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Abstract: Ever since the birth of data envelopment analysis (DEA) the question of ranking 

the decision making units (DMUs) has been one of the focal points of research in the area. 

Among several other approaches, promising attempts have been made to marry DEA with 

the analytic hierarchy process (AHP) method. Keeping the idea of using DEA-based 

pairwise comparisons between the DMUs, as proposed in some DEA-AHP variants 

published in the literature, a new method is presented for combining DEA with techniques 

for eliciting weights from pairwise comparison matrices. The basic idea is to apply a 

variant of the CCR problem instead of the classic one. The ensuing scores are then utilized 

to build a nonreciprocal pairwise comparison matrix which serves as the basis for eliciting 

the ranking values of the DMUs. The main advantage of this new method is the wider range 

of the resulting ranking values which subsequently leads to better distinction between the 

DMUs. Besides the eigenvector method, optimization based methods are also considered 

for eliciting the ranking values from the nonreciprocal pairwise comparison matrix. 

Numerical examples are supplied for comparing the proposed techniques. 

Keywords: data envelopment analysis; ranking decision making units; pairwise 

comparisons; techniques for eliciting weights 

1 Introduction 

Data envelopment analysis (DEA) is a very powerful tool for the efficiency 

evaluation of decision making units (DMUs) with multiple inputs and outputs. 

One of the main advantages of this non-parametric linear programming method is 

its capability of discerning the efficient DMUs by creating an efficiency frontier as 

based on the observed data and thus not requiring any a priori information about 

the relationship between the inputs and outputs. 
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One of its shortcomings, however, is its inability to fully rank the decision making 

units. Ever since it was created by Charnes, Cooper and Rhodes [9] on the basis of 

the idea of Farrel [20], the question of full ranking has been in the frontline of 

research. 

A multitude of different DEA variants with diverse backgrounds have been 

developed with the aim of solving this problem. Perhaps the most widely known 

and applied ranking method is the super-efficiency DEA model. Developed by 

Andersen and Petersen [3], this technique creates the best practice frontier first 

without evaluating DMU0 and then with its inclusion. Next the extent to which the 

envelopment frontier becomes extended is investigated. Several extensions and 

variants of this method are available, e.g. [25, 29, 30]. The problem with super-

efficiency DEA is that under certain conditions infeasibility occurs, which limits 

the applicability of the technique. (For details see [37]). 

Another approach is that of cross-efficiency introduced by Sexton et al. [39] and 

extended by Doyle and Green [15] where the individual decision making units are 

not only assessed by their own weights, but the weights of all the other DMUs are 

also incorporated into the value judgement. This score is more representative of 

efficiency than the traditional DEA-score, but at the same time the connection to 

the multiplier weights is lost [2]. 

Torgensen et al. [42] investigate the extent to which the different DMUs are peers 

to each other, and through this benchmarking procedure is full ranking achieved. 

If developed purposefully, the utilization of common weights can contribute to 

reaching a full ranking as well. The main goal of Wang et al. [43] is to introduce a 

minimum weight restriction and, as a side effect, common weights and then full 

ranking is also achieved. Common weights are also achieved by different 

multivariate statistical analyses and these can also lead to full ranking. For 

instance, canonical correlation, linear discriminant analysis or the discriminant 

analysis of ratios can also be employed [2]. 

Another way of approaching the question of full ranking is to take into account the 

slacks present in the slack-adjusted DEA model. Bardhan et al. [4] rank inefficient 

units this way. Tone [41] composes a method that can rank all the DMUs. Du et 

al. [16] create an extension to this model and Chen and Sherman [10] also use 

slacks for the development of a non-radial super-efficiency DEA model. 

Wen and Li [44] aim to utilize fuzzy information in data envelopment analysis and 

as a side effect full ranking is achieved. 

