
Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 41 –

Embedded Fuzzy Controller for Industrial
Applications

Ferenc Farkas, Sándor Halász
Department of Electric Power Engineering, Budapest University of Technology
and Economics, ferenc.f.farkas@ericsson.com

Abstract: The concept of the fuzzy logic makes feasible the creation of fuzzy controllers
with low cost 16 bit microcontroller having the same performance as of controllers realized
with more expensive Digital Signal Processor (DSP). In this article the implementation of
such a fuzzy controller is proposed for 16 bit microcontroller with fast fuzzyfication-
inference-defuzzyfication algorithm. Because the microcontroller receives information from
the process via Analog-Digital Converter(s) and controls the process with the help of
Digital-Analog Converter(s) the implemented algorithm does not use floating-point
operations, only integer ones. However, for some type of fuzzy controllers, the error made
by this algorithm is not greater than the error of a DSP based floating point algorithm.

Keywords: fuzzy logic, microcontroller, embedded systems

1 Introduction

1.1 Fuzzy Controller and Embedded Systems

The world of embedded control is experiencing a push into the realm of fuzzy
logic. Even household machines are advertised as being intelligent with the help
of the built-in fuzzy logic. The popularity of the fuzzy logic is due to its simplicity
and effectiveness in solving control problems. Conference proceedings and related
periodicals contain myriads of articles presenting the advantages of control
systems using fuzzy logic. Although fuzzy controllers are not able to solve every
control problems, and have some disadvantages as well [7], one of the main
disadvantage of using the fuzzy controller in embedded systems is the great
number of floating point calculations made in real-time. This huge calculation
capacity requires the use of Digital Signal Processor (DSP), which is more
expensive compared to a 16 bit microcontroller (μC).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 42 –

In the past, manufacturers have contended with the performance versus cost
tradeoffs with no apparent fulfillment of both. Although, in the last decade the
complexity of DSPs has evolved while their price decreased, manufacturers are
always interested in cost reduction due to permanent competition. In this article a
short comparison is presented between a DSP and a microcontroller based fuzzy
controller, pointing out that – depending on the type of the fuzzy controller used
and the precision of the Analog-Digital Converters (ADC) and Digital-Analog
Converters (DAC) built in the system, – in most of the cases the DSP based fuzzy
controller is not able to outperform the microcontroller based counterpart.

1.2 Microcontroller versus DSP

The main features of embedded systems are the compact realization, robustness,
and cheapness. Cheapness can be achieved by using low performance
microcontroller connected to low capacity memory. Naturally, such a system
cannot be compared to a more complex DSP from the calculation capacity point of
view. Thus, microcontrollers can be used in limited applications, where floating-
point calculations are not required, or their use is limited. At first sight,
microcontrollers are not suitable for realizing fuzzy controllers, due to hundreds of
floating-point arithmetic done in real time. This short come might be overcome
with a look-up table, storing the response of the fuzzy controller for different
input/output combinations. However, the memory capacity is a strong limitation,
so the table dimension is. Thus, only a limited number of input(s)/output(s) pairs
are stored in the table, and interpolation is used in between. This solution has two
major drawbacks: 1) the interpolation is not a good approximation for nonlinear
functions, and the table dimension limits the number of useful pairs stored; 2) the
fuzzy controller is rigid, cannot adjust its parameter to the changing environment
as it is proposed in [1]-[2].

The concept of fuzzy logic makes feasible the use of a fuzzy controller built on
low cost 8 or 16 bit microcontroller for some applications. Manufacturers, like
MOTOROLA, have recognized the power of fuzzy logic and have created fuzzy
kernels and support tools for a number of their 8 bit and 16 bit microcontrollers.
However, these support tools lack the generalization and mathematical reasoning.

Although DSP is mostly applied in those applications where huge floating-point
operations are performed in real time, its high price does not help the spreading of
fuzzy controller in mass production. On the other hand a conventional
microcontroller (like the INTEL’s 80186 microcontroller) can be bought for a
very low price. The latter does not support directly the floating-point operations,
but does support the operations of integer type, like addition, subtraction, division
and multiplication. For this reason, one must think about an algorithm, which
incorporates only integer operands.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 43 –

In industrial applications, such as motion control, electrical drives, temperature
and humidity stabilization, the fuzzy controller receives information from the
controlled process via ADC(s) and controls it through DAC(s) as in Figure 1. For
this reason, using a DSP in such cases is not far from the idea of making a fuzzy
controller seeming better, faster and more accurate than it really is. Because the
precision of ADC and DAC is always less than or equal to 16 bits, the use of 16
bit operands seems to be a reasonable compromise between accuracy and speed.
Thus, the value stored in such an operand will be in the range of [0.65535].
Moreover, using appropriate fuzzy operations, the error made by the proposed
algorithm is comparable to the DSP based fuzzy controller.

2 Theoretical Considerations

2.1 Starting from the Basic Idea

Let’s consider two continuous and closed intervals),(ba ,),(FE on which the
Euclidean distances are defined. For arbitrary),(bax∈ , and),(FEX ∈ the
following relation is held:

EF
EX

ab
ax

−
−

=
−
− . (1)

Let’s define the two intervals as being:

Embedded Fuzzy Controller

M
E
M

16 bit

μC DAC

ADC
Controlled plant

PC

>Start

Figure 1
The concept of embedded fuzzy controller with ADC and DAC

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 44 –

⎩
⎨
⎧

=≡
≡

65535),,0(),(
)0.1,0.0(),(

MAXINTMAXINTFE
ba

, (2)

that is, the),(ba interval represents the real numbers between 0.0 and 0.1 , while
the),0(MAXINT interval represents the integer numbers from 0 to

162≡MAXINT . Because),(FE interval defined in this way is not continuous,
there is no one-to-one mapping anymore. That is, ()bax ,∈′ being defined closed
enough to ()bax ,∈ in terms of Euclidean distance, x′ will be mapped on the
same ()FEX ,∈ as x . The following notation will be used in the rest of this
article: with lower case real numbers, while with capital letters integer numbers
are denoted.

