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Abstract: Cooperation among agents is a very actual problem, which is a focus of lots 
papers published recently. The main purpose of cooperation is to improve each agent’s 
execution or whole execution of agents’ society and it depends strongly on concrete kinds 
of agents and a situation in which the agents are situated. Moreover, agents’ intelligence 
and their relationship also influence lots to cooperation process, mainly, when the agents’ 
society is huge or composed from a variety different agents. In this paper we focus to a 
problem how to create optimal coalitions among the given agents, where a coalition is a 
one of possible forms for cooperation and in which the common goal has highest priority 
for all the agents creating this coalition. Further, we will introduce methods, which are 
able to guarantee sub-optimal solutions by reducing a search space and estimate the 
domain, where the optimal solution possibly could be. In the end we will discuss about a 
problem of creating coalition with more parameters. 
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1 Introduction 

In a lot of recent papers an agent has been introduced. The agent may be software, 
hardware, robot or another, but one of the relevant differences between the agent 
approach and the well-known traditional ones is an agent’s ability to migrate from 
one place to another, to exchange its experiences with other ones in purpose to 
improve knowledge, skill, etc. The agent does not have to work only alone, in that 
case, the final result depends only on agent’s capabilities and given tasks, but 
moreover it can cooperate with another ones if it is able. Cooperation may be 
executed in a variety forms, depends on which kinds of the agent are and which 
capabilities each agent can possess. If the agents are radically different, then, their 
cooperation may be very complicate. From that reason it is necessary to restrict 
and clearly define exact areas where the agents can cooperate, main objects of 
cooperation, methods and a common protocol for agents’ communication. These 



B. Frankovič et al. Agents’ Coalitions Based on a Dynamic Programming Approach 

 – 6 – 

main features, however, are very important for formulation of agents’ cooperation, 
but unfortunately, in general we cannot specify them exactly in advance when we 
do not know which kinds of the agent will be implemented to and which functions 
each agent will have. Another essential property inside of agents’ cooperation is 
behavior of each agent. Agent’s behavior may be simply predictable – it means we 
can describe, approximate or explain it by exact mathematical formulations, or 
completely stochastic – belong to this category such agents as for example: a 
dealer in stock exchange, a manager of a factory, etc. Cooperation between 
various kinds of agents is also complicated problem, if is considered that the 
agents’ characteristics are very pragmatic. Every kind of the agent may have 
different capabilities of reasoning, inferring and evaluating, moreover, via 
combination with variety of knowledge or experiences’ basis, then, their behavior 
perhaps becomes unimaginable and the final result of their cooperation may grow 
to immeasurable dimensions [12], [13]. Another property of agent’s behavior, 
which possible influences a lot to cooperation process with another ones, is an 
agent’s capability to improve its knowledge’s basis during cooperation. They are 
known several kinds of such agents, for example: an adaptive agent, which is able 
to analyze its environment (including behavior of another agents working in the 
same environment) and act (or react) so as to achieve the best results for itself. 
Next kind of such agent is a learning agent, which, in a difference of the previous 
kind, sequentially learns from behaviors of another agents and improves its 
knowledge’s basis to enable to meet its goals. A quality of a learning process can 
be reflected via actions that the agent takes in cooperation process and their results 
the agent receives for them. A learning process may last as long as the received 
results satisfy or come near agent’s goals; even though, the process of learning is 
strongly dependent on duration of agents’ wiliness to join cooperation with 
another ones and intelligence of each agent [4], [7], [8]. The creation of coalition 
and coalition structure of agents is one of possible technical way for formulation 
agents’ cooperation. A coalition of agents essentially may be considered in the 
framework of multi-agent-system (MAS) as a group of such agents, which are 
willing to cooperate with all another members in this group and their common 
cooperative activities aim to reach the optimum of the given criteria, but on other 
hand, methods for cooperation are collected by these members via negotiation 
among themselves and they depend on concrete situations. The optimum, which 
the members in coalition try to reach, does not have to be always a global optimal 
solution, but in most cases only is optimal from any point of view (criterion) or a 
Nash optimal solution (Nash optimal solution is defined in [2], [9]). From this 
reason the coalition formation includes the activities as follows: 

- Generation of coalition structure: to create or distribute the agents to 
individual sets for special problem solution. 

