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Abstract: In this paper we summarize some fundamental results on left-continuous
t-norms. First we study the nilpotent minimum and related operations in consider-
able details. This is the very first example of a left-continuous but not continuous
t-norm in the literature. Then we recall some recent extensions and construction
methods.
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1 Introduction

The concept of Fuzzy Logic (FL) was invented by Lotfi Zadeh [20] and pre-
sented as a way of processing data by allowing partial set membership rather
than only full or non-membership. This approach to set theory was not ap-
plied to engineering problems until the 70’s due to insufficient small-computer
capability prior to that time.

In the context of control problems (the most successful application area of
FL), fuzzy logic is a problem-solving methodology that provides a simple way
to arrive at a definite conclusion based upon vague, ambiguous, imprecise,
noisy, or missing input information. FL incorporates a simple, rule-based “IF
X AND Y THEN Z” approach to solving a control problem rather than
attempting to model a system mathematically.

When one considers fuzzy subsets of a universe, in order to generalize the
Boolean set-theoretical operations like intersection, union and complement, it
is quite natural to use interpretations of logic connectives ∧, ∨ and ¬, respec-
tively [12]. It is assumed that the conjunction ∧ is interpreted by a triangular
norm (t-norm for short), the disjunction ∨ is interpreted by a triangular
conorm (shortly: t-conorm), and the negation ¬ by a strong negation.

Although engineers have learned the basics of theoretical aspects of fuzzy
sets and logic, from time to time it is necessary to summarize recent devel-
opments even in such a fundamental subject. This is the main aim of the
present paper.

? This research has been supported in part by OTKA T046762.



Therefore, we focus on recent advances on an important and rather com-
plex subclass of t-norms: on left-continuous t-norms. The standard example
of a left-continuous t-norm is the nilpotent minimum [4,15]. Starting from
our more than ten years old algebraic ideas, their elegant geometric interpre-
tations make it possible to understand more on left-continuous t-norms with
strong induced negations, and construct a wide family of them. Studies on
properties of fuzzy logics based on left-continuous t-norms, and especially on
the nilpotent minimum (NM) have started only recently; see [1,14,13,18,19]
along this line.

2 Preliminaries

In this section we briefly recall some definitions and results will be used later.
For more details see [5,12].

A bijection ϕ of the unit interval onto itself preserving natural ordering
is called an automorphism of the unit interval. It is a continuous strictly
increasing function satisfying boundary conditions ϕ(0) = 0, ϕ(1) = 1.

A strong negation N is defined as a strictly decreasing, continuous function
N : [0, 1] → [0, 1] with boundary conditions N(0) = 1, N(1) = 0 such that N
is involutive (i.e., N(N(x)) = x holds for any x ∈ [0, 1]). A standard example
of a strong negation is given by Nst(x) = 1− x. Any strong negation N can
be represented as a ϕ -transform of the standard negation (see [17])

N(x) = ϕ−1(1− ϕ(x))

for some automorphism ϕ of the unit interval. In this case the strong negation
is denoted by Nϕ.

A t-norm T is defined as a symmetric, associative and nondecreasing
function T : [0, 1]2 → [0, 1] satisfying boundary condition T (1, x) = x for all
x ∈ [0, 1].

A t-conorm S is defined as a symmetric, associative and nondecreasing
function S : [0, 1]2 → [0, 1] satisfying boundary condition S(0, x) = x for all
x ∈ [0, 1].

For any given t-norm T and strong negation N a function S defined by
S(x, y) = N(T (N(x), N(y))) is a t-conorm, called the N -dual t-conorm of T .
In this case the triplet (T, S, N) is called a De Morgan triplet.

Well-accepted models for conjunction (AND), disjunction (OR), negation
(NOT) are given by t-norms, t-conorms, strong negations, respectively. In
this paper we will focus mainly on t-norms.