The following relations are obtained by rearranging relation (1), taking into
account the definitions of the intervals, and replacing x with 'x , or x with y′ ,
Y with X :

MAXINT
Xx =′ , (3)

][MAXINTyY ⋅′= , (4)

where][x represents the integer part of x . These relations show how a real value
can be mapped on an integer one, and vice versa.

It is by no surprise, that the defined)0.1,0.0(),(≡ba interval is the input/output of
the fuzzy controller, while the),0(),(MAXINTFE ≡ interval is the input/output
of the 16 bit AD/DA converters. Mapping of real value to integer and vice versa is
performed by the ADC and DAC, respectively. However, the fuzzy controller
implemented on a DSP requires real number(s) for its input(s), and outputs real

X Y
μC

A
D
C

D
A
C

Xx Y y

Figure 2
Microcontroller versus DSP. Which one is more suitable for an application?

x’ y’
DSP

A
D
C

D
A
C

Xx Y y

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 45 –

number(s), as well. Thus, an algorithm for the DSP must convert the integer
obtained from the ADC before applying to the fuzzy controller. Another algorithm
should also convert the real number obtained from the output of the fuzzy
controller to an integer one before feeding the DAC with the proper value. If it is
so, there are two important questions: 1) what is the gain from using floating-point
operands and operators? 2) can be implemented a fuzzy controller just using
integer operands and operators?

In Figure 2 it is shown the two alternative fuzzy controllers: the upper one
implemented on a microcontroller (μC), while the lower one on a DSP. The x
value obtained from the controlled plant is converted by the ADC to X , which is
directly used by the fuzzy controller implemented on a microcontroller. However,
the DSP needs to convert this X value to another real value x′ using relation (3).
It is obvious, that generally 'xx ≠ , that is, the input value is not equal to the input
of the fuzzy controller. The fuzzy controller implemented on the DSP creates the
output value y′ , which is converted by another algorithm using relation (4) to Y
value. This Y value (obtained directly from the microcontroller based fuzzy
controller) is further converted to a real value y by DAC, and this y serves as a
control signal. Again, it can be stated that generally yy ≠' , that is, the control
signal is not equal to the output of the fuzzy controller. This gives a hint that
floating-point calculation might be useless, because of the presence of AD and DA
converters.

2.2 Error of the Integer Operators

Before diving into the deep water, it should be analyzed the behavior of the
integer multiplication and division. Let’s consider two arbitrary input values 1X ,

2X converted by the ADCs, and an output Y supplied by the controller which is
fed to the DAC. The output of the multiplication operation is

])''[(]'[21 MAXINTxxMAXINTyY ⋅⋅=⋅= , (5)

and using relation (3) the output is obtained in function of the inputs:

⎥⎦
⎤

⎢⎣
⎡ ⋅

=⎥⎦
⎤

⎢⎣
⎡ ⋅⋅=

MAXINT
XXMAXINT

MAXINT
X

MAXINT
XY 2121)(. (6)

Similar result is obtained for the integer division, when the output is

])'/'[(]'[21 MAXINTxxMAXINTyY ⋅=⋅= , (7)

and using relation (4) the output in function of the inputs is obtained:

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 46 –

⎥
⎦

⎤
⎢
⎣

⎡ ⋅
=⎥⎦

⎤
⎢⎣
⎡ ⋅=

2

121)/(
Y

MAXINTYMAXINT
MAXINT

Y
MAXINT

YY . (8)

It is important to note, that always the multiplication in the numerator must be
performed firstly, and the obtained 32 operand should be divided by the 16 bit
denominator (these operations are directly supported by the INTEL 80186
microcontroller using the MUL and DIV opcodes). The obtained result consists of
the integer part of the division and the 16 bit remainder. Because only the integer
part of the division must be fed to the DAC, there is no difference between using a
DSP with floating-point operators, or a microcontroller with integer operators.
Similar result is obtained when the weighted average is calculated (combination of
multiplication and division):

⎥⎦

⎤
⎢⎣

⎡ ⋅
+

⋅+⋅
=⋅= MAXINT

ba
xbxaMAXINTyY '']'[21 , (9)

⎥⎦
⎤

⎢⎣
⎡ ⋅

⋅+⋅
⋅⋅+⋅⋅

= MAXINT
MAXINTbMAXINTa

xMAXINTbxMAXINTaY '' 21 , (10)

⎥⎦
⎤

⎢⎣
⎡

+
⋅+⋅

=⎥⎦
⎤

⎢⎣
⎡

+
⋅⋅+⋅⋅

=
BA

XBXA
BA

MAXINTxBMAXINTxAY 2121 '' . (11)

It can be seen, that only for one multiplication, division or a combination of them
the error of the integer operations is not propagated through the DAC converter. In
the next subchapter, an investigation for the whole fuzzy controller is performed.

