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Abstract: The aim of this paper is to transform the model of the impedance controlled robot

interaction with feedback delay to a Tensor Product (TP) type polytopic LPV model whereupon

Linear Matrix Inequality (LMI) based control design can be immediately executed. The paper

proves that the impedance model can be exactly represented by a finite element TP type poly-

topic model under certain constrains. The paper also determines various further TP models

with different advantages for control design. First, it derives the exact Higher Order Singular

Value Decomposition (HOSVD) based canonical form, then it performs complexity trade-off to

yield a model with less number of components but rather effective for LMI design. Then the pa-

per presents various different types of convex TP model representations based on the non-exact

model in order to investigate how convex hull manipulation can be performed on the model. Fi-

nally the presented models are analyzed to validate the accuracy of the transformation and the

resulting TP type polytopic LPV models. The paper concludes that these prepared models are

ready for convex hull manipulation and LMI based control design.

Keywords: LPV/qLPV modeling; impedance conrol; complience control; time delay; telemanip-

ulation; haptics

1 Introduction

The literature of modern control theory shows that the representation of a given

plant has considerable effect on the usability of the proper controller design method

and on the achievable control performance. For instance, in the case of the qLPV

state-space model given in a polytop representation and the LMI (Linear Matrix

Inequality) based design techniques, we can observe that the disposition layout of

the system matrix elements at the very beginning modeling phase already determines

– 139 –



P. Galambos et al. Impedance Controlled Robot Interaction with Feedback Delay in Polytopic LPV form

the set of achievable control performance. Furthermore, the resulting controller really

depends on the applied LMIs, which is why the majority of the related literature

discusses how to manipulate LMIs in order to optimize for multi-objective control

performance. At the same time, one of the key trends in modern control - H∞

based methodologies - bases the optimization of the required control constraints

on integrating weighting functions into the system model before determining the

polytopic representation and constructing the LMI-based synthesis.

Nevertheless, it was not emphasized as much that the LMIs are very sensitive for

the polytop structure. Since the LMI in that sense can be considered as a non-linear

transformation, a little modification of the convex hull may lead to considerable

deviation of the resulting controller. Therefore, one may raise the question whether

the convex hull manipulation plays an important role in the optimization of the

control performance. Actually, this was one of the key motivations to develop the

TP model transformation, which is readily capable of manipulating the convex hull

of the convex polytop representation of a given model. The TP model transformation

is actually a numerical representation of the HOSVD of given functions. It becomes

a control design tool when it is executed on matrix functions, where the matrix

function actually represents the non linear system matrix of a given LPV/qLPV

model. In this general case the TP model transformation can be viewed as a TP type

polytop decomposition technique having various advantages for complexity trade-

off and convex hull manipulation, all relying on the power of the HOSVD. The

key idea and further investigations about the utilization of TP model transformation

is presented in papers [1, 2, 3]. Some further examples for control design oriented

utilization of TP model transformation are in [4, 5, 6, 7, 8, 9, 10]. Authors Chumalee

et al., Rangajeeva et al., Gai et al., Sun et al. and Qin et al. introduce TP model

transformation based novel approaches in avionics related control problems [11, 12,

13, 14, 15], thus leading to pioneering conceptual frameworks. In [16] Precup et

al. introduced novel application-oriented TP models for the automatic transmission

system of vehicles.

Paper [17] discusses the importance of the convex hull manipulation in the polytop

representation based control design and how further improvements on the resulting

control performance can be achieved. The paper also concludes that this manipula-

tion results in a kind of relaxation of the conservativeness of the design. Based on

this paper, Gróf at al. [18] deeply investigate an example how the convex hull ma-

nipulation influences the effectiveness of the LMIs, or even more how the improper

selection of the convex hull may lead to infeasible LMIs. With this investigation, she

has shown that the manipulation of the convex hull is as important as the selection

of the LMIs to reach the best control performance.

In this paper, we examine two types of manipulation techniques. One type performs

complexity trade-off on the number of the LTI vertex models, while the other focuses

on the manipulation of the convex hull. Thus, we create the HOSVD based canonical

form of the impedance model with approximation trade-off and generate different

convex hulls using different convex transformation satisfying various constraints.
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The paper is organized as follows: Section 2 introduces definitions related to TP

model transformation. Section 3 defines the equation of motion of the investigated

delayed dynamical system and specifies the required properties of the expected

model form. In section 4, the properties of the resulted HOSVD-based canonical

form are discussed and a trade-off is performed between the complexity and the

accuracy of the TP model. Section 5 introduces the model with different types of

convex hulls, and section 6 investigates the accuracy of the resulted convex TP

model considering constant and varying time delay. The last section concludes the

paper.