The definition of t-norms does not imply any kind of continuity. Neverthe-
less, such a property is desirable from theoretical as well as practical points
of view.

A t-norm T is continuous if for all convergent sequences {xn}n∈N, {yn}n∈N
we have

T
(

lim
n→∞

xn, lim
n→∞

yn

)
= lim

n→∞
T (xn, yn).



The structure of continuous t-norms is well known, see [12] for more de-
tails, especially Section 3.3 on ordinal sums.

3 Left-continuous t-norms

In many cases, weaker forms of continuity are sufficient to consider. For t-
norms, this property is lower semicontinuity [12, Section 1.3]. Since a t-norm
T is non-decreasing and commutative, it is lower semicontinuous if and only
if it is left-continuous in its first component. That is, if and only if for each
y ∈ [0, 1] and for all non-decreasing sequences {xn}n∈N we have

lim
n→∞

T (xn, y) = T
(

lim
n→∞

xn, y
)

.

If T is a left-continuous t-norm, the operation IT : [0, 1]2 → [0, 1] defined
by

IT (x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y} (1)

is called the residual implication (shortly: R-implication) generated by T .
An equivalent formulation of left-continuity of T is given by the following
property (x, y, z ∈ [0, 1]):

(R) T (x, y) ≤ z if and only if IT (x, z) ≥ y.

We emphasize that the formula (1) can be computed for any t-norm T ;
however, the resulting operation IT satisfies condition (R) if and only if the
t-norm T is left-continuous. An interesting underlying algebraic structure of
left-continuous t-norms is a commutative, residuated integral l-monoid, see
[6] for more details.

4 Nilpotent Minimum and Maximum

The first known example of a left-continuous but non-continuous t-norm is
the so-called nilpotent minimum [4] denoted as TnM and defined by

TnM(x, y) =
{

0 if x + y ≤ 1,
min(x, y) otherwise. . (2)

It can be understood as follows. We start from a t-norm (the minimum), and
re-define its value below and along the diagonal {(x, y) ∈ [0, 1] | x + y = 1}.
So, the question is natural: if we consider any t-norm T and “annihilate” its
original values below and along the mentioned diagonal, is the new operation
always a t-norm? The general answer is “no” (although the contrary was
“proved” in [15] where the same operation also appeared).

The definition (2) can be extended as follows. Suppose that ϕ is an auto-
morphism of the unit interval. Define a binary operation on [0, 1] by



TnM
ϕ (x, y) =

{
0 if ϕ(x) + ϕ(y) ≤ 1
min(x, y) if ϕ(x) + ϕ(y) > 1 . (3)

Thus defined TnM
ϕ is a t-norm and is called the ϕ-nilpotent minimum.

Clearly, the following equivalent form of TnM
ϕ can be obtained by using

the strong negation Nϕ generated by ϕ:

TnM
ϕ (x, y) =

{
min(x, y) if y > Nϕ(x)
0 otherwise .

Extension of TnM
ϕ for more than two arguments is easily obtained and is

given by TnM
ϕ (x1, . . . , xn) = mini=1,n{xi} if mini6=j{ϕ(xi) + ϕ(xj)} > 1, and

TnM
ϕ (x1, . . . , xn) = 0 otherwise.

The Nϕ-dual t-conorm of TnM
ϕ , called the ϕ-nilpotent maximum, is defined

by

SnM
ϕ (x, y) =

{
max(x, y) if ϕ(x) + ϕ(y) < 1
1 otherwise .

Clearly, (TnM
ϕ , SnM

ϕ , Nϕ) yields a De Morgan triple.

In the next theorem we list the most important properties of TnM
ϕ and

SnM
ϕ . These are easy to prove.

Theorem 1. Suppose that ϕ is an automorphism of the unit interval. The
t-norm TnM

ϕ and the t-conorm SnM
ϕ have the following properties:

(a) The law of contradiction holds for TnM
ϕ as follows:

TnM
ϕ (x,Nϕ(x)) = 0 ∀x ∈ [0, 1].