2.3 Error Propagation through the Fuzzy Controller

2.3.1 Fuzzyfication

One of the most common used fuzzy controller is the Mamdani type controller,
with MIN-MAX operators, and triangle or trapezoidal membership functions.
Let’s denote },,,{ i

x
i
x

i
x

i
x dcba the parameters of the i th input membership function,

while },,,{ j
y

j
y

j
y

j
y dcba the parameters of the j th output membership function. In

case of triangle membership function it can be simply considered i
x

i
x cb = or

j
y

j
y cb = . The simplest fuzzyfication is the singleton one, when the fuzzyfication

function is the identity function, e.g. f(y)=y. That means that input variables are
the singleton fuzzy inputs. The membership value)(xiμ of the input x
corresponding to a membership function defined by the },,,{ i

x
i
x

i
x

i
x dcba parameters

is obtained by relation (12):

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 47 –

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<<
−
−

≤≤

<
−
−

≥∨≤

=

i
x

i
xi

x
i
x

i
x

i
x

i
x

i
xi

x
i
x

i
x

i
x

i
x

i

dxc
cd
xd

dxb

bx
ab
ax

dxax

x

,

,1

,

,0

)(μ . (12)

Let’s consider an input x , where i
x

i
x bxa << , and calculate the)(xiμ

membership value for both floating-point and integer operators:

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

=⋅== MAXINT
ab
axMAXINTxXY

i
x

i
x

i
x])([)(μμ , (13)

⎥
⎦

⎤
⎢
⎣

⎡
−
⋅−

=⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅−⋅
⋅−⋅

== i
x

i
x

i
x

i
x

i
x

i
x

AB
MAXINTAXMAXINT

MAXINTaMAXINTb
MAXINTaMAXINTxXY)()(μ (14)

where]0.1,0.0[, ∈i
x

i
x ba and],0[, MAXINTBA i

x
i
x ∈ represent the real, respective

integer parameters of the i th input membership function. In similar way should
be calculated the)(xiμ membership value for inputs with i

x
i
x dxc << . It was

assumed in relation (14) that i
x

i
x AMAXINTa =⋅ and i

x
i
x BMAXINTb =⋅ , which is

not always true. In equation (3) the remainder of the division is not zero, that is,
i

RESx

i
xi

x a
MAXINT

Aa ⋅+= , where i
RESxa ⋅ is the remainder. In order to avoid any error,

i
x

i
x AMAXINTa =⋅ must be held. This might look a restriction at first sight, but

even in case of floating-point operands, the parameters of the membership
functions are chosen to 2-3 places of decimals. Even with this restriction the
parameters of the membership functions can be set for 655361 =+MAXINT
different value, which is enough for most of the applications. In conclusion, the
fuzzyfication and the calculation of the membership value do not cause additional
rounding error.

2.3.2 Inference

When the fuzzy controller has more then one input, generally the rule base is
constructed in such way that AND relation exist between the rules. This AND rule
is performed by the MIN operator in case of Mamdani type controller. That
means, the “firing” degree of the k th rule is given by the following relation:

])}(),({[)(21 MAXINTxxMINkY ⋅== μμλ , (15)

from where it can be concluded that there is no additional rounding error.

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 48 –

However, there are types of fuzzy controller where the AND relation is performed
by multiplication. In those cases it is not so simple to decide what rounding errors
one might have. Let’s take two inputs, one belonging to the first, the other one
belonging to the second membership function. Then the “firing” degree of the k th
rule is

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

⋅
−
−

=⋅⋅== MAXINT
AB
AX

AB
AXMAXINTxxkY

xx

x

xx

x
22

2
2

11

1
1

21])()([)(μμλ , (16)

where both the numerator and the denominator is multiplied by MAXINT . There
are two alternative solutions. An algorithm should be implemented in the first case
which is able to divide a 48 bit number by a 32 bit number:

⎥
⎦

⎤
⎢
⎣

⎡
−⋅−
⋅−⋅−

==
)()(

)()()(
2211

2
2

1
1

xxxx

xx

ABAB
MAXINTAXAXkY λ . (17)

Although, this kind of algorithm has no additional rounding error – the 48 bit is
divided by the 32 bit number, but only the integer part must be considered –, the
running time of the algorithm might be significant for some applications. Another
solution is also presented, which runs faster, but has rounding error. Let’s multiply
in equation (16) both the numerator and denominator with MAXINT :

⎥⎦
⎤

⎢⎣
⎡ ⋅

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
⋅−

==
MAXINT

XX
MAXINT

AB
MAXINTAX

AB
MAXINTAX

kY xx

x

xx

x

)()(
)()(

)(21
22

2
2

11

1
1

μμλ (18)

That means, membership values are calculated individually using relation (12),
then the obtained membership values are multiplied together and the resulted
product is divided by MAXINT . Although, this simplified algorithm is supported
by the MUL and DIV opcodes of the microcontroller, rounding error is
introduced. This is due to the fact, that the two members in the numerator are not
calculated precisely, only the integer part is taken into account (this is equivalent
with one replacing the round brackets with brackets in the numerator). The
rounding error can be estimated if one considers 2121 ,,, QQPP arbitrary integer
numbers, and calculates the product of their quotient:

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅+++=⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+
⋅

+
=⋅

2

2

1

1

1

1
2

2

2
121

2

2

1

1

2

2
2

1

1
1

2

222

1

111

2

2

1

1

P
R

P
R

P
RN

P
RNNN

P
Q

P
Q

P
RN

P
RN

P
RPN

P
RPN

P
Q

P
Q

, (19)

where 21, NN are the integer parts of the quotients and 21, RR are the remainders.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 49 –

It can be concluded from relation (19) that only the 21 NN ⋅ product is considered
in equation (18), the rest three terms are omitted. The following inequality is held
for the last three terms of relation (19):