- Solving the optimization problem in each coalition and a coalition 
structure, too. 

- Distribution of the obtained requirements to each coalition. 
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There exists a lot of possible ways to search for and create an optimal coalition – 
mainly via negotiation, or sequentially search all possible variants - and several of 
potential methods that we shall to use for finding the solution of such formulated 
problem are as for example: an application of automat theory, game theory, 
genetic algorithms or another. The application field of this approach may be a 
variety and very wide, it is applicable in resolving planning problems in 
manufacturing [9], [10]. Another applicable field is in marketing for enterprises, 
where to maximize own profit each manager (considered as one agent) can try to 
cooperate with another ones [6], [11]. Coalition in this case may have another 
effect to eliminate execution of agents not belonging to the same coalition. 
Finding a solution for the above-introduced problem has been the subject of many 
publications, which tried to obtain a feasible way to resolve a general problem of 
creating coalition [1], [2], [3]. As a final note, a cooperation problem in general 
has many open questions to research; one of them is how to create the optimal 
structure so as the agents cooperate together with the maximal final effects. The 
focus of this paper is to find an optimal coalition structure of agents, where each 
agent and coalition has an own value expressed by its criterion function. The 
optimal coalition structure must guarantee that the solution is within permitted 
bounds for each agent and moreover the performance of whole system (involving 
all agents’ performance) will be optimal. In this paper are presented some 
algorithms (computation methods), which are able to reduce a searching process 
in comparison with traditional approaches until the final solution will be found. 

2 General Formulations for Agents’ Coalition 

Initially, let us introduce some general notations that we will use in the rest of this 
paper. Afterwards we will show some characteristics related with agents’ 
coalitions and some basic approach, which are able to find the global optimal 
solution. 

2.1 General Notifications 

Let },...,{ 1 nAA  be a set of n agents, and I denote a set of index, I ={1,..,n}. In 

some parts of this paper possible occurs a remark Ii∈ , it means the agent 

iA from this set. For simplicities we shall use a note I  and a mark 

IK ⊆ denotes a subset created by the agents, whose index belongs to a set K . 

Let denote s
+ℜ as an s-dimensional set of nonnegative real values, which is used 

to assess an agent’s execution. Each option in this set represents one parameter of 
agent’s execution, e.g. cost, payoff, effectiveness, etc. 
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Definition 1: An agent’s value is a function mapping from a set of all possible 
results that the agent can achieve (independently or via cooperation) to s

+ℜ . 

Further notations are: for ∀ IKIi ⊆∈ , , 

– *
iq  denotes a value if the agent iA works independently, 

– K
iq denotes a value if the agent iA  joins coalition K , 

– if  denotes an expected value of the agent iA . 

if = *
iq  if the agent iA  works independently, or 

      = K
iq if the agent iA  joins the coalition K . 

– KF denotes a value of a set of agents IK ⊆ and is defined as: 

∑
∈

=
Ki

iiK fcF * . 

where Ki∈∀ , ic is a parameter, which is used to express the priority of the 

agent iA in this society (since some agents might be more important than other 
ones depending on concrete applications, therefore these parameters might be 

various) and constc
k

i
i =∑

=1
. Generally, all the agents have the same priority; 

therefore, the function KF can be defined as: 

∑
∈

=
Ki

iK fF  (1) 

In this case ],1[ ni∈∀ , 1=ic . 

