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Abstract. This paper develops the spectral properties of pairwise comparison matrices (PCM)
used in the multicriteria decision making method called analytic hierarchy process (AHP).
Perturbed PCMs are introduced which may result in a reversal of the rank order of the decision
alternatives. The analysis utilizes matrix theory to derive the principal eigenvector components
of perturbed PCMs in explicit form. Proofs are presented for the existence of rank reversals.
Intervals over which such rank reversals occur are also established as  function of a continuous
perturbation parameter. It is proven that this phenomenon is inherent in AHP even in the case
of the slightest departure from consistency. The results are demonstrated through a sample
illustration.
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1  Introduction

The analytic hierarchy process (AHP) is a multicriteria decision making method that
employs a procedure of multiple comparisons to rank order alternative solutions to
a multiobjective decision problem. Ever since the development of the AHP in the late
1970's by Saaty [14], a great number of criticisms of this approach have appeared in
the literature. One of its most controversial aspects is the phenomenon of rank
reversal of the decision alternatives. Both proponents and opponents of the AHP
agree that rank reversal may occur, but disagree on its legitimacy. The problem has
been considered by many authors and a persistent debate has followed; see Watson
and Freeling [22], Saaty and Vargas [18], Belton and Gear [3], Vargas [21], Harker
and Vargas [10], Dyer [5], Saaty [17], Harker and Vargas [11], Salo and Hämäläinen
[19] and Pérez [13].

Despite the amount of work done on the subject, there are virtually no papers
presenting a formal study of the algebraic eigenvalue-eigenvector problem of AHP's
pairwise comparison matrix (PCM). This  paper provides a rigorous mathematical
presentation of this problem and gives proofs for the existence of rank reversal for
a certain case. The foregoing research has been shown that a rank reversal may occur
in AHP, (i) by introducing continuous perturbation(s) at one or more pairs of
elements of a consistent PCM (see e.g., Watson and Freeling [22], Dyer and Wendell
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[6]), or, (ii) by adding a new alternative to a perturbed PCM that is a replica (copy)
of any of the old alternatives (see e.g., Belton and Gear [2], Dyer and Wendell [6])
and (iii) due to the normalization when aggregating the weights of the alternatives
from the data even if the PCMs are each consistent to determine the overall priorities
of the alternatives (see e.g., Barzilai and Golany [1]). In this paper, intervals are also
established for the case (i) over which such rank reversals occur for situations when
a PCM departs from perfect consistency even in only an arbitrarily small degree. The
paper considers PCM’s with a single criterion only.

Definition 1  A square matrix A of order n is called a symmetrically reciprocal (SR)
matrix if its elements aij are nonzero complex numbers and

Definition 2  A square matrix A of order n is called a transitive matrix if its elements
aij are nonzero complex numbers and

Definition 3  A square matrix A of order n is a one-rank matrix if its elements aij can
be expressed as

Theorem 1  Let A=[aij] be a square matrix of order n, n$3. (i) If A is transitive, then
A is a one-rank SR, as well. (ii) If A is a SR matrix, then A is transitive if and only
if it is a one-rank matrix.
(The proof of Theorem 1 is given in Farkas, Rózsa and Stubnya [8].)

The concept of a SR matrix defined by relation (1) was introduced by Saaty [14],
who used the term reciprocal matrix. We prefer to designate this property according
to Definition 1 since reciprocal matrices are the equivalent terms for the inverse
matrices. In the framework of AHP, Saaty [14] developed such a  SR matrix, A=[aij],
called a pairwise (paired) comparison matrix, entries of which represent the relative
importance ratios of the alternative Ai over the alternative Aj, i,j=1,2,...,n, with respect
to a common criterion. Elements of A are positive, real numbers. Saaty [14] called
A a consistent matrix if the transitivity property (2) holds for A as well (cardinal
consistency). In the AHP, every decision maker should provide ratio estimates for
each possible pair of the alternatives [n(n!1)/2].