121)1()1(
2

2

1

1

1

1
2

2

2
1 −⋅=+−+−<⋅+⋅+⋅ MAXINTMAXINTMAXINT

P
R

P
R

P
RN

P
RN , (20)

because both 21, RR are less than MAXINT . From relation (18) it follows that
additional rounding error occurs only if the following condition is held:

MAXINT
P
R

P
R

P
RN

P
RNR ≥⋅+⋅+⋅+

2

2

1

1

1

1
2

2

2
1μ , (21)

where MAXINTNXXR ⋅−⋅= μμ μμ)()(21 is the remainder of division of the
equation (18). From equation (18) and inequality (20) it can be concluded that the
rounding error is between 0 and 2 bits. 0 bit error occurs when inequality (21) is
not held, that is, when 21, RR remainders are far less than 21, PP and μR is also
minor. 2 bit error occurs only and only if equality

MAXINT
P
R

P
R

P
RN

P
RNR ⋅=⋅+⋅+⋅+ 2

2

2

1

1

1

1
2

2

2
1μ holds. However, this is a rear

situation. Thus, it can be concluded that the average additional rounding error is 1
bit. Moreover, this 1 bit rounding error can even be absorbed by the imprecision
of the DAC, taking into account that common DACs have only ±½ bit precision at
conversion. Important to note, that since the 2 least significant bits are not passed
to the 14 bit DAC, even the 2 bit error is not present at the output of the DAC.

MIN operator is used for the inference operator, as well, although there are fuzzy
controllers where the multiplication is used instead. In case of MIN operator the
height of the j th output membership function is defined by the minimum of the
“firing” degree of the rules containing the same antecedents:

])}(),({[MAXINTkiMINhY j
y ⋅== λλ , (22)

which does not introduce additional rounding error. However, this is not true
when multiplication is used instead of MIN operator. In case of multiplication the
height of the j th output membership function is defined by the product of the
“firing” degree of the rules containing the same antecedents:

])()([MAXINTkihY j
y ⋅⋅== λλ . (23)

There two possibilities: the)(),(ki λλ ”firing” degrees either have been calculated
with MIN operator using equation (15) or with multiplication operator as in case
of relation (16). In the former case

])}(),({)}(),({[2121 MAXINTxxMINxxMINhY kkii
j

y ⋅⋅== μμμμ , (24)

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 50 –

from where, without loosing the generality, it is considered that)()(21 xx ii μμ <
and)()(21 xx kk μμ > , from where it is obtained:

])()([21 MAXINTxxhY ki
j

y ⋅⋅== μμ . (25)

It is obvious, that equation (25) looks like equation (16), and thus, the same
conclusion can be drawn: the additional rounding error is between 0 and 2 bits,
and the average rounding error is 1 bit.

The situation is much complicated when the overall “firing” degree is calculated
by multiplication. In that case the height of the j th output membership function is

]))()(())()([(2121 MAXINTxxxxhY kkii
j

y ⋅⋅⋅⋅== μμμμ , (26)

from where it is obtained by substituting the membership values

⎥
⎦

⎤
⎢
⎣

⎡
⋅

−
−

⋅
−
−

⋅
−
−

⋅
−
−

== MAXINT
AB
AX

AB
AX

AB
AX

AB
AXhY

k
x

k
x

k
x

k
x

k
x

k
x

i
x

i
x

i
x

i
x

i
x

i
xj

y
2121 . (27)

One might construct an algorithm which is able to calculate the 80 bit product of
the numerator, which is divided by the 64 bit product of the denominator, in which
case there is no rounding error. However, such algorithms will slower the
inference of the fuzzy controller, which might not be suitable for some
applications. For this reason, the following solution is proposed:

⎥⎦
⎤

⎢⎣
⎡ ⋅

==
MAXINT

kihY j
y

)()(λλ , (28)

where)(),(ki λλ “firing” degrees are calculated using the equation (18). In this
case additional rounding error exists. In order to find out the magnitude of the
rounding error, let’s consider the worst case when both “firing” degrees have been
calculated with 2 bit error.

That means, the)()(ki λλ ⋅ product should be replaced by
4)(2)(2)()()2)(()2)((+++⋅=+⋅+ kikiki λλλλλλ in order to calculate the

precise value. This gives an additional rounding error if
MAXINTkiR ≥+++ 4)(2)(2 λλλ inequality holds, where

MAXINTNkiR ⋅−⋅= λλ λλ)()(represents the remainder of the division from
relation (28). The largest rounding error occurs when both “firing” degree is equal
to MAXINT , and 4−≥ MAXINTRλ inequality holds. Although this rounding
error of 5 bits seems very large and might not be acceptable, in common
applications never occur. However, 4 bit errors might still persist, and the average
rounding error is around 2 bits, taking into account that the)(),(ki λλ “firing”
degrees are calculated with 1 bit rounding error in average. This 2 bit error might
still bother the designer of a fuzzy controller. However, 14 bit DACs are used in a

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 51 –

large number of applications, in which case even 4 bit rounding error does not
appear at the output of the 14 bit DAC, since the 2 least significant bits are not
passed to the 14 bit DAC.

The aggregation of the output membership functions can be done in several ways
[4]-[6]. The two most popular aggregations are the MAX operator and the
bounded sum. When MAX operator is used for aggregating the output
membership function

⎥
⎦

⎤
⎢
⎣

⎡= }{ j
y

j
fuzzy hY MAX (29)

does not contain additional rounding error. So it is, when aggregation is calculated
with the bounded sum operator:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

≤

∑
MAXINTj

j
yfuzzy hY . (30)

Thus, it can be concluded that the inference does not introduce additional
rounding error if MIN operator is used. When product is used for the inference,
the additional rounding error introduced might be slightly significant only if 16 bit
DAC is used.