In practice, each agent can know what it will get after joining any coalition until 
the discussion with other ones (about what every member within this coalition has 
to do regarding their possibilities, aims and willingness, and consequently which 
results each member can achieve) within this coalition finishes. As a result, in 
order to know all the values K

iq the agents need another phase to negotiate with 
other ones about each possible coalition. It is clear that this process requires very 
exhausted work, and that is not just a focus of this paper, therefore to simplify let 
assume that these values are defined in advance or taken from historic database. 
Certainly, the more these values are defined, the larger is a probability to achieve 
the optimal solution. If the agents’ society is too large, and that results an agent 



Acta Polytechnica Hungarica Vol. 5, No. 2, 2008 

 – 9 – 

cannot explore every possible coalition, in such case all the values Ki
K
iq ∈| , where 

the coalition K has not been explored, are defined to be zero. In the next part we 
will show some important definitions and characteristics of the agents’ coalition. 

2.2 General Definitions and Properties of Agents’ Coalitions 

Initially, let consider a following important property of the optimal coalition: for 
each set IK ⊆  is valid that the set K  is an optimal coalition if every 
experiment trying to separate the set K  to a set of smaller coalitions will decrease 
a value KF (defined by an equation (1). This property is derived from the 
assumption, in which the agents are always willing to remain in the large 
coalition, if they know that breaking this one to smaller sets will bring the whole 
party worse results. 

Definition 2: A set IK ⊆  is an optimal coalition if 

∑
∈Ki

if ≥ ∑∑
∈j jK Ki

if , (2) 

Where is valid K = j
j

K∪ . 

Every agent, in fact, is an optimal coalition itself, because it is impossible to 
divide it to smaller subsets. From definition 1 the following theorem is deduced. 

Theorem 1: Let be any structure of a set I for which the value IF  achieves 
maximum, then, such structure must be only composed from the optimal 
coalitions. 

Proof: Let a set I be divided to m subsets like coalitions. 

I= j

m

j
K

1=
∪ , and ],1[ mji ∈≠∀  is valid ji KK ∩ ={∅ }. 

If any subset ],1[ miK ∈  is not an optimal coalition, then, from the definition 1 it 

results: here must exist such a structure for organization a set iK , iK = i
r

r
K∪ , in 

which a value 
iKF is bigger than an actual value. Afterwards a structure composed 

as I ={ j

m

ijj
K

≠= ,1
∪ } i

r
r

K∪  will have a bigger value than the actual one. 

Confrontation. ڤ 

Further, we will introduce some notations that are useful for later applications. 
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Definition 3: Let iS denote a set of coalitions, which can bring the agent iA  at 
least the same or better results than when it works independently. 

iS ={K⊆ I | K
iq ≥ *

iq } (3) 

In order to understand it let’s take a simple example: 

Example 1: Let be three agents { 1A , 2A , 3A } and the values that each agent 
might get by joining coalitions or working alone be given in the Table 1. 

On a basis of the values shown in this table and according to the definition 3 the 
agent 1A will prefer to choose coalitions (except itself): { 1A , 2A } and 

{ 1A , 2A , 3A }, since in these ones it could gain more than when it works alone 

( 1f =6 and 8 in comparison with 1f =3 when it works alone), then the set 1S  will 

be {{1}, {1,2}, {1,2,3}}. Similarly it might be possible to calculate that 2S ={{2}, 

{1,2,3}} and 3S ={{3}, {2,3}, {1,2,3}}. 

Table 1 
Expected values - example with three agents 

 
 
 
 
 
 
 
 
Definition 4: Let KS denote a set of coalitions, which can bring at least the same 
or better results for all agents belonging to a set K than when they work 
independently. 

KS ={Ko⊆ I |∀ i∈K, Ko
iq ≥ *

iq } (4) 

Example 2: In the previous example, if a set K ={1,2}, then, }2,1{S ={1,2,3}, etc. 

From these definitions the following results are derived: 

Lemma 1: 

1. If K1⊂K2, then, 
1KS ⊃

2KS . 