Using an eigenvalue-eigenvector approach, for a finite set of alternatives the AHP
develops weights (and thus the priority ranking) of the alternatives on a ratio scale.
Due to the properties of most of the decision problems occurring in practice the rank
order of the alternatives, however, is usually generated on an ordinal scale. As it is
well known, an ordinal ranking is said to be complete (it contains no ties) if the
ordinal transitivity condition (ordinal consistency) holds, i.e.,
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where, the symbol Ai6Aj is interpreted as Ai is preferred to Aj.

Saaty [15, p.848] proved that the weight (priority score) of an alternative, what he
called the relative dominance of the ith alternative Ai, is the ith component of the
principal right eigenvector of A, ui, provided that A is consistent, i.e., A is a transitive
PCM. The principal right eigenvector belongs to the eigenvalue of largest modulus.
The eigenvalue of largest modulus will be called maximal eigenvalue. By Perron’s
theorem, for matrices with positive elements, the maximal eigenvalue is always
positive, simple and the components of its associated eigenvector are positive (see
e.g., in Horn and Johnson [12]). Saaty [15, p.853] claimed to prove that this result
also holds for a SR matrix that is not necessarily consistent, i.e., if it is not transitive.
At this point the question can be raised, whether or not the components of the
principal right eigenvector produce the true relative dominance of the alternatives,
if the PCM is perturbed. Therefore, in this paper we shall study the behavior of the
components of the principal eigenvectors of perturbed PCMs.

In Section 2, PCMs of specific form are defined and their spectral properties are
described. In Section 3, PCMs of general form are introduced and their spectral
properties are developed. In Section 4, the issue of rank reversal is examined for the
specific versus the simple perturbed case. Proofs are given for the intervals of rank
reversals. A sample illustration is provided in Section 5. The characteristic
polynomials of PCMs of general form and the development of their principal
eigenvector components are presented in Appendices A and B.

2  Pairwise Comparison Matrices of Specific Form

Definition 4  A square matrix with positive entries is called a specific PCM denoted
by A, if it is transitive.

According to Theorem 1, any transitive matrix can be expressed as the product of a
column vector u and a row vector vT as :

where

v T'1,x1,x2,...,xn&1 , and uT'1, 1
x1

, 1
x2

,..., 1
xn&1

.

Introducing the diagonal matrix D=diag+1,1/x1,1/x2,...,1/xn!1, and the vector
eT=[1,1,...,1], obviously D-1AD=eeT. It is easy to see that the characteristic
polynomial of A, pn(8), can be obtained in the following from



p P
n (λ)/det[λI n&A P]'det[λI n&D&1A PD]'detK P(λ), (8)

A P'

1 x1δ1 x2δ2 . . . xn&1δn&1

1
x1δ1

1
x2

x1

. . .
xn&1

x1

1
x2δ2

x1

x2

1 . . .
xn&1

x2

. . . . . . .

. . . . . . .

. . . . . . .

1
xn&1δn&1

x1

xn&1

x2

xn&1

. . . 1

, (7)

where I n is the identity matrix of order n. From (6), it is apparent that A has a zero
eigenvalue with multiplicity n!1 and one simple positive eigenvalue, 8=n, with the
corresponding right and left eigenvectors, u and vT, respectively. The relative
dominance of the alternatives are given by the components of u. Conventionally, this
solution is normalized so that its components sum to unity.

3  Pairwise Comparison Matrices of General Form

In applied problems, decision makers give subjective judgements on the relative
importance ratios. As a common consequence, usually, a failure of the relation (2)
to hold is manifested in their PCMs.  Hence, it seems to be apparent to explore how
the maximal eigenvalue and its associated eigenvector vary when matrix A is
perturbed such that it remains in SR, however, its transitivity is lost.

Definition 5  A square matrix with positive entries is called a perturbed PCM and
denoted by Ap, if the matrix is symmetrically reciprocal and not transitive.