2 Basic concepts

The mathematical background of the TP model transformation and TP model trans-

formation based LMI controller design was introduced and elaborated in [1, 2, 3].

Let us recall some of the related theorems and definitions:

Definition 1 (qLPV model): Consider the Linear Parameter Varying State Space model:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t) (1)

y(t) = C(p(t))x(t) +D(p(t))u(t),

with input u(t) ∈ R
m, output y(t) ∈ R

l and state vector x(t) ∈ R
k. The system matrix

S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

(2)

is a parameter-varying object, where p(t) ∈ Ω is a time varying N−dimensional pa-

rameter vector, and Ω = [a1, b1]× [a2, b2]× ..× [aN , bN ] ∈ R
N is a closed hypercube.

p(t) can also include some elements of x(t). In this case, (2) is referred to as a quasi

LPV (qLPV) model. This type of model is considered to belong to the class of non-linear

models. The size of the system matrix S(p(t)) is (k + l)× (k +m).

A wide class of LMI based control design techniques are available for convex poly-

topic model representations; thus the finite element convex polytopic form of (1) is

defined as:

Definition 2 (Finite element polytopic model):

S(p(t)) =

R
∑

r=1

wr(p(t))Sr . (3)

where p(t) ∈ Ω. S(p(t)) is given for any parameter vector p(t) as the parameter

varying combinations of LTI system matrices Sr ∈ R
(k+l)×(k+m) called LTI vertex
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systems. The combination is defined by weighting functions wr(p(t)) ∈ [0, 1]. The term

finite means that R is bounded.

Definition 3 (Finite element TP type polytopic model): S(p(t)) in (3) is given for

any parameter as the parameter-varying combination of LTI system matrices Sr ∈

R
(k+l)×(k+m) .

S(p(t)) =

I1
∑

i1=1

I2
∑

i2=1

..

IN
∑

iN=1

N
∏

n=1

wn,in(pn(t))Si1,i2,..,iN , (4)

applying the compact notation based on tensor algebra (Lathauwer’s work [19]) one

has:

S(p(t)) = S
N

⊠
n=1

wn(pn(t)) (5)

where the (N+2) dimensional coefficient tensor S ∈ R
I1×I2×···×In×(m+k)×(m+k) is

constructed from the LTI vertex systems Si1,i2,...,iN (5) and the row vector wn(pn(t))
contains univariate and continuous weighting functions wn,in(pn(t)), (in = 1 . . . IN ).

Remark 1 : TP model (5) is a special class of polytopic models (3), where the weight-

ing functions are decomposed to a Tensor Product of univariate functions.

Definition 4 (TP model transformation): TP model transformation is a numerical method

that transforms qLPV models given in the form of (1) to the form of (5), so that a large

class of LMI based control design techniques can be applied to the resulting model. De-

tailed description of TP model transformation and application examples can be found

in [1]. The TP model transformation gives a trade-off between the accuracy of the

resulting model and the number of required vertexes for the LMI control design. The

TP model transformation is also capable of providing a convex hull manipulation tool

during execution. For further details please read papers [17, 18].

Definition 5 (HOSVD-based canonical form of qLPV models): The direct result of the

TP model transformation when neither complexity trade-off nor convex hull manipula-

tion is done is the numerical reconstruction of the HOSVD of a given function. It is

like the HOSVD of tensors, but for functions where instead of singular matrices we

have singular functions in an orthonormal structure, and the core tensor contains the

higher order singular values. In the case of a system where matrix functions are used,

the HOSVD canonical form has the same structure; the only difference is that the core

tensor contains the system vertices assigned to the higher order singular values. For

further details please be referred to papers [20, 21].

Definition 6 (Convex TP model): The TP model is convex if the weighting functions

satisfy the following criteria:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1]; (6)
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∀n, pn(t) :

In
∑

i=1

wn,i(pn(t)) = 1. (7)

Different convex hulls for TP type polytopic qLPV models can be defined. Some of

the basic types are defined as follows:

Definition 7 (SN type TP function): The convex TP function is SN (Sum Normalized) if

the sum of the weighting functions for all x ∈ Ω is 1.