Multi-criteria decision making methods can also be combined with DEA to 

provide full ranking. Sinuany-Stern et al. [40] integrate analytic hierarchy process 

with DEA: the pairwise comparison matrix of AHP is created through the 

objective evaluation of pairs of DMUs by DEA. 
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The method developed by Sinuany-Stern et al. [40] has been applied for instance 

by Guo et al. [23] for supply chain evaluation. Royendegh and Erol [34, 35] also 

build upon the idea of [40] but extend the method to the analytic network process 

(ANP), the more generalized form of AHP. Zhang et al. [46] combine DEA with 

AHP for 4PL vendor selection, but their approach is different. After the 

construction of an input-output structure, AHP is utilized for a preliminary data 

analysis with the help of which the importance of the different criteria is 

determined. The results of the AHP are then used as preferential information in a 

modified DEA model. A pairwise comparison matrix is created with the evolving 

efficiency values and then AHP is applied again for the evaluation of the matrix. 

The authors have found the work of Sinuany-Stern et al. [40] particularly inspiring 

and, appreciating the results therein, wish to further improve the original method 

by enabling the pairwise comparison matrix to be nonreciprocal, which 

contributes to the possibility of a more accurate evaluation. Even more so, since in 

the course of applying DEA to the case of logistic centres [31, 32], it has been 

revealed that the thumb rule in connection with the number of DMUs to be found 

in the literature is very difficult to be adhered to. According to this rule, the 

number of observations should be three times greater than the number of the 

inputs plus outputs; and the number of DMUs should be equal or larger than the 

product of the number of inputs and outputs [5]. Some authors are less strict in 

their conduct; Wu and Goh [45] for example argue that the number of DMUs 

should only be minimally two times as much as the sum of the number of inputs 

and outputs. However, under certain conditions, even this requirement might be 

difficult to satisfy. 

The new technique proposed in this article intends to provide a solution for both 

the problem of full ranking and the difficulty inherent in the thumb rule cited 

above. Nonetheless, it is not in the scope of the present paper to explore and 

compare all the DEA-connected techniques aimed at resolving the question of full 

ranking, or even to measure up the proposed method to all the rest of existing 

solutions. It is its goal, however, to provide numerical examples of its utilization, 

with special attention paid to the cases presented in articles closely related to the 

technique at hand. 

In Section 2, a variant of the CCR problem is proposed instead of the classic one 

used in [40]. Easy ways for computing the related reciprocal and nonreciprocal 

pairwise comparison matrices are also presented. Section 3 addresses the issue of 

how to elicit ranking weights from the nonreciprocal pairwise comparison matrix 

obtained by the new approach. Besides the eigenvector method used in [40], the 

logarithmic least squares method and the weighted least squares method are also 

considered. In Section 4, numerical examples are supplied for comparing the 

proposed techniques. 
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2 DEA-like Pairwise Comparisons of the Decision 

Making Units 

Let us assume that there are n decision making units each producing s different 

outputs from m different inputs. Xij is the input i of unit j, while Yrj is the output r 

of unit j. We assume that all Xijs and Yrjs are positive. In the original approach of 

Sinuany-Stern et al. [40], traditional DEA runs are executed for any pair of 

DMUs, as if only these two decision making units existed. The runs are based on 

the DEA CCR model adapted to the case of two DMUs. For this, let A and B be a 

pair of units and let us consider the CCR model as if only these two units existed: 

    = max   ∑      
 
    

           s.t.    ∑          
    

                    ∑          
         (1) 

                    ∑       ∑          
   

 
    

                                               

In [40] the notation     is used for    . We think, however, that     is a more 

appropriate notation since both units appear in it, and the precedence of A over B 

means that it is the efficiency of A which is being evaluated by using the two 

units. The change from E to F is necessary in order to avoid its confusion with 

another efficiency value later on. Consider another problem being in a close 

relation to (1): 

 ̂   = max   ∑      
 
    

           s.t.    ∑          
         (2) 

                    ∑       ∑          
   

 
    

                                               

Comparing (2) with (1), the main difference between the two models becomes 

clearly visible: the second constraint of (1) representing an upper bound for the 

objective function of (1) is omitted. The reason behind this is the basic idea of the 

new model (2): the aim with the exclusion is to provide an opportunity for a full 

comparison between the two decision making units, without limiting the evolving 

score. If that constraint is left untouched, the resulting efficiency value will very 

frequently be the unity; and thus real distinction is not achieved between the two 

DMUs. A similar idea of omitting the upper bound on the objective function of (1) 

has already appeared in the case of the super-efficiency ranking techniques [2, 3] 

too. 