2.3.3 Defuzzyfication

Several defuzzyfication methods exists, some of them are more spread than the
others [4]-[6]. One of the most popular defuzzyfication method is the Mean of
Maximum (MOM), when the crisp output value is calculated as the mean of
maximum values of the aggregated output fuzzy set:

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

M

k

k
y

M
h

Y
1

, (31)

where k
yh denotes the heights of those points where the fuzzy set has one of its

maximum value. As it can be seen, there is no additional rounding error
introduced in this way. Thus, it can be concluded, that Mamdani type fuzzy
controller with MIN-MAX operators and MOM defuzzyfication gives the same
output as a DSP based fuzzy controller, even when 16 bit DAC is used.

Other well-known defuzzyfication methods are the Center of Area (COA) and
Center of Gravity (COG) methods. The only difference between these two
methods is that COA calculates the center of the aggregated fuzzy set, while COG
calculates the center of the gravity of the fuzzy sets taking part in the aggregation.
Thus, COG calculates twice the overlapped areas. In what follows, only the COG
is presented, COA has similar reasoning. The COG defuzzyfication method is

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 52 –

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−⋅

⋅−+−⋅
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ⋅
=

∑
∑

∑
∑

k

i
x

i
x

i
x

i
x

k

k
G

i
x

i
x

i
x

i
x

k

k
k

k
G

k

BCADk

XBCADk

T

XT
Y

)()(

)()(

λ

λ
 (32)

where k
GX represents the center of gravity of the k th modified output

membership function, while)()(i
x

i
x

i
x

i
x

k BCADkT −+−⋅= λ is the area of this
membership function. The use of an algorithm which calculates the 48 bit
numerator and divides it with the 32 bit denominator is recommended in order to
avoid significant rounding error. Analyzing only the division, it can be concluded
that there is no additional rounding error, because anyway only the integer part is
passed to the DAC. However, in the nominator the)(kλ values are not the real
ones, only the integer parts. This leads to an additional rounding error. In order to
try to estimate the error introduced by the COG defuzzyfication method, let’s
consider 2121 ,,, QQPP arbitrary integer numbers, and calculate the weighted
average of their quotient:

2

2

1

1
21

2

2
2

1

1
12211

2

2

1

1

2

2
2

1

1
1

)(

)(

P
R

P
RNN

P
RX

P
RXXNXN

P
Q

P
Q

P
QX

P
QX

+++

+++
=

+

+
. (33)

It can be observed, that in relation (32) only the members of the round brackets
from (33) is taken into account which leads to additional rounding error. However,
it is important to notice, that omitting the terms in the numerator will cause a
negative rounding error, while omitting the terms the denominator will cause a
positive rounding error. Thus, their counter effect will partly extinguish the
rounding error when the terms from both numerator and denominator are omitted.
Because there is no simple way to analytically determine the additional rounding
error caused by the COG calculated with (32), this error was determined
experimentally (for a detailed result see subchapter 4.2). Experimental results
show that the additional rounding error caused by COG is less than 4 bits. Here
again, it can be concluded that using only 14 bit DAC the error introduced by the
COG is extinguished by the DAC.

2.3.4 Sugeno Type Fuzzy Controller

Because the defuzzyfication has a significant calculation demand, another type of
fuzzy controller is also used, the so called Sugeno type fuzzy controller. In this
case the output of the rule is a polynomial function of the inputs, instead of a
fuzzy set. The output of the controller is the weighted average of the output of the
rules, where the weight is equal to the “firing” degree of the given rule. For
simplicity, the most common used Sugeno type controller is the zero order one, in

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 53 –

which case the output of the rule is a crisp value. Using MIN-MAX operators, the
output of the zero order Sugeno type fuzzy controller is given as

⎥
⎦

⎤
⎢
⎣

⎡
⋅

+
⋅+⋅

=⋅= MAXINT
xx

xxxxMAXINTyY
)()(
)()(]'[

21

2211

μμ
μμ , (34)

where – for simplicity – it was considered that there are only two inputs with two
rules and the “firing” degree of the first rule is equal to the membership value of
the first input, while the “firing” degree of the second one is equal to the
membership value of the second input. The output of the first rule is equal to the
first input, while the output of the second one is equal to the second input.
Considering relations (9)-(11), it can be calculated the output of the zero order
Sugeno type fuzzy controller as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

−
−

+
−
−

⋅
−
−

+⋅
−
−

= MAXINT

AB
AX

AB
AX

x
AB
AXx

AB
AX

Y

j
x

j
x

j
x

i
x

i
x

i
x

j
x

j
x

j
x

i
x

i
x

i
x

21

2
2

1
1

. (35)

After rearranging it

⎥
⎦

⎤
⎢
⎣

⎡
−⋅−+−⋅−

⋅−⋅−+⋅−⋅−
=

)()()()(
)()()()(

21

2211
i
x

i
x

j
x

j
x

j
x

i
x

i
x

i
x

j
x

j
x

j
x

i
x

ABAXABAX
XABAXXABAXY . (36)

The rounding error is zero when an algorithm is used which calculates the 48 bit
numerator and divides it with the 32 bit denominator. A simplified and faster way
is to use the MUL and DIV opcodes of the microcontroller. In order to reduce the
error, both the numerator and denominator should be multiplied by MAXINT .