(b) The law of excluded middle holds for SnM
ϕ :

SnM
ϕ (x,Nϕ(x)) = 1 ∀x ∈ [0, 1].

(c) There exists a number α0 depending on ϕ such that 0 < α0 < 1 and TnM
ϕ

is idempotent on the interval ]α0, 1]:

TnM
ϕ (x, x) = x ∀x ∈]α0, 1].

(d) With the previously obtained α0, SnM
ϕ is idempotent on the interval [0, α0[:

SnM
ϕ (x, x) = x ∀x ∈ [0, α0[.

(e) There exists a subset Xϕ of the unit square such that (x, y) ∈ Xϕ if and
only if (y, x) ∈ Xϕ and the law of absorption holds on Xϕ as follows:

SnM
ϕ (x, TnM

ϕ (x, y)) = x ∀(x, y) ∈ Xϕ.



(f) There exists a subset Yϕ of the unit square such that (x, y) ∈ Yϕ if and
only if (y, x) ∈ Yϕ and the law of absorption holds on Yϕ as follows:

TnM
ϕ (x, SnM

ϕ (x, y)) = x ∀(x, y) ∈ Yϕ.

(g) If A, B are fuzzy subsets of the universe of discourse U and the α-cuts
are denoted by Aα, Bα, respectively (α ∈ [0, 1]), then we have

Aα ∩Bα = [TnM
ϕ (A,B)]α ∀α ∈]α0, 1]

and
Aα ∪Bα = [SnM

ϕ (A, B)]α ∀α ∈ [0, α0[,

where α0 is given in (c).
(h) TnM

ϕ is a left-continuous t-norm and SnM
ϕ is a right-continuous t-conorm.

4.1 Where does Nilpotent Minimum Come from?

Nilpotent minimum has been discovered not by chance. There is a study on
contrapositive symmetry of fuzzy implications [4]. A particular case of those
investigations yielded nilpotent minimum. Some of the related results will be
cited later in the present paper.

Let T be a left-continuous t-norm and N a strong negation. Consider the
residual implication IT generated by T , defined in (1).

Contrapositive symmetry of IT with respect to N (CPS(N) for short) is
a property that can be expressed by the following equality:

IT (x, y) = IT (N(y), N(x)) ∀x, y ∈ [0, 1]. (4)

Unfortunately, (4) is generally not satisfied for IT generated by a left-
continuous (even continuous) t-norm T . In [4] we proved the following result.

Theorem 2 ([4]). Suppose that T is a t-norm such that condition (R) is
satisfied, N is a strong negation. Then the following conditions are equivalent
(x, y, z ∈ [0, 1]).

(a) IT has contrapositive symmetry with respect to N ;
(b) IT (x, y) = N(T (x,N(y)));
(c) T (x, y) ≤ z if and only if T (x,N(z)) ≤ N(y).

In any of these cases we have

(d) N(x) = IT (x, 0),
(e) T (x, y) = 0 if and only if x ≤ N(y).

In the case of continuous t-norms we have the following unicity result (see
also [11]).



Theorem 3. Suppose that T is a continuous t-norm. Then IT has contra-
positive symmetry with respect to a strong negation N if and only if there
exists an automorphism ϕ of the unit interval such that

T (x, y) = ϕ−1(max{ϕ(x) + ϕ(y)− 1, 0}), (5)
N(x) = ϕ−1(1− ϕ(x)). (6)

In this case IT is given by

IT (x, y) = ϕ−1(min{1− ϕ(x) + ϕ(y), 1}). (7)

When IT is any R-implication and IT does not have contrapositive sym-
metry then we can associate another implication with IT . Suppose that T is
a t-norm which satisfies condition (R). Define a new implication associated
with IT as follows:

x →T y = max{IT (x, y), IT (N(y), N(x))}. (8)

If IT has contrapositive symmetry then x →T y = IT (x, y) = IT (N(y), N(x)).
Define also a binary operation ∗T by

x ∗T y = min{T (x, y), N [IT (y,N(x))]}. (9)

Obviously, ∗T = T if (4) is satisfied by I = IT . Even in the opposite case,
this operation ∗T is a fuzzy conjunction in a broad sense and has several nice
properties as we state in the next theorem.