A further minor remark concerns the inequality in the third constraint of (1), 

which changes to equality in (2). This can be explained by the following: should 

we leave the inequality in (2), it would clearly hold as an equality for any optimal 
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solution of (2). Since we shall only be interested in the optimal solutions of (2), 

we can consider that constraint as an equality. 

Proposition 1: 

 ̂            
       

       
           

   

   
            

   

   
    (3) 

and 

             ̂            (4) 

Proof: Problem (2) has a finite optimal solution taken at a basic feasible solution. 

It is clear from the special structure of (2) that any basic feasible solution has 

exactly two positive variables: one from the    and one from the    variables. 

Given a basic feasible solution of (2), let    and    denote the indices of those 

positive variables. It is easy to see that 

    
 

    
   and      

 
   

    

    
  

         

    
 , 

and the value of the objective function is 

         

         
 .        (5) 

Finding the optimal basic solution means finding the pair    ,  ) with the maximal 

value of (5). This implies (3) directly. 

Keeping in mind the upper bounding role of the second constraint of (1), it is 

evident that     is equal to  ̂   if  ̂    , and       otherwise.      □ 

In essence,  ̂   is the resulting value of the pairwise comparison; it represents the 

efficiency of A in comparison with B. According to (3), it can also be interpreted 

as the product of an output and an input efficiency value. The first is the maximal 

output ratio of A compared with B, and the second one is the maximal input ratio 

of B compared with A. This can also be interpreted in a way that, in this 

comparison, that single input and that single output will be chosen which is most 

satisfying from unit A’s point of view. It is clear from (3) that this pairwise 

comparison is not reciprocal, i.e.  ̂      ̂   does not necessarily hold. 

The original approach proposed in [40] determines     in the first step; then, in 

the second step a cross evaluation of unit B is performed based on the idea of [33]: 

    = max   ∑      
 
    

           s.t.    ∑          
    

                    ∑          
         (6) 

                    ∑          ∑          
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Actually,     is the optimal cross evaluation of unit B, while the output/input ratio 

of unit A is fixed at    . Using a similar reasoning as with (1) and (2), and 

omitting the second constraints of (6), i.e. an upper bound restriction for the 

objective function, the following auxiliary problem can be established for (6): 

 ̂   = max   ∑      
 
    

           s.t.    ∑          
         (7) 

                    ∑          ∑          
   

 
    

                                               

The following Proposition 2 can be proved in the same way as Proposition 1; only 

the constant     appearing in the second constraint of (7) requires some extra 

attention. We leave the proof to the reader. 

Proposition 2: 

 ̂                
       

       
               

   

   
            

   

   
   (8) 

and 

             ̂            (9) 

   □ 

Collating (8) and (3), changing the role of A and B in the latter, we obtain 

Corollary 1: 

 ̂        ̂                       (10) 

   □ 

Proposition 3: If      , then      . 

Proof: From (4) and      , we get       ̂   . Then, from (3) and (8), 

 ̂       
     

       

       

     
     

       

       

  
   
     

       

       

   
     

       

       

    

From (9), we get       immediately.        □ 

As a consequence of Proposition 3, if      , then it is unnecessary to solve 

problems (6) or (7), we get       directly. 

Proposition 4: If there exist          and         such that 

                      and                      , 

then          . 
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Proof: From (3) and (4), we obtain      . Then, (8) implies  ̂    , thus 

     .           □ 

Remark 1: It is easy to see that the condition of Proposition 4 does not hold if and 

only if 

                 for all (r,i)                 (11) 

or 

                 for all (r,i).                 (12) 

Remark 2: We have also pointed out in Propositions 1 and 2 that we do not have 

to use any optimization software to obtain the optimal solution of (1), (2), (6) and 

(7). 

Since n DMUs are given, and the values    ,  ̂   ,     and  ̂   are to be 

determined for all pairs A and B of the DMUs, we introduce the following 

notations. Let DMU1,…, DMUn denote the decison making units. Considering 

DMUj as A and DMUk as B, let        ,  ̂    ̂   ,         and  ̂    ̂  . 

