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Abstract: In this paper, we describe a hybrid clustering procedure which is well‐suited when 
we deal with a large data set. It combines the K‐Means clustering to handle large data sets, 
and an Interval valued data-type Hierarchical Clustering (IHCA). The Hierarchical Cluster 
Analysis is especially helpful when we want to detect the appropriate number of clusters.  
The hybrid clustering procedure relies on the following schema: First, we use the K‐Means 
algorithm in order to create pre‐clusters (e.g., 30), they contain a few examples and second, 
we start the IHAC from these pre‐clusters (summarized by interval data vectors- they contain 
more information than point-valued data, and such informational advantages could be 
exploited to yield more efficient analysis) to create the dendrogram. The main goal of this 
paper is show that hybrid cluster analysis is appropriate. A simple case study demonstrates 
the procedure for combining K-means/IHCA, which finds representative groups and thus, 
proves the efficiency of approach. 

Keywords: hybrid clustering; interval valued data-type; hierarchical clustering; interval 
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1 Introduction 

Cluster analysis is a form of exploratory data in which observations are divided into 
different groups (or classes or clusters) that share common characteristics in such a 
way that objects in the same group (called a cluster) are more similar (in some sense) 
to each other than to those in other groups (clusters). Clustering can therefore be 
formulated as a multi-objective optimization problem. Cluster analysis is an 
unsupervised machine learning technique. 

Some popular clustering algorithms includes K-Means Clustering, Hierarchical 
Clustering, Mean-Shift Clustering, Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), and Expectation-Maximization (EM) 
Clustering using Gaussian Mixture Models (GMM). 
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Two Step Cluster is an algorithm primarily designed to analyze large datasets.  
The two‐step clustering (called also “Hybrid Clustering”) under Tanagra is 
described on Tanagra - Data Mining and Data Science Tutorials1. A PCA 
(Principal Component Analysis) computed from the original variables. This pre‐
treatment cleans the dataset by removing the irrelevant information such as noise, 
etc. In this tutorial, the approach on a large dataset with 500,000 observations and 
68 variables using Tanagra 1.4.27 and R 2.7.2. The two‐step clustering procedure 
relies on the following schema: first, the K‐means algorithm is used in order to 
create pre‐clusters (e.g., 50), they contain a few examples; second, starting the HCA 
from these pre‐clusters to create the dendrogram. 

SPSS Statistics 11.5 and later releases offer a two-step clustering method (SPSS 
2001, 2004). SPSS Two Step clustering was developed by Chiu, Fang, Chen, Wang 
and Jeris 2001 for the analysis of large data sets. The procedure consists of two 
steps [1]: 

Step 1) The procedure begins with the construction of a Cluster Features (CF) Tree. 
The tree begins by placing the first case at the root of the tree in a leaf node that 
contains variable information about that case. Each successive case is then added to 
an existing node or forms a new node, based upon its similarity to existing nodes 
and using the distance measure as the similarity criterion. A node that contains 
multiple cases contains a summary of variable information about those cases. Thus, 
the CF tree provides a capsule summary of the data file. 

Step 2) The leaf nodes of the CF tree are then grouped using an agglomerative 
clustering algorithm. The agglomerative clustering can be used to produce a range 
of solutions. To determine which number of clusters is "best", each of these cluster 
solutions is compared using Schwarz's Bayesian Criterion (BIC) or the Akaike 
Information Criterion (AIC) as the clustering criterion. 

In this paper, we deal with Hybrid Clustering. The algorithm integrates IHCA 
(Interval-valued data HCA) [2] and K-Means clustering algorithms to cluster. We 
will focus on Interval Ward Clustering (IWard)) method [3] [4]. The Range 
Euclidean Metric for interval-valued data is used to compare two vectors of 
intervals. The classical Ward method is also applied for comparison. 

The rest of paper is organized as follows: Section 2 presents basic concepts of 
interval arithmetic and distance measures for interval data. Section 3 describes 
Interval Ward clustering. Section 4 presents the Hybrid Clustering case study. 
Section 5 provides the conclusion and discusses future work. 