Theorem 4. Suppose that T is a t-norm such that (R) is true, N is a strong
negation such that N(x) ≥ IT (x, 0) for all x ∈ [0, 1] and operations →T and
∗T are defined by (8) and (9), respectively. Then the following conditions are
satisfied:

(a) 1 ∗T y = y;
(b) x ∗T 1 = x;
(c) ∗T is nondecreasing in both arguments;
(d) x →T y ≥ z if and only if x ∗T z ≤ y.

In Table 1 we list most common t-norms and corresponding operations
IT , ∗T , →T , with N(x) = 1− x.

Therefore, nilpotent minimum can be obtained as the conjunction ∗min.
In general, ∗T is not a t-norm, not even commutative. Sufficient condition to
assure that ∗T is a t-norm is given in the next theorem.

Theorem 5. For a t-norm T and a strong negation N , if y > N(x) implies
T (x, y) ≤ N(IT (y,N(x))) then ∗T is also a t-norm.



T min(x, y) max(x + y − 1, 0) xy

IT

�
1, x ≤ y
y otherwise

min(1− x + y, 1) min
�
1,

y

x

�

∗T

�
min(x, y), x + y > 1
0, x + y ≤ 1

max(x + y − 1, 0) min

�
xy,

x + y − 1

y

�

→T

�
1, x ≤ y
max(1− x, y), x > y

min(1− x + y, 1) max

�
y

x
,
1− x

1− y

�

Table 1. Some t-norms and associated connectives

4.2 Implications Defined by Nilpotent Minimum and Maximum

Consider the De Morgan triple (TnM
ϕ , SnM

ϕ , Nϕ) with an automorphism ϕ of
the unit interval and define the corresponding S-implication:

I(x, y) = SnM
ϕ (Nϕ(x), y) (10)

=
{

1, x ≤ y
max(Nϕ(x), y), x > y

. (11)

One can easily prove that the R-implication defined by TnM
ϕ coincides

with the S-implication in (11).

Proposition 1. Let ϕ be any automorphism of the unit interval. Then we
have for all x, y ∈ [0, 1] that

ITnM
ϕ

(x, y) = SnM
ϕ (Nϕ(x), y).

As a trivial consequence, ITnM
ϕ

always has contrapositive symmetry with
respect to Nϕ.

Now we list the most important and attractive properties of ITnM
ϕ

. Their
richness is due to the fact that R- and S-implications coincide and thus ad-
vantageous features of both classes are combined.

1. ITnM
ϕ

(x, .) is non-decreasing

2. ITnM
ϕ

(., y) is non-increasing

3. ITnM
ϕ

(1, y) = y



4. ITnM
ϕ

(0, y) = 1

5. ITnM
ϕ

(x, 1) = 1

6. ITnM
ϕ

(x, y) = 1 if and only if x ≤ y

7. ITnM
ϕ

(x, y) = ITnM
ϕ

(Nϕ(y), Nϕ(x))

8. ITnM
ϕ

(x, 0) = Nϕ(x)

9. ITnM
ϕ

(x, ITnM
ϕ

(y, x)) = 1

10. ITnM
ϕ

(x, .) is right-continuous

11. ITnM
ϕ

(x, x) = 1

12. ITnM
ϕ

(x, ITnM
ϕ

(y, z)) = ITnM
ϕ

(y, ITnM
ϕ

(x, z)) = ITnM
ϕ

(TnM
ϕ (x, y), z)

13. TnM
ϕ (x, ITnM

ϕ
(x, y)) ≤ min(x, y)

14. ITnM
ϕ

(x, y) ≥ min(x, y)

Notice that ITnM
ϕ

can also be viewed as a QL-implication defined by

S(x, y) = SnM
ϕ (x, y),

N(x) = Nϕ(x)
T (x, y) = min(x, y)

in (4), as one can check easily by simple calculus.
Therefore, this QL-implication (which is, in fact, an S-implication and

an R-implication at the same time) also has contrapositive symmetry with
respect to Nϕ. Concerning this case, the following unicity result was proved
in [4].