2. 
21 KKS ∪ ⊂

21 KK SS ∩ . 

3. 
21 KK SS ∩ ⊂

21 KKS ∩ . 

 1f  2f  3f  

{A1},{A2},{A3} 3 8 9 
{A1,A2},{A3} 6 7 9 
{A1,A3},{A2} 2 8 5 
{A1},{A2,A3} 3 7 12 
{A1,A2,A3} 8 12 9 
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K ∈ i
Ki

S
∈
∩  (5) 

Proof: (see in [1]) 

Consequences 1: 

1. 
21 KKS ∪ ⊂

21 KKS ∩  

2. 
mKKS ∪∪...1
⊂

1KS ∩…∩
mKS , 

 where mKK ,...,1 I⊆ . 

Proof: 

1. The consequence 1.1 is followed directly from the lemmas 1.2 and 1.3. 

2. The consequence 1.2 could be proved by successively applying the lemma 
1.2. 

         
mKKS ∪∪...1

=
mm KKKS ∪∪ )...( 11 −
⊂

mm KKK SS ∩∪ )...( 11 −
…⊂

1KS ∩…∩
mKS . 

Certainly, we want to attempt to implement all possible features of the real agent’s 
behavior into our model, however, a mathematical model cannot copy exactly and 
completely agent’s behavior, but one property has to be considered and it is also 
very often happened in practice. It is that, every agent is willing to join coalition 
with another ones if and only if this coalition brings it at least the same or better 
results than when it works independently. Furthermore, a coalition might exist if 
all the agents creating this one are willing to join. 

Assumption 1: the agent iA  joins coalition K ⇔ ( K
iq ≥ *

iq ). 

Assumption 2: a set K ⊆ I is an acceptable coalition ⇔ Ki∈∀ : ( K
iq ≥ *

iq ) 

For simplicities we will assume that these properties will be valid in the whole rest 
of this paper. With these assumptions it is possible to deduce a following theorem. 

Theorem 2: A set K ⊆ I is an acceptable coalition (does not have to be optimal) 
if and only if: 

Proof: 

1. If K is an acceptable coalition, it means ∀ ∈i K  it is valid: K
iq ≥ *

iq . 

Afterwards, K ∈ iS  for ∀ ∈i K . A result from this is K ∈{ i
Ki

S
∈
∩ }. 

2. If K ∈ i
Ki

S
∈
∩ , it means that the coalition K  can bring at least the same or 

better results for all the agents belonging to this coalition ⇒  a set K  can 
be an acceptable coalition (does not have to be optimal). ڤ 
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Consequence 2: If 
i

i

S
miI

α
α ,..,1, =∈
∩ ={∅ }, then these agents 

1α
A ,…,

m
Aα cannot be 

in the same acceptable coalition. ڤ 

The proof is derived directly from the theorem 2. 

Example 3: In the previous example, since 321 SSS ∩∩ ={1,2,3}, therefore, the 
set {1,2,3} is a unique possible coalition that all the agents are willing to join. 

The main task in this paper that we want to resolve is: to find such a structure of a 
set I to maximize a function IF  defined by (1). Another way to say: we want to 

find such a structure I= i

m

i
K

1=
∪ , where ∀  i, j∈[1,m] iK ∩ jK ={∅ } and 

IF =∑
=

n

i
if

1
=max.  To resolve completely this task and to find a maximal value of 

a function IF  it is necessary to search the whole space of all possible structures of 
a set I . The complex searching of all possible structures of a set I  can be 
executed in a variety ways, but a complexity of those approaches is the same for 
every method, because every variant have to be examined and for arbitrary n the 
problem is known to be NP-hard, thus, it is necessary to turn to heuristic methods 
to search, which are computationally efficient but which might guarantee only 
sub-optimal solutions from any point of view, for example: tabu search, branch 
and bound, genetic algorithms, etc. Generally, a quality of those methods strongly 
depends on how long the process has repeated and a quality of an initial choice. 
On the other hand, each agent presents one independent object with own goals and 
intelligence, and consequently the agent’s execution (or choice) will aim to the 
best results for the agent; therefore, naturally each agent might poll such 
coalitions, in which its benefit is the best from its point of view. 