Sinuany-Stern et al. [40] construct an     matrix   [   ] of the entries 

    
       

       
           .                 (13) 

The nominator of     is the sum of the efficiency evaluation and the cross 

evaluation of DMUj in comparison with DMUk. The denominator can be 

interpreted similarly by changing the role of j and k. 

Clearly, 

               ,                  (14) 

and 

                   .                 (15) 

An     matrix A with the properties (14) and (15) is called a pairwise 

comparison matrix [36]. 

Constructing the pairwise comparison matrix A by (13) is, however, in some cases 

problematic. Namely, if considering A as DMUj and B as DMUk and neither (11) 

nor (12) hold, then                  , consequently,          . In 

some practical or randomly generated cases, it is not very probable that the 

dominance of (11) or (12) holds. This may lead to the phenomenon observed in 

some numerical examples applying the approach of [41] that the pairwise 

comparison matrices constructed by (13) comprise strikingly many 1 elements 

[23, 34, 40, 46]. The result 1 of a pairwise comparison means that the two DMUs 

cannot be considered as different. Therefore, a large number of unities in the 

pairwise comparison matrix may hinder the strict ranking of DMUs as the ranking 
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weights elicited from the pairwise comparison matrix may be identical or very 

close to each other. 

In this paper, instead of using (13), we propose to construct an     matrix 

  [   ] of the entries 

     ̂              .                  (16) 

As mentioned earlier,  ̂    provides the opportunity to compare DMUj against 

DMUk without limiting the score from above. It is undeniable that DMUj is in a 

privileged position in the course of this comparison. It can also be considered as a 

football match where DMUj has the home field advantage. Of course, the role of 

DMUj and DMUk is reversed when the value      ̂    is determined, and thus a 

level playing field can be assured. 

It was already pointed out that  ̂   and    ̂   may be different, i.e. the reciprocity 

property (15) does not necessarily hold for a matrix A constructed by (16). 

Actually, matrix A of (16) is simply a positive matrix, but we call it a 

nonreciprocal pairwise comparison matrix to indicate the context. 

3 Eliciting Weights from the Nonreciprocal Pairwise 

Comparison Matrix 

After having constructed the pairwise comparison matrix A by (13), Sinuany-Stern 

et al. [40] follow the standard AHP methodology [36]. By applying the 

Eigenvector Method (EM), the maximal eigenvalue      and its corresponding 

eigenvector     of 

                        (17) 

are determined. The real number      and the vector     are positive and 

unique. In addition,       , and        if and only if A is consistent, i.e. 

                                  

Having determined the vector    , the DMUs are ranked in the following way. 

Rank 1 is assigned to the DMU with the maximal value of   
  , and in decreasing 

order of   
   are the further ranks allocated to the remaining DMUs. 

In the standard AHP methodology, matrix A is assumed to be reciprocal. The 

matrix A of (16) is, however, nonreciprocal. As far as the authors know, 

nonreciprocal matrices in a pairwise comparison context and the question of how 

to elicit the weight vector w from them appeared first in [28]. Although double 

wine testing is mentioned as a main example for the necessity of the relaxation of 

the reciprocity condition, further examples of application from other fields of life 

have also been published in the literature. 
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The lack of reciprocity may even occur if the comparisons are performed by the 

same person at different times. In [14] an experiment is reported. Postgraduate 

students were asked to fill in the upper part of a pairwise comparison matrix, 

where the items to be compared were in the scope of their studies. Some weeks 

later, they were asked to fill in the lower part of the PC matrix. It turned out that 

for none of the matrices obtained in this way did the reciprocity property hold. 

As mentioned in [24], nonreciprocal pairwise comparison matrices may also 

appear when one compares financial assets denominated in different currencies. 

Because of transaction costs, the resulting matrices are not reciprocal, even if no 

subjectivity is involved. 

The classical methods used in case of reciprocal pairwise comparison matrices can 

also be extended to the nonreciprocal case in more or less direct ways. EM can 

also be interpreted without the reciprocity condition since the Perron-Frobenius 

and the Frobenius theorems, the mathematical bases of the EM, do not require A to 

be reciprocal; see [38] for details. The property        does not necessarily 

hold for a nonreciprocal matrix A; thus, the consistency index          
         playing an important role in AHP [36] may be negative. However, 

since the pairwise comparison matrices are constructed from objective data in our 

case, we are not concerned about the consistency of A. 