 
1 http://data-mining-tutorials.blogspot.com/2009/06/two-step-clustering-for-handling-

large.html [Accessed January 1, 2024] 
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2 Interval Analysis 

Interval arithmetic is a method for determining absolute errors, considering all data 
errors and rounding [5]. Interval arithmetic makes systematic calculations through 
intervals [𝑥𝑥] = �𝑥𝑥,  𝑥𝑥� limited to representable machine numbers 𝑥𝑥,  𝑥𝑥 ∈ 𝔽𝔽, instead 
of real numbers 𝑥𝑥. Arithmetic operations +,   −,   ×, ÷ are defined using intervals. 
Interval algorithms produce interval results guaranteed to contain the true solution. 
For each 𝑥𝑥 ∈ [𝑥𝑥], and each 𝑦𝑦 ∈ [𝑦𝑦]: 

      [𝑥𝑥] + [𝑦𝑦] = �𝑥𝑥, 𝑥𝑥� + �𝑦𝑦,𝑦𝑦� = �𝑥𝑥 + 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦� 

      [𝑥𝑥] − [𝑦𝑦] = �𝑥𝑥, 𝑥𝑥� − �𝑦𝑦,𝑦𝑦� = �𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 − 𝑦𝑦� 

      [𝑥𝑥] ⋅ [𝑦𝑦] = �𝑥𝑥, 𝑥𝑥� ⋅ �𝑦𝑦,𝑦𝑦� = �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦� ,𝑚𝑚𝑚𝑚𝑥𝑥 �𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑥𝑥𝑦𝑦�� 

       [𝑥𝑥]
[𝑦𝑦]

= �𝑥𝑥, 𝑥𝑥� ⋅ 1

�𝑦𝑦,𝑦𝑦�
= �𝑥𝑥, 𝑥𝑥� ⋅ �1

𝑦𝑦
, 1
𝑦𝑦
� ,  if 0 ∉ �𝑦𝑦,𝑦𝑦�    (1) 

The interval arithmetic operations are defined for exact calculation [5]. Machine 
computations are affected by rounding errors. Therefore, the formulas were 
modified in order to consider the called directed rounding [6]. 

Throughout this paper, all matrices are denoted by bold capital letters (𝐀𝐀), vectors 
by bold lowercase letters (𝒂𝒂), and scalar variables by ordinary lowercase letters (a). 
Interval variables are enclosed in square brackets ([𝑨𝑨], [𝒂𝒂], [𝑚𝑚]). Underscores and 
overscores denote lower and upper bounds, respectively. A real interval [x] is a 
nonempty set of real numbers: 

       [𝑥𝑥] = �𝑥𝑥, 𝑥𝑥� = �𝑥𝑥� ∈ 𝑅𝑅: 𝑥𝑥 ≤ 𝑥𝑥� ≤ 𝑥𝑥�                                                                        (2) 

where 𝑥𝑥 and 𝑥𝑥 are called the infimum (inf) and supremum (sup), respectively, and 𝑥𝑥� 
is a point value belonging to an interval variable [𝑥𝑥]. The set of all intervals ℝ is 
denoted by 𝐼𝐼(ℝ) where: 

       𝐼𝐼(𝑅𝑅) = ��𝑥𝑥, 𝑥𝑥�: 𝑥𝑥, 𝑥𝑥 ∈ 𝑅𝑅: 𝑥𝑥 ≤ 𝑥𝑥�     (3) 

1.1 Order Relations of Intervals 

The important issue in using interval data for decision problems is the choice of an 
appropriate interval order relation. According to Moore et al. [7], two transitive 
order relations can be defined for intervals: 

(i) [𝑥𝑥] ≤ [𝑦𝑦] ⇔ 𝑥𝑥 ≤ 𝑦𝑦, and (ii) [𝑥𝑥] ⊆ [𝑦𝑦] ⇔ 𝑦𝑦 ≤ 𝑥𝑥 and  𝑥𝑥 ≤ 𝑦𝑦 (set inclusion) 

Let [𝑥𝑥] and [𝑦𝑦] be a pair of arbitrary intervals. These can be classified as follows: 
non-overlapping intervals; partially overlapping intervals; completely overlapping 
intervals. In contrast to real numbers, it is not straightforward to define a total order 
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relation for intervals. As a result, researchers have defined order relations in 
different ways. Most of these definitions cannot specify the order relations properly 
for completely overlapping intervals. A detailed description and comparison 
between these and other ranking definitions is given in Karmakar and Bhunia [8]. 