⎥
⎦

⎤
⎢
⎣

⎡
+

⋅+⋅
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⋅−

+
−
⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
⋅−

+⋅
−
⋅−

=
)()(
)()(

)()(

)()(

21

2211

21

2
2

1
1

XX
XXXX

AB
MAXINTAX

AB
MAXINTAX

X
AB
MAXINTAXX

AB
MAXINTAX

Y

j
x

j
x

j
x

i
x

i
x

i
x

j
x

j
x

j
x

i
x

i
x

i
x

μμ
μμ (37)

In conclusion, the zero order Sugeno type fuzzy controller calculated in this
simple way (37) has a similar rounding error as the COG defuzzyfication method,
the only difference is, that in this case a 32 bit numerator is divided by 16 bit
denominator. Using only 14 bit DAC, this rounding error does not appear at the
output of the DAC.

An important remark is that the presented error propagation of the fuzzy controller
is true for 8 bit microcontroller as well, when 8 bit ADC and DACs are used. It
can be also concluded that Mamdami type fuzzy controller with MIN-MAX
operator and MOM defuzzyfication has no rounding error compared to the DSP

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 54 –

based one. This is also true for multiplication operator and COG defuzzyfication if
one uses only 14 bit DAC.

3 Implementation of the Embedded Fuzzy Controller

In this chapter an embedded fuzzy controller is presented which has been
implemented in an industrial computer equipped with a 16 bit microcontroller
(INTEL 80186 @ 16 MHz).

3.1 Storing the Parameters of the Membership Functions

Cheapness of an embedded system can be achieved by using low performance
microcontroller connected to low capacity memory. As it was pointed out in
subchapter 2.1, the parameters of the membership functions are stored as 16 bit
integers and so the variables, like inputs/outputs of the controller. Thus, the
memory requirement for storing the parameters and variables of the algorithm are
only half or even less than a quarter of the memory capacity needed for a DSP
based controller. This is due to the fact, that floating point values are usually
stored in 32 bit (“single” float) or 64 bit (“double” float), sometimes even 80 bit
(“extended” float) memory storage.

In the proposed fuzzy controller 3 type of membership functions can be used for
the input (trapezoidal, triangle, and the generalized bell curve) and 3 type for the
output (trapezoidal, triangle, and singleton). Four parameters need to be stored for
the trapezoidal membership function, let’s denote them with A , B , C , and D .
In the same way can be stored the parameters of the triangle membership function
(CB =). The generalized bell curve

() D

C
BX

Xf 2

1

1
−

+
= (38)

needs 3 parameters to be stored, where D – for the simplicity of the algorithm –
only 4 values can take {0.5; 1; 1.5; 2} coded on 4 different integer values. Finally,
only one value needs to be stored in B for the singleton.

For a general solution every membership function has 4 parameters, as it is shown
in Table 1.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 55 –

Table 1
Parameters of the membership functions

1ST PARAMETER 2ND PARAMETER 3RD PARAMETER 4TH PARAMETER

A B C D

Starting from the assumption that the 1st parameter of the trapezoidal (triangle)
membership function does not reach the MAXINT value, just analyzing the value
of the 1st parameter , it can be decided the type of the membership function stored
in a memory location (If the 1st parameter is equal to MAXINT a singleton is
defined, and can be identified with only one parameter). If parameter A is less
than MAXINT , a trapezoidal (triangle) membership function, otherwise a
generalized bell curve for the input, or singleton for the output is stored. The
number of the input and output membership function can be arbitrary large,
however, for the proposed fuzzy controller it has been limited to 4, respective to 2.
In the same way, the number of membership functions for an input/output can be
arbitrary large, but in the proposed fuzzy controller it has been limited to 8.
Although, the number of membership functions for an input/output is generally
even number, 8 is a power of two, which helps omitting multiplication when
accessing the memory location. Thus, the memory content, which stores the k th
parameter of j th membership function of i th input/output, is addressed in the
following way (C programming style notation):

LHkjiTkjiT addr /236]][][[+<<+<<+<<+= , (39)

where << denotes the left shift operator (which is equivalent with multiplying by
the power of 2), and LH / is set to zero for the lower byte, respective to one for
the higher byte of the integer value. Important remark is, that all indices start from
zero! addrT represents the absolute value of the first byte of the table, the rest
represents the offset of a parameter. The memory is organized in byte form (the
width of the data bus is one byte), and the memory capacity needed to store al the
parameters is 384688 =⋅⋅ bytes. Additional 6 bytes are needed to store the
number of the membership functions used for each input/output (if this value is set
to zero, the given input/output is not used!).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 56 –

1st par. 2nd par. 3rd par. 4th par.

i index

j index

k index

2nd membership function

3rd membership function

4th membership function

5th membership function

6th membership function

7th membership function

8th membership function

2nd input

2nd output

Taddr

Figure 3
The parameters of the membership functions stored in memory

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 57 –

3.2 Constructing the Algorithm

In this chapter some useful hints are presented to construct the algorithm. See [3]
for a simplified pseudo code of the implemented algorithm.

3.2.1 Fuzzyfication

For each input/output 2 bytes of memory location are used where the current
input/output value of the fuzzy controller can be stored. This needs additional 12
bytes of memory location. The fuzzyfication function used in the implementation
is the identity function, e.g. f(y)=y. That means, that input variables are not
fuzzyfied, instead they are employed in the inference process directly. Although,
the fuzzyfication process means only the fuzzyfication of each input variable, in
what follows the calculation of the degree of consistency between the input value
and the membership functions of the appropriate input is also included.