Definition 8 (NN type TP function): The convex TP function is NN (Non-Negative) if

the values of the weighting functions for all x ∈ Ω are non-negative.

Definition 9 (NO/CNO, NOrmal type TP function): The convex TP function is a NO

(Normal) type model if its w(p) weighting functions are Normal, that is, if it satisfies (6)

and (7), and the largest value of all weighting functions is 1. Also, it is CNO (close to

normal), if it is satisfies (6) and (7) and the largest value of all weighting functions is 1

or close to 1.

Definition 10 (IRNO, Inverted and Relaxed NOrmal type TP function): The TP func-

tion is IRNO type if the smallest values of all weighting functions are 0, and the largest

values of all weighting functions are the same.

3 Specification of the modeling problem

Since the extensive work of Hogan [22, 23, 24], wherein the concept of impedance

control and its application was formulated, this control strategy has become one of

the key technologies of modern robot control. Haptic rendering is a special area

of robotics where the haptic device and the virtual environment together forms an

impedance controlled interaction structure where time delays have an unfavorable

effect on the stability of the system. A series of papers from DLR’s researchers

investigate the stability of haptic rendering from various aspects [25, 26, 27]. The

present study focuses on the time delay that occurs in the control loop of the

impedance controlled interaction.

In this paper, impedance model is understood as the dynamic relationship between

the force and the resulted displacement. The impedance model is typically given by

a virtual mass-spring-damper system. In the general case, a task-space impedance

model can be described as

Mẍ+ Bẋ+ Kx+ C(ẋ,x) = F, (8)

where x denotes the Cartesian task space coordinates, M,B and K are symmetric,

positive-definite matrices describing the inertial, damping and stiffness parameters
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respectively, and C contains other non-linear terms of the impedance model, while

F denotes the external forces.

In many cases, the end effector path is prescribed and the displacement results from

the impedance model is added to the predefined path. In this way the robot motion

becomes compliant.

3.1 Equation of the impedance controlled actuation with feedback

delay

Since this paper deals with a generic abstraction, a single degree of freedom model

will be discussed, but the results can be extended to multidimensional cases. Con-

sider the mechanical system depicted by Figure 1(a) as a simplified model of the

impedance controlled robot interaction. Mass m and viscous damping b are virtual

properties defining the desired dynamics of the manipulator, while k denotes the

stiffness of the robot’s environment.

(a) Mass-Spring-Damper system as the simplified

model of impedance controlled robot interaction.

(b) Mass-Spring-Damper model where the effect

of the spring is delayed

Figure 1

Introducing the time-delay in the measurement of the interaction force between the robot and its

environment.

Virtual parameters have to be chosen according to the accuracy ↔ robustness trade-

off [28]: The lower mass and damping result in faster and more accurate tracking

with less robustness against feedback delay, and vice versa.

The equation of motion of this system is as follows:

ẍ(t) =
Fh(t)

m
−

b

m
ẋ(t)−

Fe(t)

m
(9)

Introducing the time-delay τ in the interaction as the overall delay of the force
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monitoring due to the lag of the signal processing and/or network delays:

ẍ(t) =
Fh(t)

m
−

b

m
ẋ(t)−

Fe(t− τ(t))

m
(10)

substituting the interaction force (Fe) by the elastic force (kx) in the formula as the

simplest model of the environment, we get the following equation:

ẍ(t) =
Fh(t)

m
−

b

m
ẋ(t)−

k

m
x(t− τ(t)). (11)

One can see that the resulted equation represents a mass-spring-damper system

where the elastic effect is delayed by τ(t). Figure 1(b) illustrates the resulted model.

3.2 Specification of the expected qLPV reprezentation

In this paper, we search for a representation of the investigated delayed dynamical

system in TP type polytopic form (5), wherein the time delay τ becomes a parameter

of the model and meets the following requirements:

i Fulfills the specifications of HOSVD based canonical form by finding the

minimum number of LTI components that represent the original system in

polytopic structure (4).

ii Complexity trade-off capability by means of approximation.

iii Eligibility for LMI based multi-objective control design.

iv The generated convex hull indirectly supports the feasibility of optimal control

performance under the LMI based design concept.