Definition. Given two intervals [𝑥𝑥], [𝑦𝑦] ∈ 𝐼𝐼(ℝ),  [𝑥𝑥] ≤ [𝑦𝑦], iff 𝑚𝑚([𝑥𝑥]) ≤ 𝑚𝑚([𝑦𝑦]), 
where 𝑚𝑚(𝒳𝒳) is a point within the interval 𝒳𝒳  ∈ �{[𝑥𝑥], [𝑦𝑦]}, usually the midpoint, 
infimum, and supremum. We propose the following order relation: [𝑥𝑥] ≤ [𝑦𝑦] is 
determined by choosing the interval infimum that captures the “minimum” between 
the two intervals, i.e., the interval with the lowest infimum. 

1.2 Range of Interval-valued Function 

The range of an interval-valued function can be expressed in interval form as 

𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟�𝑓𝑓([𝒙𝒙])� = 𝑓𝑓([𝑥𝑥1], [𝑥𝑥2], … , [𝑥𝑥𝑛𝑛]) 

                              = [𝑚𝑚𝑚𝑚𝑓𝑓 (𝑓𝑓([𝑥𝑥1], [𝑥𝑥2], … , [𝑥𝑥𝑛𝑛]), 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑓𝑓([𝑥𝑥1], [𝑥𝑥2], … , [𝑥𝑥𝑛𝑛]))]        (4) 

where the inf and sup are taken for all 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥]𝑖𝑖(𝑚𝑚 = 1, …𝑚𝑚). 

Finding the range of a multi-variable function over a box is practical problem 
encountered in numerous applications. In special cases the exact range can be found 
in a straightforward way [7] [9]. 

1.3 Range Euclidean Distance 

The Range Euclidean Distance between interval vectors [𝒑𝒑] and [𝒒𝒒] is the interval 
length of the lines segment connecting them (  [𝒑𝒑][𝒒𝒒] ). 

In cartesian coordinates, if [𝒑𝒑] = ([𝑠𝑠1], [𝑠𝑠2], … , [𝑠𝑠𝑛𝑛]) and [𝒒𝒒] =
([𝑞𝑞1], [𝑞𝑞2], … , [𝑞𝑞𝑛𝑛]) are two interval vectors in Euclidean n-space (i.e., 𝐼𝐼(ℝ𝑛𝑛) ), then 
the distance [𝑑𝑑2] from [𝒑𝒑] to [𝒒𝒒] , or from [𝒒𝒒]  to [𝒑𝒑] is given by the Interval 
Pythagorean formula: 

𝑑𝑑2([𝒑𝒑], [𝐪𝐪])   =  𝑑𝑑2([𝐪𝐪], [𝐩𝐩])    = 

                         = �([𝑞𝑞1] − [𝑠𝑠1])2 + ([𝑞𝑞2] − [𝑠𝑠2])2 + ⋯+ ([𝑞𝑞𝑛𝑛] − [𝑠𝑠𝑛𝑛])2 

                         = �∑ ([𝑞𝑞𝑖𝑖] − [𝑠𝑠𝑖𝑖])2𝑛𝑛
𝑖𝑖=1      (5) 
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3 Interval-valued Hierarchical Clustering 

The hierarchical cluster analysis has two methods: one is the "bottom-up" 
agglomerative method, and the other is the "up-bottom" divisive method.  
The agglomerative method starts from a single point of data and merges adjacent 
points step by step according to a given rule until all data points are combined into 
one class. While the divisive method is to treat the whole data set as a whole first 
and partition it according to certain rules until all data points are separated from 
each other. These two pathways are inverse operations, and the dendrogram 
obtained under the same rules are the same. Because that agglomerative hierarchical 
clustering is more commonly used, it is used here. The steps of an agglomerative 
hierarchical clustering are as follows [10-16]. 

Consider each data point as a single-point cluster to forms N clusters; 

1) Find the closest (most similar) pair of clusters and merge them into a single 
cluster, so that now you have N-1 clusters; 

2) Compute distances (similarities) between the new cluster and each of the 
old clusters; 

3) Repeat steps 2 and 3 until all items are clustered into a single cluster of 
size N; 

4) Draw a dendrogram; 
5) Select a trim threshold to obtain the cluster classification from the 

dendrogram. 

A Dendrogram is a type of tree diagram showing hierarchical relationships between 
different sets of data. It contains the memory of hierarchical clustering algorithm, 
so just by looking at the Dendrogram you can tell how the cluster is formed. 

Note: 

a) Distance between data points represents dissimilarities; 
b) Height of the blocks represents the distance between clusters. 