Theorem 6 ([4]). Consider a QL-implication defined by maxϕ(Nϕ(x), T (x, y)),
where T is a t-norm. This implication has contrapositive symmetry with re-
spect to Nϕ if and only if T = min.

5 Extensions and Constructions

In this section we summarize some important results on left-continuous t-
norms obtained by Jenei and other researchers.



5.1 Left-continuous t-norms with Strong Induced Negations

The notions and some of the results in the above Theorem 2 were formulated
in a slightly more general framework in [7]. We restrict ourselves to the case
of left-continuous t-norms with strong induced negations; i.e., T is a left-
continuous t-norm and the function NT (x) = IT (x, 0) (the negation induced
by T ) is a strong negation.

Moreover, in a sense, a converse statement of Theorem 2 was also estab-
lished in [7]: If T is a left-continuous t-norm such that NT (x) = IT (x, 0) is a
strong negation, then (a), (b) and (c) necessarily hold with N = NT .

Already in [3], we studied the above algebraic property (c). Geometric
interpretations of properties (b) and (c) were given in [7] under the names
of rotation invariance and self-quasi inverse property, respectively. More ex-
actly, we have the following definition.

Definition 1. Let T : [0, 1]2 → [0, 1] be a symmetric and non-decreasing
function, and let N be a strong negation. We say that T admits the rotation
invariance property with respect to N if for all x, y, z ∈ [0, 1] we have

T (x, y) ≤ z if and only if T (y, N(z)) ≤ N(x).

In addition, suppose T is left-continuous. We say that T admits the self
quasi-inverse property w.r.t. N if for all x, y, z ∈ [0, 1] we have

IT (x, y) = z if and only if T (x,N(y)) = N(z).

For left-continuous t-norms, rotation invariance is exactly property (c) in
Theorem 2, while self quasi-inverse property is just a slightly reformulated
version of (b) there. Nevertheless, the following geometric interpretation was
given in [7]. If N is a the standard negation and we consider the transforma-
tion σ : [0, 1]3 → [0, 1]3 defined by σ(x, y, z) = (y, N(z), N(x)), then it can
be understood as a rotation of the unit cube with angle of 2π/3 around the
line connecting the points (0, 0, 1) and (1, 1, 0). Thus, the formula T (x, y) ≤ z
⇐⇒ T (y, N(z)) ≤ N(x) expresses that the part of the unit cube above the
graph of T remains invariant under σ. This is illustrated in the first part of
Figure 1.

The second part of Figure 1 is about the self quasi-inverse property which
can be described as follows (for quasi-inverses of decreasing functions see
[16]). For a left-continuous t-norm T , we define a function fx : [0, 1] → [0, 1]
as follows: fx(y) = NT (T (x, y)). It was proved in [7] that fx is its own quasi-
inverse if and only if T admits the self quasi-inverse property. Assume that N
is the standard negation. Then the geometric interpretation of the negation
is the reflection of the graph with respect to the line y = 1/2. Then, if it
is applied to the partial mapping T (x, ·), extend discontinuities of T (x, ·)
with vertical line segments. Then the obtained graph is invariant under the
reflection with respect to the diagonal {(x, y) ∈ [0, 1] | x + y = 1} of the unit
square.



Fig. 1. Rotation invariance property (left). Self quasi-inverse property (right).