4 The HOSVD based canonical form

In this section we utilize TP model transformation to determine the so called

HOSVD based canonical form (Theorem 5) of the investigated model (11), which

is a minimum and unique TP type polytopic representation. Since the investigated

delayed model cannot be discretized by sampling in the first step of the TP model

transformation, the discretized system tensor was determined based on the identifica-

tion (see the paper [29]) of the model with multiple delay values. As the TP model

transformation is a fully numerical method, the paper discusses a typical numerical

example, wherein the following model parameters are considered: Mass m = 1kg,

viscous damping b = 100Ns/m, Stiffness of the environment k = 2000N/m, Delay

interval τ = 0..0.07s. It is important to note that the main properties of the polytop

structure are not influenced significantly by the model parameters in a wide range

with practical relevancy.
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Singular values of the HOSVD based canonical form

4.1 Components and structure of the exact HOSVD based canoni-

cal form

After the execution of the TP model transformation on the impedance model, we

get the minimum size qLPV representation composed of 6 LTI vertex models since

the HOSVD leads to 6 non-zero singular values in the second step of the TP model

transformation. Singular values are as follow: σ1 = 2.3414×104, σ2 = 3.5305×102,
σ3 = 1.0331, σ4 = 2.2164× 10−2, σ5 = 1.2964× 10−3, σ6 = 6.9808× 10−5. Note

again that the different model parameters have no substantial effect on the resulted

singular values, on the rank of the model or on the underlying polytopic structure, so

this example properly shows the uniqueness of the representation. The consecutive

singular values decrease exponentially by a factor of two orders of magnitude, which

suggests a balanced contribution of vertices. Figure 2 displays the formation of the

6 singular values.

In the following, the components of the HOSVD based canonical form of the

impedance model are introduced. The system is represented by the vertex models

and the weighting functions. Let us partition the LTI vertices (Scan
r ) as follows:

Scan
r =

[

A B

C D

]

. (12)

As the transformation results in C = [1 0]T and D = 0 for all τ ∈ Ω, only A and

B are written in the list below:
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[AB]can

1
=

[

−1.1515 × 104 −1.1896 × 104 −6.3944
1.1521 × 104 1.1890 × 104 6.3906

]

[AB]can

2
=

[

−1.8082 × 102 1.7522 × 102 3.0496
1.7781 × 102 −1.7209 × 102 −3.0457

]

[AB]
can

3
=

[

2.8404 × 10−1 −2.7537 × 10−1 −6.0693 × 10−1

2.9928 × 10−1 −2.9109 × 10−1 6.0668 × 10−1

]

[AB]can

4
=

[

8.7316 × 10−3 −9.6607 × 10−3 8.6616 × 10−3

8.7412 × 10−3 −9.6704 × 10−3 −8.7600 × 10−3

]

[AB]can

5
=

[

6.6570 × 10−4 6.2594 × 10−4 9.5164 × 10−5

6.6535 × 10−4 6.2629 × 10−4 3.9904 × 10−5

]

[AB]can

6
=

[

−2.5581 × 10−6 −2.5893 × 10−6 4.9197 × 10−5

−2.5570 × 10−6
−2.5904 × 10−6 4.9258 × 10−5

]

Figure 3 shows the weighting functions w(τ) over the range of Ω. The smoothness

of the weighting functions shows that the applied reidentification method is stable

along the investigated range of τ . This means that the applied identification algo-

rithm does not alternate between different local solutions (local minimums). It is

worth mentioning that if the identification method is switching between different so-

lutions, additional ranks could appear in the HOSVD canonical form. By neglecting

the extra singular values, HOSVD is able to (smoothly) approximate the ruggedness

in least-square sense in a way similar to how SVD can be used for noise filtering in

digital signal processing [30]. However, if the fluctuation is large, such approxima-

tion should be applied with circumspection.
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Weighting functions of the HOSVD based canonical form

4.2 Executing trade-off by TP model transformation

As was mentioned before, a trade-off can be determined between the complexity

and the accuracy of the TP type polytopic model. The goal of this subsection is
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to reveal the correlation between the accuracy and the number of utilized vertices.

Considering that the LMI based design process is very sensitive to the complexity

of the polytopic model, it is very important to find the minimum complexity that

reaches the accuracy threshold of the given engineering problem.