Hierarchical clustering cluster analysis (HCA), is a whole family of algorithms that 
differ by distance updating. The seven popular methods include Single Linkage, 
Complete Linkage, Simple Average (WPGMA -Weighted Pair Group Method 
Average), Group Average (UPGMA -Unweighted Pair Group Method Average), 
Median (WPGMC -Weighted Pair Group Method Centroid), Centroid(UPGMC - 
Unweighted Pair Group Method Centroid), and Ward's Minimum Variance Method. 
They are implemented in standard numerical and statistical software such as Octave, 
MATLAB, SciPy, Mathematica, R. 
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We will use The Hybrid Clustering algorithm integrates IHCA/HCA and k-means 
clustering algorithms to cluster interval-valued data. We will focus on Interval Ward 
Clustering (IWard) method [3] [4]. The Range Euclidean Metric for interval-valued 
data is used to compare two vectors of intervals. The classical Ward method is also 
applied for comparison. 

Clustering algorithms is used for problem solutions in extensive practical 
applications across diverse domains [17-19]. Some recent clustering research 
contributions on clustering methods and application include [20-23]. 

4 Case Study: Hybrid Clustering 

Clustering is related to the unsupervised learning, where we use a cluster algorithm 
on unlabeled data and try to form groups of similar data items. 

The Iris Dataset contains four features (length and width of sepals and petals) of 50 
samples of three species of Iris (Iris-setosa, Iris-virginica and Iris-versicolor).  
The dataset is often used in data mining, classification and clustering examples and 
to test algorithms. Table III shows the classical Iris Data Set. 

For clustering we have no such labeled data like Iris setosa, Iris virginica and Iris 
versicolor species. We grouped similar irises based on Two-step algorithm to make 
3 groups (8 schemas). We associate each cluster to a particular specie and the 
accuracy is calculated. 

3.1 Hybrid Clustering on Iris dataset 

The Hybrid Clustering is carried out in a two‐step clustering procedure relies on the 
following schema: 

• First Step:   The K‐Means algorithm is used in order to create pre‐clusters;  

• Second Step:  IHCA/HCA from pre‐clusters. 

Kmeans () in R 

Now, using Iris Dataset, we can perform the cluster analysis.  Important note: We’ll 
still need to drop the class attribute Information (Iris-setosa, Iris-versicolor, Iris-
virginica). These are their corresponding class labels and are not useful in 
clustering. 

We used the followings R commands: 

set.seed(10) \#Set the seed for reproducibility 

kmeans(data,centers=30,algorithm="MacQueen",iter.max=400)  
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3.2 Two Cases 

• First Step: the K‐means algorithm is used in order to create pre‐clusters; 
• Second Step: HCA 2 Cases: 

- Case 1- IWard (in Octave) - 30 representative interval valued data 
vector components (Scenario: K30_IW3); 

- Case 2- Ward - 30 representative vectors of mean values components 
(Scenario: K30_W3). 

Table I shows k=30 from k-means results and 〈𝑪𝑪〉 ∶  [𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑥𝑥] component wise 
representative interval vector data. 

Table I 
Intervals from Iris Data Set K-means 

C Iris sample label             
(types of irises) 

〈𝑪𝑪〉 

1 137, 149 ⟨[6.2,6.3], [3.4,3.4], [5.4,5.6], [2.3,2.4]⟩ 
2  64, 74, 79, 92 〈[6.0,6.1], [2.8,3.0], [4.5,4.7], [1.2,1.5]〉 
3  104, 112, 117, 129, 133, 138 〈[6.3,6.5], [2.7,3.1], [5.3,5.6], [1.8,2.2]〉 
4  62, 72, 75, 98 〈[5.9,6.4], [2.8,3], [4.0,4.3], [1.3,1.5]〉 
5  63, 69, 88 〈[6.0, 6.3], [2.2, 2.3], [4.0, 4.5], [1, 1.5]〉 
6 15, 16,19, 34 〈[5.5, 5.8], [3.8, 4.4], [1.2, 1.7], [0.2, 0.4]〉 
7  102, 114, 143 〈[5.7, 5.8], [2.5, 2.7], [5.0, 5.1], [1.9, 2.0]〉 
8  111, 116, 142, 146, 148 〈[6.40,6.9], [3.0,3.2], [5.1,5.3], [2.0,2.3]〉 
9  24, 27, 44, 45 ⟨[5.0,5.1], [3.3,3.8], [1.6,1.9], [0.4,0.6]⟩ 
10  9, 14, 39, 42 〈[4.3,4.5], [2.3,3.0], [1.1,1.4], [0.1,0.3]〉 
11  54, 56, 60, 65, 67, 68, 70, 83, 