Furthermore, next property of such formulated problem that is easy to verify is 
that the mentioned problem might be resolved by a recursive approach, 
sequentially for cases with 1 to n agents, where each new agent will try to join any 
formulated coalition, afterwards a result of the criterion function IF will be 
compared with the best one so far. This approach can guarantee the complex 
searching of the whole space and the final solution certainly will be the globally 
optimal one. But, as we have mentioned above, agents’ choices might influence 
the searching process a lot, because on a basis of these choices lots of coalitions 
might not be necessary to be examined and searching space could be reduced too 
much. In the following section we shall introduce an approach based on a 
principle supporting complex searching and concurrently regarding agents’ 
choices. 
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3 A General Dynamic Programming Scheme 

For a set IK ⊆ it is assumed: a set K can be decomposed to an amount of 
independent nonempty subsets. j

mj
KK

,..,1=
= ∪ , where, ∀  i, j∈[1,m], 

ji KK ∩ ={∅ }. Certainly m≤ || K . Let us define a function KQ as follows: 

=KQ }{maxarg
}{ ∑∑

∈j j
j K Ki

iK
f  (6) 

Or by other words, KQ is a maximal sum of all agents’ expected values, which are 
creating the set K , among all possible structures of the set K . 

Furthermore, by comparison an equation (1) and (6) it is possible to derive that 

KQ = }max{ KF for ∀ IK ⊆ . Therefore, the main task mentioned in the 

previous section might be transformed to the task to find a value IQ and such a 
structure, which achieves this value. 

Because each agent has only two alternatives: to work alone or to join any 
coalition. From this reason we shall present a general dynamic programming 
method for resolving problem IQ . We consider n stages, where in each stage one 
agent is added and after n-th stage the whole problem will be resolved. For 
j=1,..,n-1 we denote =jI {1,..,j}, where every set jI  means we will search an 

optimal solution (an optimal structure) for j agents { 1A ,…, jA }, which 

guarantees a maximal value 
jIF (=

jIQ ). Since each set jI can be obtained by 

adding the agent jA to the set 1−jI , we might have the following recursive 

equation: 

)}(),{(maxarg \
*

11 jKKIjIKI QQqQQ
jjj ∪++=
−−

 (7) 

Where 1−⊆ jIK and j={1,..,n-1}, =0I {∅ }. 

Further, for each j={1,..,n-1}, if we denote 

}{maxarg \1
1

jKKIIKj QQh
j

j
∪⊆

+=
−

−

 (8) 

The equation (7) could be rewritten as: 

}),max{( *
1 jjII hqQQ

jj
+=

−
 (9) 
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On the basis of these recursive equations we can, in principle, find an optimal 
solution for IQ by the following backward scheme: 

- Sub-problem in stage n: Search a value nh in (8) by examining all possible 

coalitions that the agent nA is willing to join with using theorem 2 and 

consequence 2. After that, replace them to (9) to obtain a value IQ . 

- Sub-problem in stage n-1: Analogously as above: it is necessary to examine 
those coalitions that the agent 1−nA is willing to join and do not involve the 

agent nA , etc. 

- Sub-problem in stage 1: *
11

qQ I = . 

Now we get: 

Theorem 3: By solving sub-problem in n stages we will obtain the optimal 
structure for the given set I  and a maximal value of IF . 

Proof: (outline) Since by adding an agent nA to a set 1−nI we obtain the set I , 
and from these equations (7), (8) it is easy to verify that calculating of a value 

IQ can be made from the known values in the previous stages from the first to (n-
1), otherwise, these values have been calculated for optimal cases, in which a 
structure of each subset was optimal. Consequently, a value IQ from an equation 
(9) has to be optimal one. 