The Eigenvector Method is not the only way to elicit ranking weights from a 

pairwise comparison matrix. A group of approaches applies optimization methods 

and proposes different ways for minimizing the difference between A and 

consistent pairwise comparison matrices. The optimization methods are based on 

the basic property that A is consistent if and only if 

    
  

  

                

where w is a positive n-vector and is unique after a normalization. Most of the 

optimization approaches can be directly extended to the nonreciprocal case as 

well. If the difference to be minimized is measured in the least-squares sense, i.e., 

with the Frobenius norm, then we get the Least Squares Method (LSM) [11]: 

min   ∑ ∑ (    
  

  
)
 

 
   

 
                    (18) 

 s.t.    ∑       
                   

Under special conditions, (18) can be transcribed into the form of a convex 

optimization problem and can be solved by simple local search techniques [21, 

22]. However, without the special conditions, problem (18) may be a difficult 

nonconvex optimization problem with multiple local optima and even with 

multiple isolated global optimal solutions [26, 27]. 

In order to elude the difficulties caused by the possible nonconvexity of (18), 

several other, more easily solvable problem forms are proposed to derive priority 
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weights from a pairwise comparison matrix. The Weighted Least Squares Method 

(WLSM) [6, 11] in the form of 

min   ∑ ∑ (        )
  

   
 
                    (19) 

 s.t.    ∑       
                  

involves a convex quadratic optimization problem whose unique optimal solution 

is easy to obtain. 

The Logarithmic Least Squares Method (LLSM) [12, 13] in the form 

min   ∑ ∑ (          
  

  
)
 

 
   

 
                   (20) 

 s.t.    ∏       
                  

is based on an optimization problem whose unique optimal solution, in the 

reciprocal case, is the geometric mean of the rows of matrix A. This result was 

extended to the nonreciprocal case in [28], and the following optimal solution to 

(20) was obtained: 

     √
∏    

 
   

∏    
 
   

  

        .                 (21) 

In this paper, for the numerical experiment, we used the EM, LLSM and WLSM 

approaches to elicit ranking weights from pairwise comparison matrices. For 

further approaches, see [7, 8, 17, 18, 19, 21] and the references therein. 

Of course, the different approaches may result in different weight vectors w, and 

consequently, in different ranking orders of some DMUs. This well-known 

phenomenon occurred in the following numerical examples, too. 

4 Numerical Examples 

We compared the original AHP/DEA ranking methodology proposed in [40] with 

the new method presented in this paper. The original and three variants of the new 

method were tested in parallel. The latter differ in the way the weight vector w, 

used for ranking the DMUs, is elicited from the appropriate pairwise comparison 

matrix. EM1 – the original method – applies the Eigenvector Method on the 

reciprocal pairwise comparison matrix of elements yielded by (13), while EM2, 

LLSM and WLSM apply the Eigenvector Method, the Logarithmic Least Squares 

Method and the Weighted Least Squares Method, respectively, on the 

nonreciprocal pairwise comparison matrix  ̂ . 
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Example 1 

Example 1 is the nursing home example developed in [39]. This example was also 

used in the review paper [2] to compare the majority of the techniques surveyed 

there. The example comprises six DMUs, two inputs and two outputs: staff hours 

per day (StHr) and supplies per day (Supp) as inputs, and total Medicare plus 

Medicaid reimbursed patient days (MCPD) and total private patient days (PPD) as 

outputs. The raw data are presented in Table 1. 

Table 1 

Input and output data of Example 1 

DMU Inputs  Outputs 

 StHr Supp  MCPD PPD 

A 150 0.2  14000 3500 

B 400 0.7  14000 21000 

C 320 1.2  42000 10500 

D 520 2.0  28000 42000 

E 350 1.2  19000 25000 

F 320 0.7  14000 15000 

By applying (2), we obtain the matrix  ̂ : 

 ̂  

(

 
 
 

                                          
                                          
                                          
                                          
                                           
                                          )

 
 
 

. 