85, 89, 90, 91, 93, 95, 96, 97, 
100, 107 

〈[4.9,5.8], [2.3,3.0], [3.6,4.5], [1.0,1.7]〉 

12  106, 119, 123, 136 〈[7.6,7.7], [2.6,3], [6.1,6.9], [2,2.3]〉 
13  110, 118, 132 ⟨[7.2,7.9], [3.6,3.8], [6.1,6.7], [2,2.5]⟩ 
14  3, 7, 23, 43, 48 ⟨[4.4,4.7], [3.2,3.6], [1.0,1.4], [0.2,0.3]⟩ 
15  52, 57, 86 ⟨[6.0,6.4], [3.2,3.4], [4.5,4.7], [1.5,1.6]⟩ 
16  58, 61, 80, 81, 82, 94, 99 〈[4.9,5.7], [2.0,2.6], [3.0,3.8], [1.0,1.1]〉 
17  11, 21, 28, 32, 37, 49 〈[5.2,5.5], [3.4,3.7], [1.3,1.7], [0.2,0.4]〉 
18 73, 84, 120, 134, 135, 147  ⟨[6.0,6.3], [2.2,2.8], [4.9,5.6], [1.4,1.9]⟩ 
19  105, 113, 121, 125, 140, 141, 

144, 145 
⟨[6.5,6.9], [3.0,3.3], [5.4,5.9], [2.1,2.5]⟩ 

20  51, 53, 55, 59, 66, 76, 77, 78, 
87 

⟨[6.5,7.0], [2.8,3.2], [4.4,5.0], [1.3,1.7]⟩ 

21  1, 5, 8, 18, 29, 36. 40, 41, 50 ⟨[5, 5.2], [3.2, 3.6], [1.2, 1.5], [0.2, 0.3]⟩ 
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22  109 ⟨[6.7,6.7], [2.5,2.5], [5.8,5.8], [1.8,1.8]⟩ 
23  2, 4, 10, 13, 26, 31, 35, 38, 46  ⟨[4.6,5], [3,3.1], [1.4,1.6], [0.1,0.3]⟩ 
24  101 ⟨[6.3,6.3], [3.3,3.3], [6.0,6.0], [2.5,2.5]⟩ 
25  115, 122 ⟨[5.6,5.8], [2.8,2.8], [4.9,5.1], [2,2.4]⟩ 
26  6, 17, 20, 22, 33, 47 ⟨[5.1,5.4], [3.7,4.1], [1.3,1.7], [0.1,0.4]⟩ 
27  150 ⟨[5.9,5.9], [3.0,3.0], [5.1,5.1], [1.8,1.8]⟩ 
28  71, 124, 127, 128, 139 ⟨[5.9,6.3], [2.7,3.2], [4.8,4.9], [1.8,1.8]⟩ 
29  103, 108, 126, 130, 131 ⟨[7.1,7.4], [2.8,3.2], [5.8,6.3], [1.6,2.1]⟩ 
30  12, 25, 30 ⟨[4.7,4.8], [3.2,3.4], [1.6,1.9], [0.2,0.2]⟩ 

𝐶𝐶 - K-Means cluster label 
Types of irises = Iris-setosa (1-50), Iris-versicolor (51-100), Iris-virginica (101-150) 

〈𝑪𝑪〉:[min, max] component wise representative data 

In sequel we focus on the relative impact of each one HCA method choice. 

Table II shows the accuracy of 2 cases Hybrid clustering results: K30_IW3 - starting 
from 30 representative interval valued data vector components we get from IWard 
clustering result with 90% of accuracy. K30_W3 - 30 representative vectors of 
mean values components we get from Ward clustering result with 90%  of accuracy. 
Overall, we see a good agreement between K30_IW3 and K30_W3 accuracy. 

It should be highlighted that the Case 2 using IWard (we observed similar results 
and lesser processing) can allow for a reliable analysis of clustering results because 
we can track the intervals on second step, by means of interval valued data 
dendrogram produced. 