In case of trapezoidal (triangle) membership function the degree of consistency is
calculated as in (14), which needs one multiplication and one division. In order to
omit the multiplication, the following trick is used:

XXXXFFFFXMAXINT HH −<<=⋅−=⋅=⋅)16()110000(, (40)

thus, subtraction is used instead of multiplication. In the worst case only a division
is needed, otherwise the degree of consistency is either 0 or 1. In case of
generalized bell curve the precision of the division can be increased if both the
numerator and denominator are multiplied by 256 (shifted with one byte to the
left). For example, when 5.0=D the following relation gives an approximate
value:

C
BX

FFFFX
H

H

8||100

00)(
<<−

+
=μ . (41)

Storing the)(Xμ membership value needs two bytes, and current membership
values are stored in similar way as the parameters of the membership functions.

3.2.2 Inference

Compactness and effectiveness has taken with first priority when the codification
of the rules has been implemented. Each rule consists of two parts: one antecedent
part containing one or more antecedent term, and one consequent part having one
consequent term. Each antecedent/consequent term needs one byte for storage as it
can be seen in Figure 4. The end of the rule-base is indicated by a value greater
than 128 (the most significant bit is set to 1).

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 58 –

It should be noted that in the antecedent term the number of the membership
function (set) and the number of input is stored in such way, that the memory
location of the parameter can be calculated by masking the antecedent term, then
shifting to the left by 3 and adding the number of the parameter, as it is in (39). In
the same manner is coded the consequent term. In the antecedent term the AND
operator (MIN - minimum or MUL - multiplication) is also coded. In the
consequent term the implication operator (MIN - minimum or MUL -
multiplication) and the aggregation operator (MAX - maximum or SUM -
bounded sum) are coded. The number of bytes required for storing a single rule is
maximum 5, since to each input one antecedent term corresponds, while the rule
base requires in the worst case 20480 bytes (counted for 4096 rules). However, in
everyday applications the number of rules is limited to around 100.

3.2.3 Defuzzyfication

When singletons are defined at the output (Sugeno type fuzzy controller) the
defuzzyfication is simple and there is no need to describe in details. In case of
COG it has been used the trick, that the division can be avoided if the divider is
equal to MAXINT . This is due to the fact, that having a 32 bit dividend and 16 bit
divider, the latter equal to MAXINT , the result is the high word of the dividend.

Figure 4
Coding the antecedent (a) and consequent (b) term of the rule

0 0

Nr. of set

Nr. of input

AND operator:

(a)

0=MIN, 1=MUL

0 1

Nr. of set

Nr. of output

Aggregation operator:

(b)

0=MAX, 1=SUM

Implication operator:
0=MIN, 1=MUL

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 59 –

4 Results

4.1 Simulation Results

Most fuzzy engines are analyzed for three basic parameters: performance, code
size, and inference time. Performance involves the smoothness of output in
transition areas (i.e. where the input membership functions overlap). Performance
was examined by building two fuzzy controllers in a MATLAB environment, one
using floating point calculation, and the other one using only integer values. Both
fuzzy controllers have 2 inputs and one output, having the following rule base:

1. (In1==NB) & (In2==NB) => (Out=NB)
2. (In1==NB) & (In2==ZR) => (Out=NB)
3. (In1==NB) & (In2==PB) => (Out=ZR)
4. (In1==ZR) & (In2==NB) => (Out=NB)
5. (In1==ZR) & (In2==ZR) => (Out=ZR)
6. (In1==ZR) & (In2==PB) => (Out=PB)
7. (In1==PB) & (In2==NB) => (Out=ZR)
8. (In1==PB) & (In2==ZR) => (Out=PB)
9. (In1==PB) & (In2==PB) => (Out=PB)

The obtained surfaces can be seen in Figure 5-8. In Figure 5 Mamdani type fuzzy
controller is presented with MIN-MAX operator, trapezoidal membership
function, and COG defuzzyfication. There is no visible difference between the
DSP and μC based fuzzy controller, the average difference is only 1-2 bit when
using 16 bit DAC. In Figure 6 Mamdani type fuzzy controller is presented with
MUL-SUM operators, trapezoidal membership function, and COG
defuzzyfication. It can be observed that the surface of the μC based fuzzy
controller around zero is flatter than the surface of the DSP based controller when
16 bit DAC is used. This difference is due to the presence of the rounding error of
the μC based fuzzy controller.

Figure 5

Surface of the Mamdani type fuzzy controller with MIN-MAX operators, trapezoidal membership
functions, and COG defuzzyfication (DSP based on the left, μC based on the right)

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 60 –

Figure 6

Surface of the Mamdani type fuzzy controller with MUL-SUM operators, trapezoidal membership
functions, and COG defuzzyfication (DSP based on the left, μC based on the right)

Figure 7

Surface of the Sugeno type fuzzy controller with MIN-MAX operators, and trapezoidal membership
functions (DSP based on the left, μC based on the right)

Figure 8

Surface of the Mamdani type fuzzy controller with MIN-MAX operators, generalized bell curve
membership functions, and COG defuzzyfication (DSP based on the left, μC based on the right).

In Figure 7 the surfaces of the zero order Sugeno type fuzzy controller with MIN-MAX operators, and
trapezoidal membership functions are presented. As it can be seen there is no visible difference

between the DSP and μC based fuzzy controller, the average difference is only 1-2 bit when using 16
bit DAC. Finally, in Figure 8 the Mamdani type fuzzy controller with MIN-MAX operators,

generalized bell curve membership functions and COG defuzzyfication is shown. In this case, the
rounding error is significant, and is presented only for the sake of completeness, its usefulness might

be questionable for some applications.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 61 –

4.2 Experimental Results

The proposed embedded fuzzy controller was implemented in an industrial
computer (UNI-PLC-100) at Process Control Ltd. This industrial computer is
based on INTEL 80186 microcontroller at 16 MHz, and is equipped with analogue
and digital input/output boards. The front panel of the industrial computer is
presented in Figure 9.