Even for the computational solutions of LMI toolbox for MATLAB that introduces

high quality LMI solvers [31], the computational requirements explodes exponen-

tially by the number of vertex models. Over a certain number of vertices, the LMI

solvers may not be able to provide the solution. Considering that the significance of

the vertex models decreases uniformly (Figure 2), there is no theoretically appeal-

ing point from where to cut the less significant vertices to reduce the complexity

of the model. However, a systematically executed trade-off could help to find the

reasonable complexity. The HOSVD based canonical form readily supports a kind

of principal component analysis of the investigated dynamical system model. In this

analysis, the model accuracy is measured by the modeling error ǫr defined as:

ǫr =
∥

∥

∥
SD(Ω,M) − S

D(Ω,M)
Approxr

∥

∥

∥

L2

, (13)

where SD(Ω,M) can be computed using CHOSVD in the second step of the TP

model transformation. S
D(Ω,M)
Approxr

is computed analogously but considers only the

vertex models according to the first r singular values. Modeling errors result as

follows:

ǫ1 = 3.53 × 10
2
≤ 3.541 × 10

2

ǫ2 = 1.0333 ≤ 1.0566

ǫ3 = 2.22 × 10
−2

≤ 2.35 × 10
−2

ǫ4 = 1.3 × 10−3
≤ 1.4 × 10−3

ǫ5 = 6.9808 × 10−5
≤ 6.9808 × 10−5

ǫ6 = 1.1272 × 10−11
≈ 0 (numerically zero)

As matrix [AB]r contains element in the order of magnitude 103, due to the defini-

tion of ǫr, ǫ6 is much larger then 10−15, which is typically considered as numerically

zero if all the matrix elements are in the range of 101. ǫr is upper bounded by the

sum of the singular values of the neglected vertices. The upper bounds are also

displayed in the above list.

Figure 4(a) displays the modeling errors. One can see that the modeling error de-

creases between ǫ6 and ǫ5 much larger then in the case of the other reduction steps.

This measure describes the model accuracy only over the discrete delay values de-

fined by M and does not give information about the correctness between the discrete

points that have been used in the first step of the TP model transformation. To fol-

low a more extensive investigation and to ensure that the resulted TP model is not

under-sampled, let us define the following measure:
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(a) Modelling error (ǫr) in function of dimension-

ality of HOSVD based canonical form
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(b) Modelling error (ǫRND1000
r ) in function of di-

mensionality of hosvd-based canonical form

Figure 4

Accuracy-complexity trade-off

Definition 11 (ǫRND1000r )

ǫRND1000r =
∥

∥

∥
SD(Ω,M ′) − S

D(Ω,M ′)
Approxr

∥

∥

∥

L2

, (14)

where M ′ denotes a discretization grid with 1000 randomly generated grid points over

Ω. Grid M ′ is not equidistant and M ′
⋂

M = ∅.

The measure ǫRND1000r compares the reidentified and the approximated systems in

1000 randomly generated points considering the first r vertices of the HOSVD based

model. ǫRND1000r shows the model accuracy better in real situations where arbitrary

varying delays occur. The resulted ǫRND1000r s are listed below:

ǫ
RND1000

1
= 9.6325 × 102

ǫ
RND1000

2
= 2.7698

ǫ
RND1000

3
= 1.2099 × 10

−1

ǫ
RND1000

4
= 1.0519 × 10−1

ǫ
RND1000

5
= 1.0514 × 10−1

ǫ
RND1000

6
= 1.0514 × 10

−1

The values for r = 4, r = 5, r = 6 are almost the same and start to increase only at
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r = 3. Figure 4(b) displays the ǫRND1000r data in logarithmic scale and the big step

by r = 3 is evident.

These results support the hypothesis that the number of non-zero singular values do

not increase, even when the density of M is increased without bounds. Thus, results

show that the representation is minimal and exact. It can also be concluded that

the applied discretization is not under-sampled, hence complexity reduction by ne-

glecting the less significant vertices is well established. Beyond this pure numerical

comparison, the dynamic accuracy of the TP model is also investigated in section 6.

5 Different convex TP model representations

As was already emphasized, LMIs are very sensitive to the shape of the convex hull

that defines the polytopic qLPV representation together with the weighting functions.