Table 2 
K-means (30 clusters first step) → Ward (3 clusters second step) 

Scenario  𝐶𝐶 Iris data label (wrong types of 
irisis) 

Accuracy 

K30_IW3 

1 1, 3, 8, 12, 13, 19, 22, 24 

0.90  2  2, 4, 5, 7(3), 11(1), 15, 16, 18(4), 
20, 25(2), 27(1), 28(4) 

 3   6, 9, 10, 14, 17, 21, 23, 26, 30(3)  

K30_W3 

1 1, 3, 8, 12, 13, 19, 22, 24, 29 

0.90  2   2, 4, 5, 7(3), 11(1), 15, 16, 18(4), 
20, 25(2), 27(1), 28(4)  

3   6, 9, 10, 14, 17, 21, 23, 26, 30  
𝐶𝐶 = (1- Iris-virginica, 2- Iris-versicolor, 3- Iris-setosa) 

Conclusions 

This paper investigated the hybrid clustering (two-step) method, designed to cluster 
large data sets. In second step we introduce Case 2 with IWard, for clustering 
Interval-valued Data, based on the Range Euclidean Metric. 
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Hybrid Clustering using Interval-valued Data information related to representative 
interval vector with the uncertainty of input data. Basically, it allows comparison 
and quantitative judgement over data granulation, with different pre-clusters (e.g., 
10, 20, 30, 40, and 50). We can then apply the procedure, by performing 
experiments on several different datasets - including very large data sets, with 
known cluster patterns, in order to better understand the technique. 

Future studies may use other IHCA cluster methods, for interval-valued data. We 
also have the ongoing K-[Means] (K-Means tailored for interval valued data) to 
acquire a Hybrid Clustering method, for interval-valued data. In addition, there are 
ongoing Hybrid Clustering methods, for interval-valued data that are tailored for 
Interval-Valued Data. 
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Table 3 
Iris Data Set [24] 

 

S Iris-setosa 
Values(cm) S Iris-versicolor 

Values(cm) S Iris-virginica 
Values(cm) 