From an equation (8) it is possible to contend that the main complication in the 
general method presented above is that the process of calculating a function 

]1,..,1[ −∈ njh is huge and complicated, essentially with large values of n. Because, 

theoretically, the new added agent is able to join every coalition (if there are 

1,..,1 −= njj  agents in the previous set, then, the new 1+j  agent could join one of 
j2  possible coalitions), therefore dimensions of this problem will grow with an 

exponential speed when n is increased. 

To improve the previous approach to computable dimensions, the first step that we 
need to do is to reduce an amount of coalitions that the new added agent can join. 
To do it, it is necessary to use agents’ intelligence and their attributes. Because 
each agent can own different mechanisms to poll coalitions that it is willing to 
join. The second step is: applying theorem 2 and consequent 2 to remove 
coalitions that the new added agent cannot join and leave only the acceptable 
coalitions, which are accepted by all the agents creating these ones. Afterward, an 
equation (8) could be resolvable. Certainly, the results of the first step will hardly 
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depend on each agent’s choices even though, these choices might be executed by 
different ways and they also might be dependent on another agents’ decisions too. 
In the next section we will discuss this problem. 

4 Creating the Optimal Structure by Sequential 
Conceding 

As we have mentioned above, reducing an amount of potential coalitions that the 
new added agent could join is a necessary thing, which enables to overcome huge 
complexities of an equation (8). We assume that, these expected values ( IK

Iiq ⊆
∈ ), 

which each agent is able to achieve by joining coalition with another ones, are 
random and known for all the agents creating this coalition. Moreover, any 
continue function does not exist, which is able to approximate exactly these values 
(because if it exists, this problem could be solved by different ways as for 
example: searching global maximum or minimum of any multi-parameters’ 
function). Furthermore, for simplicities we will omit a negotiation part to achieve 
these values IK

Iiq ⊆
∈ and assume that they are known. 

The first step mentioned in the Section 3: to reduce an amount of coalitions that 
the new added agent could join, might be made in the following principal: 

Because for each agent, a coalition, in which its expected value is maximal of all, 
will have the highest priority in its choice. But, on other hand, with such choice of 
each agent, they will with a very high probability never reach an optimal structure. 
Therefore, each agent will have to concede, however, a new question: which agent 
has to concede and how much is a further complicated problem, because the agent 
could prefer one coalition before another from its criteria or on the basis of its 
deliberations it might consider its choices as the best for its execution. In this 
paper we shall propose three methods, in which the agents are assumed to have the 
same aim to achieve the global optimal executions of the whole agents’ society. 
Before that, we have to define some important specifications: 

Definition 5: for each agent Ii∈ , let }{max0 K
iIKi qv

⊆
= be a maximal expected 

value that the agent iA  can receive and for 00 iv≤<∀ α  let 
i
αΩ = }|{ α≥⊆ K

iqIK be a set of coalitions in which the expected value for 

the agent iA  is more or equal than α . After these preparations we can now 
formulate our algorithms: 

First, each agent states its aim equal a maximal value that it can achieve in all 
coalitions and collects only these coalitions in which its expected value is more or 
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equal this value. After that, the agents try together to find a solution among these 
sets, if they cannot find any solution, all the agents sequentially have to concede 
by decreasing its aim. In an algorithm 1, all the agents sequentially decrease their 
aim but with the same ratio (ratio between a new aim and present one), in an 
algorithm 2, a difference between a new aim and the present one is the same for 
every agent. In an algorithm 3, we consider that in each turn only one agent 
decreases its aim and it always collects such coalitions, in which its expected 
value is maximal between remained ones. 

An algorithm 1: (based on an equal ratio of conceding) 

Step 1: 

a) ∀ Ii∈ Choose coefficient c=1 and 0* ii vc=α . 

b) ∀ Ii∈ Search a set i
iα

Ω . 

Step 2: 

a) Using a dynamic programming scheme presented in section 3 to search a 
sub-optimal solution among sets i

iα
Ω , Ii∈ . 

b) If a solution is not found, decrease a coefficient c and repeat a step 1. 

c) If any solution is found, this process is stopped.  