Consider now the transitive matrix A=DeeT D-1 with the elements aij=1/aji=xj/xi,
i,j=0,1,2,...,n!1. Let the elements of matrix A be perturbed in its first row and in its
first column in a multiplicative way. This perturbed SR matrix AP can be written as

where δ1,δ2,...,δn-1 are arbitrary positive numbers with δi…1, i=1,2,...,n!1. Performing
a similarity transformation, the characteristic polynomial of AP, pn

P(8), is obtained as

where
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The matrix KP(λ)=λI n!D!1APD may be interpreted in the form of a modified matrix:
with the notation

To find the inverse of a matrix that is modified by a one-rank matrix [see the
determinant (A1) in Appendix A] through applying the Sherman-Morrison formula
[20, p.126] let us introduce the matrix TP(λ) as

Thus, the modified matrix KP(λ) can now be described as

It is shown in Appendix A that the determinant of matrix KP(λ), i.e. the characteristic
polynomial pn

P(λ), yields
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Expression (12) shows clearly, that even if all elements are perturbed in one
(arbitrary) row and in its corresponding column of matrix A, then, AP has a zero
eigenvalue with multiplicity$n!3, if n>2 and a trinomial equation is obtained for the
nonzero eigenvalues. From (12), the characteristic polynomial, pn

P(λ), can be rewritten
in the simplified form

where the constant term C contains the perturbation factors δi…1, i=1,2,...,n!1, as

From now on, we restrict our investigations to PCMs with one SR perturbed pair of
elements only, say δ1=δ…1, while δi=1 for i…1.

Definition 6  If one pair of elements, a12 and a21 of a specific PCM has the form
a12=x1δ, a21=1/x1δ, and δ>0, then it is called a simple perturbed PCM, denoted by AS.

In this special case, we have the simple perturbed matrix AS as
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Performing a similarity transformation [see (6) and (8)], the characteristic polynomial
of AS, pn

P(8), can be written as

where

Similarly to (9), the matrix KS(λ) in (15)

may be interpreted as a modified matrix

with the notation

Introducing
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the modified matrix KS(λ) can be written as

In this special case, the characteristic polynomial (12) has the form

where, the constant term, CS, now becomes

and Q is expressed as a function of the perturbation factor δ as

Let r denote the maximal eigenvalue of a simple perturbed PCM, AS. Then, r can be
obtained from the equation [cf.(20)]:

where Q is given by (21). Since Q>0, from (22) it is easy to see that r>n. The proof
can be found in Farkas, Rózsa and Stubnya [8]. The components of the principal
eigenvector can be obtained from the one-rank matrix

since any column of the adjoint gives the elements of the principal eigenvector. In
Appendix B, we show that the elements, uS

ij(r), of the principal eigenvector for the
simple perturbed case are:
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and

4  The Issue of Rank Reversal

The concept of rank reversal is now introduced. Consider the simple perturbed matrix
AS defined by (14). In the specific versus the simple perturbed case, the maximal
eigenvalue r of matrix AS can be determined from (22), where r>n (n$3) always
holds [8]. The components of the principal eigenvector can be obtained from the
one-rank matrix (23). Since any column of this matrix gives the elements of the
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principal eigenvector, let us choose the nth column, hence, let j=n. Suppose that for
two consecutive elements, ui and ui+1 of the principal eigenvector of a specific PCM

holds. Furthermore, suppose that for the corresponding two elements, u i
S

n(r) and
u i

S
+1,n(r), of the adjoint matrix (23), i.e., for those of the principal eigenvector of a

simple perturbed PCM

holds. If this case occurs, then, the rank order of the alternatives Ai and Ai+1 has been
reversed. This phenomenon is called the rank reversal of the alternatives which are
in question.

It is well known in the cardinal theory of decision making that an opposite order of
the corresponding components of the principal eigenvector cannot be yielded. In
contrary to this, in the sequel, we give proofs for the occurrence of such rank
reversals in the AHP between the alternatives A1 and A2. For this purpose, it will be
sufficient to compare the order of the first two components of the principal
eigenvectors.

For the specific case, the maximal eigenvalue of A equals n. The first two
components of the principal eigenvector of A are as follows [cf. (5)]

i.e., the components of the principal eigenvector are monotonously increasing for
x1<1, whereas they are monotonously decreasing for x1>1. In Theorem 2, necessary
and sufficient condition is given for the occurrence of a rank reversal in the specific
versus the simple perturbed case.