Different types of convex hulls of the delayed impedance model can be generated

utilizing the hull manipulation capabilities of TP model transformation. For the sake

of brevity, only the non-exact, CNO type convex model with 3 vertices is detailed

here. Even using the most developed optimization strategies, it is not possible to

generate NO type convex hulls. From the engineering aspect, this hypothesis can

be accepted since the CNO type convex hulls fulfill the requirements of control

synthesis.
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Figure 5

Weighting functions of CNO type convex hull of the reduced TP model with 3 vertices

[AB]cno3

1
=

[

9.7873 × 102 1.0209 × 103 8.6644 × 10−1

−9.7957 × 102 −1.0200 × 103 −8.6591 × 10−1

]

[AB]
cno3

2
=

[

9.4943 × 102 1.0519 × 103 1.0101
−9.5043 × 102 −1.0509 × 103 −1.0091

]

[AB]cno3

3
=

[

1.0005 × 103 9.9947 × 102 1.8247 × 10−1

−1.0007 × 103 −9.9929 × 102 −1.8254 × 10−1

]
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6 Analysis of the convex representation

The goal of this section is to illustrate the dynamical accuracy of the different TP

models. Here the model accuracy is investigated by means of the difference between

the step response of the polytopic model and the original delayed model. Due to the

limited extent of this paper, only a set of practically interesting validation cases have

been included. The comparison is broken into two parts according to the constant

delay and varying delay cases.

6.1 Constant time-delay

Firstly, the dynamic accuracy of the HOSVD based canonical forms of the delayed

impedance model with different complexity is examined. Figure 6 shows the step

responses of the compared models at an arbitrarily chosen constant delay value

(τ = 0.05567). As input signal, a 1N force step was used at 0.1s in the simulation.

Subfigures 6/a-f shows the step responses of TP models with a different number of

neglected less significant vertices. The time plots confirm the result of the modeling

error analysis done in 4.2. As the values of ǫRND1000r suggested, the TP models show

similarly good accuracy with 6, 5 and 4 vertices and the model accuracy begins to

relapse with 3 vertices. A TP model with 2 and only 1 vertices cannot describe the

dynamics of the original delayed system properly.

For the purpose of confidence, the same simulations have been executed on CNO

type TP models with 5, 4 and 3 vertices (Figure 7). As was expected, the time

plots show the same result as the HOSVD based canonical type with equivalent

complexities.

We can conclude that the CNO type TP models with 5,4 and 3 vertices give very

similar responses independently from the complexity. The convex hull of the inves-

tigated polytopic model cannot be formed with less then three vertices because the

resulted domain of LPV models are not on the hyperline that can be defined by the

convex combinations of two vertex systems. The results suggest that the CNO type

convex TP model with 3 vertices provides sufficient accuracy for controller design

purposes.

For the quantitative comparison, the L2 norm of the position error (the square root

of sum of squares) and the maximum error is computed at four arbitrarily chosen τ
values (neither of them are on the grid M ) considering the 1s long execution of the

previously discussed simulation scenario. Results are displayed in Table 1.
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(b) Canonical form with 5 vertices
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(c) Canonical form with 4 vertices
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(d) Canonical form with 3 vertices
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(e) Canonical form with 2 vertices
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Figure 6

Comparison of the original delayed model and the HOSVD-based canonical form of the TP model with

different complexity
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(b) CNO4
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Figure 7

Comparison of the original delayed model and the CNO type TP model with different complexity

Table 1

Quantitative comparison of the original delayed model and the CNO type TP model with 3 vertices

L2 error Max error

τ = 0.01375s 2.6279× 10−5 9.8521× 10−7

τ = 0.02941s 4.0380× 10−5 5.9765× 10−6

τ = 0.04752s 4.3281× 10−5 1.0500× 10−5

τ = 0.06393s 1.0851× 10−4 1.3048× 10−5
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6.2 Varying time-delay

The models have been compared under varying delay as well. The value of τ(t) was

varied as a sine function of time τ(t) = 0.03 + sin(tπ)0.025. The input signal was

a square wave with the frequency of 2Hz and amplitude of 1N . Figure 8 shows the

result of the simulation.

Figure 8

Comparison under varying delay

Conclusion

In this paper the HOSVD based canonical form of the model of the generic impedance

controlled actuation with feedback delay was determined via a TP model transforma-

tion. A complexity trade off was also performed to determine non-exact TP models

neglecting vertex systems with the less contribution. Via this investigation it has

been proved that the TP model transformation is capable of manipulating the convex

hull of the model wherein time delay τ appears as an external parameter. It has been

shown that a convex polytop structure requires 6 vertex models for exact representa-

tion of the investigated model for any τ ∈ Ω. We presented the correlation between

the number of vertex models and the number of singular values of the HOSVD

based canonical form and the L2 norm based error of the polytopic structure over

the transformation space Ω. In order to satisfy the basic requirements of LMI based

design and further convex hull manipulation based optimization of the control design

SNNN, IRNO and CNO type convex TP models was generated for the reduced 3

vertex model based convex hull.
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