5.2 Rotation Construction

Theorem 7 ([9]). Let N be a strong negation, t its unique fixed point and T
be a left-continuous t-norm without zero divisors. Let T1 be the linear trans-
formation of T into [t, 1]2. Let I+ = ]t, 1], I− = [0, t], and define a function
Trot : [0, 1]2 → [0, 1] by

Trot(x, y) =





T (x, y) if x, y ∈ I+,
N(IT1(x, N(y))) if x ∈ I+ and y ∈ I−,
N(IT1(y,N(x))) if x ∈ I− and y ∈ I+,
0 if x, y ∈ I−.

Then Trot is a left-continuous t-norm, and its induced negation is N .

When we start from the standard negation, the construction works as
follows: take any left-continuous t-norm without zero divisors, scale it down to
the square [1/2, 1]2, and finally rotate it with angle of 2π/3 in both directions
around the line connecting the points (0, 0, 1) and (1, 1, 0). This is illustrated
in Fig. 2.

Remark that there is another recent construction method of left-continuous
t-norms (called rotation-annihilation) developed in [10].

5.3 Annihilation

Let N be a strong negation (i.e., an involutive order reversing bijection of
the closed unit interval). Let T be a t-norm. Define a binary operation T(N) :
[0, 1]2 → [0, 1] as follows:

T(N)(x, y) =
{

T (x, y) if x > N(y)
0 otherwise. (12)



Fig. 2. TnM as the rotation of the min, with the standard negation

We say that T can be N -annihilated when T(N) is also a t-norm. So, the
question is: which t-norms can be N -annihilated? The above results show
that T = min is a positive example.

A t-norm T is said to be a trivial annihilation (with respect to the strong
negation N) if N(x) = IT (x, 0) holds for all x ∈ [0, 1]. It is easily seen that if
a continuous t-norm T is a trivial annihilation then T(N) = T .

Two t-norms T , T ′ are called N -similar if T(N) = T ′(N). Let T be a
continuous non-Archimedean t-norm, and 〈[a, b];T1〉 be a summand of T . We
say that this summand is in the center (w.r.t. the strong negation N) if
a = N(b).

Theorem 8 ([8]). (a) Let T be a continuous Archimedean t-norm. Then
T(N) is a t-norm if and only if T (x,N(x)) = 0 holds for all x ∈ [0, 1].

(b) Let T be a continuous non-Archimedean t-norm. Then T(N) is a t-norm
if and only if

• either T is N -similar to the minimum,
• or T is N -similar to a continuous t-norm which is defined by one trivial

annihilation summand in the center.

Interestingly enough, the nilpotent minimum can be obtained as the limit
of trivially annihilated continuous Archimedean t-norms, as the following
result states.

Theorem 9 ([8]). There exists a sequence of continuous Archimedean t-
norms Tk (k = 1, 2, . . .) such that

lim
k→∞

Tk(x, y) = TnM(x, y) (x, y ∈ [0, 1]).

Moreover, for all k, Tk is a trivial annihilation with respect to the standard
negation.



The nilpotent minimum was slightly extended in [2] by allowing a weak
negation instead of a strong one in the construction. Based on this extension,
monoidal t-norm based logics (MTL) were studied also in [2], together with
the involutive case (IMTL). Ordinal fuzzy logic, closely related to TnM, and
its application to preference modelling was considered in [1]. Properties and
applications of the TnM-based implication (called R0 implication there) were
published in [14]. Linked to [2], the equivalence of IMTL logic and NM logic
(i.e., nilpotent minimum based logic) was established in [13].

6 Conclusion

In this paper we have presented an overview of some fundamental results
on left-continuous t-norms. The origin and basic properties of the very first
left-continuous (and not continuous) t-norm called nilpotent minimum was
recalled in some details. Extensions and general construction methods for
left-continuous t-norms were also reviewed from the literature.
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une problématique de rangement, (PhD thesis, Université Paris-Dauphine,
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