Theorem 2  Let A=[aij] be a transitive (consistent) pairwise comparison matrix of
order n, n $3. Between the alternatives A1 and A2 when the elements a12 and a21 of
are perturbed, a rank reversal occurs if and only if

or
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Proof. Using (B5) given in Appendix B, after performing the necessary algebraic
manipulations the first two elements of the nth column of adj(rI n!D-1ASD), i.e., the
cofactors corresponding to the first two elements of the nth row (rI n!D-1ASD) are
obtained as [cf. (26)]

Taking into account (B6) given in Appendix B, the first two components of the
principal right eigenvector of the simple perturbed PCM, AS, are proportional to A
rank reversal occurs if the elements in (33) are monotonously decreasing for Ai and
Ai+1<1, or they are monotonously increasing for x1>1 [cf. (29)].

Depending on than whether δ is greater unity, or δ is less than unity, two cases are
distinguished:

(i) if δ>1 and x1<1, then the elements in (33) are monotonously decreasing if x1

resides in the interval given by (30), and

(ii) if 0<δ<1 and x1>1, then the elements in (33) are monotonously increasing if x1

resides in the interval given by (31).

This means that the condition is necessary. Furthermore, since all operations in the
proof can be performed in the opposite direction, the condition is sufficient as well.

We note that according to (21) and (22), r is dependent on the value of δ. This fact,
however, has no impact on the existence of the intervals (30) and (31), over which
a rank reversal occurs.                                                                                               9

Concerning the other elements of the principal eigenvector, they can be obtained by
making similar considerations. As a result, for these elements we have

From (34), it is obvious that rank reversal cannot occur between any pair of the
alternatives A3,A4,...,A n. The occurrence of a rank reversal between alternatives A1

and Ai, i=3,4,...,n, or between A2 and Ai, i=3,4,...,n, could be analyzed in a similar way
as was shown above. This investigation, however, is left to the reader.

5 A Sample Illustration

A widely used concept of measuring the degree of consistency of a perturbed PCM
in the AHP framework is to calculate the consistency index, CI. Saaty (1977)
introduced the following formula  
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The consistency ratio, CR, can be computed by comparing the CI with the
corresponding random consistency index, RI, derived from a sample of 500, of
randomly generated PCMs using the scale of [1/9,1/8,...,1,...,8,9] (see in Saaty [16]).
He proposed that if this consistency ratio CR=CI/RI is less than or equal to 0.10, then
the results be accepted. Otherwise, the problem should be studied again and its
corresponding PCM revised. He also stated that such a small error does not affect the
order of magnitude of the alternatives and hence, the relative dominance would be
about the same.

Given n, and specifying a value for CI, from (35), the maximal eigenvalue r, of a
simple perturbed PCM, AS, given by (14) can be obtained as

then, from (22), for the term Q we have

Next, using (21), the roots of the following equation can be calculated from

Finally, using (30) and (31), the intervals for the values of x1 over which a rank
reversal occurs are

and

Consider a simple perturbed PCM of order n=3, that departs from consistency
arbitrarily small. Let CI=0.01. Using the appropriate table in Saaty [16], the
corresponding RI=0.58. Thus, CR=0.017. From (36), (37), and (38), the computed
parameters are, r=3.02, Q=0.1824, δ=1.5279, 1/δ=0.6545, respectively. Using (39)
and (40), the values of x1, with any of which a rank reversal occurs lie in the interval
0.7538 to 1.3266. This result demonstrates that due to the fact that AS is an
inconsistent PCM even in the slightest degree, yet there exists a relatively large
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interval, over which rank reversal occurs between alternatives A1 and A2. That is, the
fundamental ordinal transitivity relation given by (4) is being violated by this
phenomenon. The occurrence of such a rank reversal might be serious in practice
when an undesired alternative is chosen by the decision maker as the best.