Since every element of  ̂  is greater than or equal to 1, from (4), we get      , 

j,k=1,…,n. Then, from (10), we obtain  ̂    , and from (9),       for all 

j,k=1,…,n. Consequently, the reciprocal pairwise comparison matrix A constructed 

by (13) consists only of unity elements. This matrix is consistent, the maximal 

eigenvector consists of equal weights, and all DMUs get the ranking 1-6 as shown 

in Table 2 in the columns under EM1. 

Methods EM2, LLSM and WLSM were run on the nonreciprocal pairwise 

comparison matrix  ̂ . The results are also displayed in Table 2. Although a deeper 

numerical comparison of these methods against other ranking methods is beyond 

the scope of this paper, it is worth noting that the ranking by EM2 is the same as 

that of the super-efficiency approach in [2]; moreover, the correlation of the vector 

of weights by EM2 to that by the super-efficiency technique is 0.99329. In the 

case of LLSM and WLSM, the ranking orders are the same only in the first two 

positions but the correlations are still 0.97891 and 0.97337, respectively. 
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Table 2 

Weights and ranking of the DMUs in Example 1 

DMU Weights  Ranking 

 EM1 EM2 LLSM WLSM  EM1 EM2 LLSM WLSM 

A 0.16667 0.23760 0.19755 0.19196  1-6 1 1 1 

B 0.16667 0.14988 0.15839 0.15899  1-6 4 5 5 

C 0.16667 0.17439 0.16565 0.16947  1-6 2 2 2 

D 0.16667 0.15985 0.16437 0.14730  1-6 3 4 6 

E 0.16667 0.14951 0.16438 0.16461  1-6 5 3 4 

F 0.16667 0.12877 0.14966 0.16767  1-6 6 6 3 

Example 2 

The raw data of Example 2 is from Table 3 of [40], and is shown in Table 3 

below. 

Table 3 

Input and output data of Example 2 

DMU Inputs  Outputs  

 X1 X2  Y1 Y2  

A 50 55  10 56  

B 130 60  12 78  

C 68 96  45 9  

D 45 30  35 18  

E 5 3  99 3  

By applying (2), we obtain the matrix  ̂ : 

 ̂  

(

 
 

                                    
                                    
                                   
                                   

                                         )

 
 

.                 (22) 

The reciprocal pairwise comparison matrix of the elements (13) is 

   

(

 
 

                                   
                                   
                                   
                                   
                                   )

 
 

.                 (23) 

Two versions of Example 2 were solved in [40]. In the first one only four DMUs, 

Unit A to Unit D, were considered. The matrices  ̂  and A corresponding to this 

case can be easily obtained by taking the     upper-left submatrix of (22) and 

(23), respectively. The weights and the ranking of the DMUs in the case with four 

DMUs are shown in Table 4. The second version of Example 2 is with five 

DMUs. The corresponding weights and ranking can be found in Table 5. 
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Table 4 

Weights and ranking of the DMUs in Example 2 with four DMUs 

DMU Weights  Ranking 

 EM1 EM2 LLSM WLSM  EM1 EM2 LLSM WLSM 

A 0.24980 0.23732 0.26086 0.22924  2-3 3 2 2 

B 0.24980 0.24654 0.20025 0.11203  2-3 2 3 3 

C 0.24010 0.19087 0.14399 0.04622  4 4 4 4 

D 0.26031 0.32527 0.39490 0.61251  1 1 1 1 

Table 5 

Weights and ranking of the DMUs in Example 2 with five DMUs 

DMU Weights  Ranking 

 EM1 EM2 LLSM WLSM  EM1 EM2 LLSM WLSM 

A 0.19057 0.06436 0.07302 0.00538  2-3 2 3 4 

B 0.19057 0.05037 0.05606 0.00451  2-3 3 4 5 

C 0.14070 0.02515 0.04031 0.01349  5 5 5 3 

D 0.17608 0.04872 0.11055 0.03955  4 4 2 2 

E 0.30208 0.81140 0.72007 0.93708  1 1 1 1 

In both versions, methods EM2, LLSM and WLSM yield full ranking orders 

although they are different in several positions. It is also a striking property of the 

methods based on the nonreciprocal pairwise comparison matrix  ̂  that the 

weights are more distinguished. The largest weights are significantly larger and 

the smallest weights are significantly smaller than those of EM1. Also, it is worth 

observing how the favorable input and output values of DMU E are reflected in 

the corresponding weights in Table 5. 