To effectively resolve a step 1.b, at first each agent sorts out all possible coalitions 
accordingly a value K

iq , IK ⊆ (since each agent could join 12 −n  possible 

coalitions, then, this procedure has a complexity )2log*)1(*2( 1 −≅ − nO n ). 
Afterwards, in every time when the coefficient c is decreased, each agent can 
choose immediately from its sorted coalitions feasible ones, which satisfy a 
condition for creating a set i

αΩ , ∀ Ii∈ . To solve a step 2.a we could apply the 
approach based on a dynamic programming scheme presented in a Section 3. 

Similarly, we shall propose further algorithm based on equal regressions of each 
agent in a searching process. 

An algorithm 2: (based on an equal regression of conceding) 

Step 1: 

a) ∀ Ii∈ Choose coefficient c=0 and cvii −= 0α . 

b) ∀ Ii∈ Search a set i
iα

Ω . 

Step 2: 

a) Search a sub-optimal solution among sets i
iα

Ω , Ii∈ . 
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b) If a solution is not found, increase a coefficient c and repeat a step 1. 

c) If any solution is found, this process is stopped. 

Differences between these both algorithms are not very significant; the results 
obtained by applying them depend on values K

iq , for example: when values 
K
iq are significantly different (a value IK

K
iq ⊆)var( is high) for every Ii∈ , then, 

the first algorithm could achieve better results than the second one, but in another 
case when these values are nearly similar, the results could be contrary. To 
improve these algorithms, we shall present the third one, which is modified from 
the previous methods and differs from them in such point that in each turn only 
one agent tries to decrease its aim and how much this agent decreases, it depends 
on its decision. Certainly, if each agent chooses a different way to decide how 
much it wants to concede, then, this process might be very interesting and 
immediately occur lots of problems necessary to resolve. For short framework of 
this paper we should omit these related problems as agent’s decision, negotiation 
or further problems as selecting agent to concede, etc. 

In the next method, each agent sequentially will modify its aim in turn and we 
assume that each will choose immediately the best coalitions from a set of the 
remained ones. For the next algorithm we define some notations: 

Let iΨ = i
j

j
i

λϕ 1}{ =  be a sorted set of values K
iq for the agent iA (from top to 

down). iλ is a sum of possible coalitions that the agent iA could join - 

)max( iλ = 12 −n . Certainly it is valid: Ii∈∀ , 1
iϕ = 0

iv . Instead of coefficient c  

we will use only iα for simplicity. 

After preparations we can present the following algorithm: 

An algorithm 3: (modified from the algorithm 1 and 2) 

Step 1: 

a) ∀ Ii∈ Choose coefficient 01
iii v==ϕα . 

b) ∀ Ii∈ Search a set i
iα

Ω . 

Step 2: 

    1=i . 

a) Search a sub-optimal solution among sets j
jαΩ , for all Ij∈ . 

b) If a solution is not found, 
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1. decrease a coefficient iα to: =iα  }|max{ i
k
i

k
i αϕϕ < , 

2. update a set i
iα

Ω , 

3. repeat a step 2.a, 

4. if ni < , then 1+= ii , else 1=i . 

c) If any solution is found, this process is stopped. 

Comparison between these algorithms is implemented in an illustrate example 
with 11 agents and shown in following graphs and a number of steps of the 
searching process to achieve the final solution is depicted in a Table 2. 

Results with 11 agents
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Figure 1 

Results of searching max( IF ) with 11 agents 

Notation: in figure 1 and table 2: com = complex searching, GA = genetic 
algorithm, A1 = algorithm 1, A2 = algorithm 2, A3 = algorithm 3. 