1  5.10 3.50 1.40 0.20   51  7.00 3.20 4.70 1.40  101  6.30 3.30 6.00 2.50  
2  4.90 3.00 1.40 0.20  52  6.40 3.20 4.50 1.50  102  5.80 2.70 5.10 1.90  
3  4.70 3.20 1.30 0.20  53  6.90 3.10 4.90 1.50  103  7.10 3.00 5.90 2.10  
4  4.60 3.10 1.50 0.20  54  5.50 2.30 4.00 1.30  104  6.30 2.90 5.60 1.80  
5  5.00 3.60 1.40 0.20  55  6.50 2.80 4.60 1.50  105  6.50 3.00 5.80 2.20  
6  5.40 3.90 1.70 0.40  56  5.70 2.80 4.50 1.30  106  7.60 3.00 6.60 2.10   
7  4.60 3.40 1.40 0.30  57  6.30 3.30 4.70 1.60  107  4.90 2.50 4.50 1.70   
8  5.00 3.40 1.50 0.20  58  4.90 2.40 3.30 1.00  108  7.30 2.90 6.30 1.80  
9  4.40 2.90 1.40 0.20  59  6.60 2.90 4.60 1.30  109  6.70 2.50 5.80 1.80  
10  4.90 3.10 1.50 0.10  60  5.20 2.70 3.90 1.40  110  7.20 3.60 6.10 2.50  
11  5.40 3.70 1.50 0.20  61  5.00 2.00 3.50 1.00  111  6.50 3.20 5.10 2.00  
12  4.80 3.40 1.60 0.20  62  5.90 3.00 4.20 1.50  112  6.40 2.70 5.30 1.90  
13  4.80 3.00 1.40 0.10  63  6.00 2.20 4.00 1.00  113  6.80 3.00 5.50 2.10  
14  4.30 3.00 1.10 0.10  64  6.10 2.90 4.70 1.40  114  5.70 2.50 5.00 2.00  
15  5.80 4.00 1.20 0.20  65  5.60 2.90 3.60 1.30  115  5.80 2.80 5.10 2.40  
16  5.70 4.40 1.50 0.40  66  6.70 3.10 4.40 1.40  116  6.40 3.20 5.30 2.30  
17  5.40 3.90 1.30 0.40  67  5.60 3.00 4.50 1.50  117  6.50 3.00 5.50 1.80  
18  5.10 3.50 1.40 0.30  68  5.80 2.70 4.10 1.00  118  7.70 3.80 6.70 2.20  
19  5.70 3.80 1.70 0.30  69  6.20 2.20 4.50 1.50  119  7.70 2.60 6.90 2.30  
20  5.10 3.80 1.50 0.30  70  5.60 2.50 3.90 1.10  120  6.00 2.20 5.00 1.50  
21  5.40 3.40 1.70 0.20  71  5.90 3.20 4.80 1.80  121  6.90 3.20 5.70 2.30  
22  5.10 3.70 1.50 0.40  72  6.10 2.80 4.00 1.30  122  5.60 2.80 4.90 2.00  
23  4.60 3.60 1.00 0.20  73  6.30 2.50 4.90 1.50  123  7.70 2.80 6.70 2.00  
24  5.10 3.30 1.70 0.50  74  6.10 2.80 4.70 1.20  124  6.30 2.70 4.90 1.80  
25  4.80 3.40 1.90 0.20  75  6.40 2.90 4.30 1.30  125  6.70 3.30 5.70 2.10  
26  5.00 3.00 1.60 0.20  76  6.60 3.00 4.40 1.40  126  7.20 3.20 6.00 1.80  
27  5.00 3.40 1.60 0.40  77  6.80 2.80 4.80 1.40  127  6.20 2.80 4.80 1.80  
28  5.20 3.50 1.50 0.20  78  6.70 3.00 5.00 1.70  128  6.10 3.00 4.90 1.80  
29  5.20 3.40 1.40 0.20  79  6.00 2.90 4.50 1.50  129  6.40 2.80 5.60 2.10  
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30  4.70 3.20 1.60 0.20  80  5.70 2.60 3.50 1.00  130  7.20 3.00 5.80 1.60  
31  4.80 3.10 1.60 0.20  81  5.50 2.40 3.80 1.10  131  7.40 2.80 6.10 1.90  
32  5.40 3.40 1.50 0.40  82  5.50 2.40 3.70 1.00  132  7.90 3.80 6.40 2.00  
33  5.20 4.10 1.50 0.10  83  5.80 2.70 3.90 1.20  133  6.40 2.80 5.60 2.20  
34  5.50 4.20 1.40 0.20  84  6.00 2.70 5.10 1.60  134  6.30 2.80 5.10 1.50  
35  4.90 3.10 1.50 0.10  85  5.40 3.00 4.50 1.50  135  6.10 2.60 5.60 1.40  
36  5.00 3.20 1.20 0.20  86  6.00 3.40 4.50 1.60  136  7.70 3.00 6.10 2.30  
37  5.50 3.50 1.30 0.20  87  6.70 3.10 4.70 1.50  137  6.30 3.40 5.60 2.40  
38  4.90 3.10 1.50 0.10  88  6.30 2.30 4.40 1.30  138  6.40 3.10 5.50 1.80  
39  4.40 3.00 1.30 0.20  89  5.60 3.00 4.10 1.30  139  6.00 3.00 4.80 1.80  
40  5.10 3.40 1.50 0.20  90  5.50 2.50 4.00 1.30  140  6.90 3.10 5.40 2.10  
41  5.00 3.50 1.30 0.30  91  5.50 2.60 4.40 1.20  141  6.70 3.10 5.60 2.40  
42  4.50 2.30 1.30 0.30  92  6.10 3.00 4.60 1.40  142  6.90 3.10 5.10 2.30  
43  4.40 3.20 1.30 0.20  93  5.80 2.60 4.00 1.20  143  5.80 2.70 5.10 1.90  
44  5.00 3.50 1.60 0.60  94  5.00 2.30 3.30 1.00  144  6.80 3.20 5.90 2.30  
45  5.10 3.80 1.90 0.40  95  5.60 2.70 4.20 1.30  145  6.70 3.30 5.70 2.50  
46  4.80 3.00 1.40 0.30  96  5.70 3.00 4.20 1.20  146  6.70 3.00 5.20 2.30  
47  5.10 3.80 1.60 0.20  97  5.70 2.90 4.20 1.30  147  6.30 2.50 5.00 1.90  
48  4.60 3.20 1.40 0.20  98  6.20 2.90 4.30 1.30  148  6.50 3.00 5.20 2.00  
49  5.30 3.70 1.50 0.20  99  5.10 2.50 3.00 1.10  149  6.20 3.40 5.40 2.30  
50  5.00 3.30 1.40 0.20  100  5.70 2.80 4.10 1.30  150  5.90 3.00 5.10 1.80  

S = sample label 

Values = (sepal length, sepal width, petal length, petal width) 
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