Example 3 

Example 3 comes from [23] and the raw data are given in Table 6. 

Table 6 

Input and output data of Example 3 

DMU Inputs  Outputs 

 X1 X2 X3  Y1 Y2 Y3 

DMU1 15 15 0.05  0.80 0.800 0.42 

DMU2 70 25 0.10  0.90 0.900 0.53 

DMU3 45 16 0.07  0.96 0.885 0.47 

DMU4 40 30 0.12  0.85 0.750 0.32 

DMU5 35 25 0.11  0.75 0.845 0.44 

DMU6 60 18 0.15  0.85 0.755 0.25 

DMU7 55 20 0.08  0.70 0.850 0.51 

DMU8 30 12 0.09  0.95 0.700 0.46 
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The nonreciprocal pairwise comparison matrix  ̂  is obtained by (2), and the 

reciprocal A by (13): 

 ̂  

(

 
 
 
 
 

                                                         
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        )

 
 
 
 
 

, 

  

(
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The weights and the ranking orders obtained by the tested methods are as follows: 

Table 7 

Weights and ranking of the DMUs in Example 3 

DMU Weights  Ranking 

 EM1 EM2 LLSM WLSM  EM1 EM2 LLSM WLSM 

DMU1 0.15290 0.22575 0.21761 0.26630  1 1 1 1 

DMU2 0.11616 0.09546 0.09978 0.08828  6 6 6 6 

DMU3 0.13279 0.13641 0.14839 0.15489  3 3 3 3 

DMU4 0.11203 0.08305 0.08474 0.07254  8 8 7 7 

DMU5 0.11729 0.10275 0.10874 0.10563  5 5 5 4 

DMU6 0.11391 0.08334 0.07143 0.04668  7 7 8 8 

DMU7 0.12172 0.11261 0.10932 0.09334  4 4 4 5 

DMU8 0.13318 0.16063 0.16001 0.17233  2 2 2 2 

The ranking orders by EM1, EM2 and LLSM coincide in the first six positions. 

WLSM renders a further rank reversal in positions 4 and 5. The greater separation 

in the weights by EM2, LLSM and WLSM, in comparison to those by EM1, can 

be observed at this example, too. We mention that the weight vector w published 

in [23] is w =(0.152, 0.117, 0.134, 0.112, 0.118, 0.114, 0.122, 0.133)
T
 yielding the 

ranking (1,6,2,8,5,7,4,3). The slight difference to the weights obtained by EM1 

may come from a larger stopping tolerance when computing the maximal 

eigenvector in [23]. But even a slight difference implies a rank reversal for DMU3 

and DMU8. 

Conclusions 

The method proposed in this paper seems to be a promising new tool for ranking 

DMUs. It keeps the idea of using DEA-based pairwise comparisons between the 

decision making units (DMUs), as was proposed originally in [40]. The basic new 

idea is to apply a variant of the CCR problem instead of the classic one. The 

ensuing scores are then utilized to build a nonreciprocal pairwise comparison 
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matrix which serves as the basis of eliciting the ranking values of the DMUs. The 

main advantage of this new method is the wider range of the resulting ranking 

values, which subsequently leads to better distinction between the DMUs. This 

useful property was also confirmed by numerical examples. In addition to the 

eigenvector method, optimization based methods, such as the logarithmic least 

squares method and the weighted least squares method, were also tested for 

eliciting the ranking values from the nonreciprocal pairwise comparison matrix. 

The numerical examples show that applying the new variant of the CCR problem 

and eliciting ranking weights from nonreciprocal pairwise comparison matrices 

remedy some shortcomings of the original method proposed in [40]. On the other 

hand, based upon the numerical examples, one cannot give a definite answer to the 

question of which of the techniques tested for eliciting ranking weights from 

nonreciprocal pairwise comparison matrices is the best. This question is argued 

but is undecided in the more general multiattribute decision making, too. 
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