At this point the question might be raised as to whether it would be meaningful to
revise a given perturbed PCM and then, to make attempts to reduce its CR measure.
It is remarkable, that meanwhile in the literature, several other more promising ways
have been proposed for improving the measure of inconsistency of a general PCM
(see Salo and Hämäläinen [19], Genest and Zhang [9] and Bozóki and Rapcsák [4]).
The study of these approaches is, however, left to the reader.

Conclusions

This paper presented a matrix theory based analysis for the eigenvalue-eigenvector
approach of the AHP. It was shown that this approach produces a perfect solution to
the decision making problem if the PCM is consistent. However, the method cannot
give the true ranking of the alternatives if the PCM is inconsistent, i.e., if it is not
transitive. Therefore, if a PCM is inconsistent, even in the slightest degree, then the
principal eigenvector components do not give the true relative dominance of the
alternatives. Obviously, this result can be extended to PCMs with arbitrary number
of perturbed pairs of elements, since, in the practical applications of the AHP, neither
the cardinal consistency, nor the ordinal consistency of the expert’s judgements can
be ensured a’priori.

Appendix A

In order to obtain the characteristic polynomial, pn
P(λ), of the perturbed PCM, Ap, [see

(8)], let us write the determinant of the modified matrix K p(λ) given by (9), in the
following form

It is easy to show that

where W is an (n×m) matrix and ZT is an (m×n) matrix. Rewriting (A1), then using
(10) and (11) we get

The inverse of a matrix modified by a low-rank matrix may be written in the
following form (see in Woodbury, [23])
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Using (A2) and by performing the necessary operations in (A3) (see in [8, p.426]),
the characteristic polynomial of the perturbed PCM is obtained in the form

Remark. It is easy to show that, if the number of the rows (and their corresponding
columns) which contain at least one perturbed pair of elements in the specific PCM,
A [see matrix (7)], is m#(n!1)/2, then, the rank of matrix A increases by 2m, i.e., the
multiplicity of the zero eigenvalues becomes n!2m!1, and we obtain an equation of
degree 2m+1 for the nonzero eigenvalues.

Appendix B

To develop the principal eigenvector of the simple perturbed PCM, AS, let us
calculate the one-rank matrix

any column of which produces the principal (right) eigenvector. First, the proof of
the following lemma will be given that refers to the calculation of the adjoint of a
modified matrix.

Lemma If TP is a nonsingular matrix of order n, furthermore, a and b are column
vectors of order n, then the adjoint of the modified matrix TP !abT can be obtained
in the form (see in Elsner and Rózsa [7]):

Proof. By the Sherman-Morrison formula [20, p.126)], the inverse of the modified
nonsingular matrix TP!!!!abT exists if

and it can be written as
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r 2& 1&1
δ

r

r 2%Q

.

.

.

r 2%Q

r& 1&1
δ

r 2%Q
, r%δ&1

r 2%Q
, 1

r
, . . ., 1

r
} D&1,(B9)

By (A2), the determinant of a nonsingular matrix TP modified by a one-rank matrix
abT is given as

Multiplying (B4) by the inverse (B3), the formula (B2) for the adjoint follows.      9

Corollary  Since the determinant is a continuous function of its elements, (B2) is
valid also in the case if  1!bTTP

-1a = 0, i.e.,

Let us now apply these results for the simple perturbed PCM, AS. Making use of
(16), it is easy to show that

Let us introduce the notation PS(λ)=adj[KS(λ)]. According to (B2), by letting a=b=e,
and using (19) we can write that

Substituting r for λ, by (22) and (21) it is obvious that 1!eTTS
-1(r)e=0. Thus, (B5) can

be applied, and for the adjoint PS(r) we have

Consequently, PS(r) is a rank-one matrix, and therefore, any (column) vector of
adj[TS(r)] is the principal eigenvector corresponding to the maximal eigenvalue r of
the simple perturbed PCM AS. Hence, making use of (18), (B6), and (B8) the
eigenvectors u i

S
j(r), given by formulas (24), (25) and (26), can be obtained from

as the kth column of PS(r) is premultiplied by D and is multiplied by xk!1, k=1,2,...,n.
In (B9), Q is given by (21).
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