Figure 9

The front panel of the industrial computer. Courtesy of the Process Control Ltd.

There are two possibilities to store the parameters of the membership functions
and the rule base: either entering manually with the help of the keyboard on the
front panel, or downloading through the serial line from a Personal Computer
(PC).

Because the whole fuzzy controller algorithm is implemented in assembler
language, the code size is very compact. The overall code is less than 10 KB. The
inference time is also impressive, taking into account that the microcontroller runs
only at 16 MHz. Some inference time for Mamdani and Sugeno type fuzzy
controller with MIN-MAX operators, trapezoidal membership functions and COG
defuzzyfication (only for the Mamdani) are presented in Table 2. It can be seen
that the total inference time (fuzzyfication+inference+defuzzyfication) is very
impressive for a fuzzy controller with 2 inputs, 3 membership functions (sets) per
input, 9 rules and COG defuzzyfication. It is only 1011 μs, which means that the
fuzzy controller is able almost every 1 ms to update the control signal.

Even though a DSP based fuzzy controller might be able to update the control
signal 100 times more frequently than the microcontroller based one, this is
useless if the controlled process is slow, and its state variables changes so slowly,
that there is no effect on the controlled process if one update the control signal
more frequently.

F. Farkas et al. Embedded Fuzzy Controller for Industrial Applications

 – 62 –

Table 2
Inference time with MIN-MAX operators

Nr. of
input

Nr. of
set/input

Nr. of
rules

Fuzzification
(trapezoidal) [μs]

Inference
[μs]

Defuzzyfication
Sugeno / COG [μs]

1 3 3 78 50 85 / 641
1 5 5 96 70 94 / 657
1 7 7 115 90 100 / 660
2 3 9 132 169 95 / 710
2 5 25 177 427 96 / 820
2 7 49 222 819 122 / 1070
3 3 27 168 593 127 / 1123

Some inference time for Mamdani and Sugeno type fuzzy controller with MUL-
SUM operators, trapezoidal membership functions and COG defuzzyfication (only
for the Mamdani) are presented in Table 3. The same remark can be mentioned
here, the inference time is small compared to the clock frequency of the
microcontroller.

Table 3
Inference time with MUL-SUM operators

Nr. of
input

Nr. of
set/input

Nr. of
rules

Fuzzification
(trapezoidal) [μs]

Inference
[μs]

Defuzzyfication
Sugeno / COG [μs]

1 3 3 78 53 85 / 910
1 5 5 96 74 94 / 918
1 7 7 115 96 100 / 922
2 3 9 132 197 100 / 1056
2 5 25 177 505 101 / 1348
2 7 49 222 971 122 / 1903
3 3 27 168 736 127 / 1900

Conclusions

In this article the implementation of an embedded fuzzy controller is proposed for
16 bit microcontroller with fast fuzzyfication-inference-defuzzyfication algorithm.
It has been demonstrated that because controllers receive information from the
process via ADCs and controls the process with the help of DACs the use of DSP
based fuzzy controller might not pay the effort for some type of fuzzy controller.

Generally, 16 or only 14 bit DACs are used at the output of a fuzzy controller, in
which case the precision of the floating point operation is lost and a DSP based
fuzzy controller seems better, faster and more accurate than it is in reality,
especially when the state variables of the controlled process change slowly. Thus,
the use of a μC based fuzzy controller with integer operations is a reasonable
compromise between performance and price.

Simulation and experimental results has been also presented which are supporting
the theoretical idea presented in this article.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 63 –

Acknowledgement

This paper was supported by the Hungarian N.Sc. Fund (OTKA No. T 042866)
for which the authors express their sincere gratitude.

References

[1] Ferenc Farkas, Szilárd Varga, Aleksei Zakharov: Investigation of DC servo
drives with fuzzy logic control, Czasopismo Techniczne 4E/1998,
Wydawnictwo Politechniki Krakowskiej, Poland, 1998, pp. 35-45

[2] Ferenc Farkas, Aleksei Zakharov, Szilárd Varga: Speed and position
controller for DC drives using fuzzy logic, Studies in Applied
Electromagnetics and Mechanics (Vol. 16), Applied Electromagnetics and
Computational technology II, Amsterdam, Netherlands, IOS Press, 2000,
pp. 213-220

[3] Ferenc Farkas: Implementation of fuzzy controller on 16 bit
microcontroller, Proceedings of IEEE International Conference on
Intelligent Engineering System (INES’99), Stara Lesna, Slovakia, 1-3
November 1999, pp. 567-572

[4] George J. Klir, Bo Yuan: Fuzzy sets and fuzzy logic - Theory and
applications, Prentice Hall, New Jersey, 1995

[5] Li-Xin Wang: Adaptive fuzzy systems and control - Design and stability
analysis, Prentice Hall, New Jersey, 1994

[6] Retter Gyula: Fuzzy, neurális, genetikus, kaotikus rendszerek – Bevezetés a
„lágy számítás” módszereibe, Invest Marketing Bt., Budapest, 2003

[7] Kai Michels: Fuzzy control of electric drive?, European Conference on
Power Electronics (EPE’97), Trondheim, Norway, 8-10 Sept, 1997, pp.
1.102-1.106

