perturbedgfatements in the specific PCM,
A [see matrix (7)], isn<(n-1)/2, then, the rank of matriX increases byrg, i.e., the
multiplicity of the zero eigenvalues beconme2m-1, and we obtain an equation of
degree t+1 for the nonzero eigenvalues.

Appendix B

To develop the principal eigenvector of the simpéturbed PCMA,, let us
calculate the one-rank matrix

adjfl ,-Ag=abT, (B1)

any column of which produces the principal (rigkifenvector. First, the proof of
the following lemma will be given that refers teethalculation of the adjoint of a
modified matrix.

Lemma lf T, isanonsingular matrix of order n, furthermore, a and b are column
vectors of order n, then the adjoint of the modified matrix T, -ab" can be obtained
in the form (see in Elsner and Rézsa [7]):

adj[T ,-ab"]=ad]T {1-bT,'a)l +ab™T, (B2)

Proof. By the Sherman-Morrison formula [20, p.126)], ilreerse of the modified
nonsingular matrix ,-ab" exists if

1-b™T.'ax0,
and it can be written as

-1 -1
1, Te ab'T,

(Tp-ab") =T, —
1-b'T,a

(B3)



By (A2), the determinant of a nonsingular mafrixmodified by a one-rank matrix
ab' is given as

det[T ,-ab"] =(1-b"T'a) detT . (B4)
Multiplying (B4) by the inverse (B3), the formulBZ) for the adjoint follows. O

Corollary Snce the determinant is a continuous function of its elements, (B2) is
validalsointhecaseif 1-b'T,'a=0, i.e.,

adj[T .- ab™ =(adjT )ab™T,.}, if 1-b'T 'a=0. (B5)
Let us now apply these results for gaeple perturbed PCM, Ag. Making use of
(16), it is easy to show that
adjjll -AJ -Dfadjil ,-D*A D]}D*-D{adj[K (A1}D (B6)

Let us introduce the notatidty(1)=adj[K s(4)]. According to (B2), by letting=b=g,
and using (19) we can write that

P (1)=adj[K ()] =adj[T {(1)-ee']. (B7)

Substituting for 4, by (22) and (21) it is obvious thatd T ;*(r)e=0. Thus, (B5) can
be applied, and for the adjoiRg(r) we have

P«(n)=[p;(N]=adjlK (1] ={adiT (n)}ee'T<'(r). (B8)

ConsequentlyP4(r) is a rank-one matrix, and therefore, any (columnagtor of
adj[T «(r)] is the principal eigenvector corresponding @ iieximal eigenvalueof

the simple perturbed PCM<. Hence, making use of (18), (B6), and (B8) the
eigenvectorsi?(r), given by formulas (24), (25) and (26), can beawted from

- r2+(o-1)r -

1

r- 1-=
r2+Q ( 5] ro-1 1
r2+Q l r2+Qi ri

adj(rl -A )-D{r"?3 A %}D’l,(BQ)

as thekth column ofP4(r) is premultiplied byD and is multiplied by, _;, k=1,2,...n.
In (B9), Qs given by (21).
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