In these experiments we have bounded that each value K
iq lies in an interval 

[0,100] and is randomly generated. From the obtained results it is possible to 
conclude that the algorithm presented above have achieved average very good 
results (average 95 percent of the optimal results, in some cases they even 
achieved the optimal results) and for a short time (see Table 2). The difference 
between these algorithms is not so significant, in some examples one algorithm 
could achieve better results than another ones, but both algorithms 1 and 2 are 
more appropriate for parallel working, since after each round each agent could 
immediately calculate its value iα  and does not have to wait until its turn. On the 

other hand, for an arbitrary set of values { K
iq }, the algorithm 3 generally 

produced less complicated sets ni
i

i ,..,1| =Ωα than both first ones, since after each 

turn only a small number of possible coalitions is added, not massively as in the 



Acta Polytechnica Hungarica Vol. 5, No. 2, 2008 

 – 19 – 

algorithms 1 and 2. Moreover, the algorithm 3 could be extended and modified for 
the case when each agent should choose a different way to calculate its value iα . 
In this graph, the results of complex searching always have the maximal values. 
Another problem that may appear in this graph is that in several points is only one 
pattern; it means more results have the same value in this point. 

In Table 2 is shown how many steps the searching program has repeated until the 
final result is found. These values may be used also to appoint to a time-
complexity of each method to achieve the final results. For a genetic algorithm we 
fixed that the program will finish after certain number of steps. 

Table 2 
A case with 11 agents - complexity for searching max( IF ) 

Order Complex 
searching GA A1 A2 A3 

1 859868 8500 134 173 238 
2 900848 8500 112 113 189 
3 1025352 8500 359 190 522 
4 839476 8500 76 47 135 
5 864455 8500 144 125 228 
6 904389 8000 86 77 154 
7 926803 8000 57 36 89 
8 865845 8000 12 24 20 
9 886832 8000 164 103 287 
10 1112554 8000 152 168 260 

The experiment has been repeated with more agents and from the obtained results 
we can see that: with a small number of agents (up to 8 agents) the complex 
searching approach can be applied, because a complexity is acceptable and all 
another reducing algorithms give sufficiently large differences. For cases with 
more agents (9 agents and more), all reducing methods have an omissible low 
complexity in comparison with using the complex searching approach or a genetic 
algorithm; nevertheless the results of these algorithms achieve just about the best 
results obtained by searching complex space. Better results we can reach by 
modifying the step 2.b.1 in the algorithm 3, instead of adding only coalitions, 
which have a value k

iϕ  or K
iq respectively immediately after a coefficient iα , 

we can attach more ones at once. By this way a number of satisfied solutions will 
increase and a chance to reach the best solution will be bigger. Otherwise, for a 
case with 11 agents, a number of steps that the searching program repeated are 
about 1 million and this number will continuously increase with an exponential 
speed, therefore, from a practical point of view it is not possible to apply the 
complex searching method but more effectively is to use one of some presented 
reducing mechanisms, which give also average optimal results. 
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Conclusions 

In this paper we have introduced one of especially actual problems that is how to 
create an optimal structure of agents’ coalitions. Characteristics and conditions 
related creation coalitions have been pointed and proved. Further, we have 
introduced some methods, which are addressed to find sub-optimal solutions. Our 
methods have been formulated on a basis of modifying dynamic programming 
scheme for searching the global optimal solution and on other hand we have 
considered also to use agents’ intelligence and their properties of independent 
deliberation to reduce useless coalitions, which are omitted in a searching process. 
These algorithms that have been presented here, then, were implemented for 
concrete examples and compared with another heuristic algorithm as genetic 
algorithm or the worst case when all variants are examined. From some declared 
problems in a Section 4 we see several features, that we should continue to resolve 
in future works, that are: a problem to create optimal structure for agents’ 
coalitions with more parameters, and more kinds of agents may be connected in a 
cooperation process. Another problem is implementation of agents’ negotiation 
abilities to improve cooperation process and approximate closer real situations. 
The last possible focus in the future is to find an optimal manner for gathering 
input information, because this problem has very important effect to the solving 
process and the achieved results respectively. 
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