
Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 49 –

Modelling Execution Tracing Quality by Means

of Type-1 Fuzzy Logic

Tamás Galli, Francisco Chiclana, Jenny Carter, Helge Janicke

Centre for Computational Intelligence, Faculty of Technology, De Montfort

University, The Gateway, Leicester, LE1 9BH, United Kingdom

p10553741@myemail.dmu.ac.uk, chiclana@dmu.ac.uk, jennyc@dmu.ac.uk,

heljanic@dmu.ac.uk

Abstract: Execution tracing quality is a crucial characteristic which contributes to the

overall software product quality though the present quality frameworks neglect this

property. In the scope of this pilot study the authors introduce a process to create a model

for describing execution tracing as a quality property; moreover, the performance of four

different models created is compared. The process and the models presented are capable of

capturing subjective uncertainty which is an intrinsic part of the quality measurement

process. In addition, the possibility of linking the presented models to software product

quality frameworks is also illustrated.

Keywords: software product quality models; execution tracing quality; fuzzy logic;

uncertainty

1 Introduction

Execution tracing and logging are frequently used as synonyms in software

technology; however, the first one serves the software developers to localize

errors in applications, while the second one contributes to administration tasks to

check the state of software systems. In the scope of this publication we also use

the two phrases as synonyms.

Execution tracing dumps the data about the program state and the path of

execution for developers for offline analysis, which helps to investigate error

scenarios and follow changes in the state of the application. Thus, execution

tracing belongs to dynamic analysis techniques i.e. testing, and investigating live

systems which are integral parts of the maintenance activities. Dynamic analysis

techniques can be applied only if the software is built and executable. Static and

dynamic analysis techniques possess two significant common attributes: (1) they

are applied to achieve the same goal to diagnose errors; (2) they generalize from a

subset of all possible executions. Each technique has its own particular advantage.

mailto:p10553741@myemail.dmu.ac.uk
mailto:chiclana@dmu.ac.uk
mailto:jennyc@dmu.ac.uk
mailto:heljanic@dmu.ac.uk

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 50 –

Static analysis can produce sound results however with general properties, which

are not precise but these results are accurate and have validity over all possible

inputs. Dynamic analysis examines the concrete execution of the program by

observing its behaviour, which is precise but the results are not valid for all

possible inputs. The literature promotes the synergic use of these techniques [37],

[6].

The increasing size and complexity of software systems considering their varying

workload makes localizing software errors more difficult. This difficulty is more

challenging with regard to the enormous number of software and hardware

combinations. Adding execution trace to some key places of the application can

drastically reduce the time spent with debugging. Consequently, execution tracing

has direct impact on the development and maintenance costs [2].

In addition, debugging is not necessarily a feasible option when (1) applications

perform process control, (2) the error is related to parallel processing and race

conditions, or (3) performance problems need to be analysed [2], [35]. In the case

of distributed, multithreaded applications execution tracing is the only adequate

instrument to help with the error analysis as states Laddad in [20]. In the case of

embedded applications, which have no user interface, only by means of execution

tracing can the developer or system maintainer answer such questions as to what

the application is doing [34].

Moreover, execution tracing significantly influences program comprehension, the

importance of which arises if the program documentation is deficient or of poor

quality. In a study by Fjeldstad and Hamlen [7] it is estimated that the

comprehension of existing software systems consumes between 47% and 62% of

maintenance resources [25], [31]. An experiment conducted by Karahasanovic and

Thomas introduced in [19] categorized the difficulties related to the

maintainability of object-oriented applications. Program logic was ranked the first

in the source of difficulties. Understanding the program logic belongs to the

category of software specific knowledge which can greatly be enhanced by

execution tracing, offering a basis for trace visualization and program

comprehension [31].

Tracing, logging or constraint checks represent a significant part of the source

code of applications. Spinczyk, Lehmann and Urban in [33] state that the ratio of

code lines related to monitoring activities reached approximately 25% in their

measurements targeted at certain commercial applications. This ratio shows that a

significant amount of source code is written to deal with such tasks as execution

tracing which in itself is an important quality factor.

In conclusion, the above indicate that execution tracing has significant impact on

the analysability of software systems. Moreover, measuring quality is difficult,

some properties are easier to measure than others even if they are well defined

[27]. Quality frameworks include the description of qualitative properties in

quantitative manner and quality measure elements which cannot be measured

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 51 –

directly but only derived. Consequently, the measurement process implicates

subjective uncertainty which has also been admitted by the standard ISO/IEC

25021:2007 involved in software product quality by defining the subjective

measurement method. In the scope of this article the authors introduce a pilot

study to describe execution tracing quality by means of a model which can

encompass subjective uncertainty. The model itself does not perform quality

assessment but it can be used to define quality targets against which a product can

be assessed.

The remainder of this article is structured as follows: Section 2 describes how the

quality model pilot was built including identification of inputs, outputs and

construction of the knowledge base. Section 3 introduces the validation of the

quality model. Section 4 describes the limitations of the pilot study and gives an

outlook to the final model while Section 5 introduces related works. We

summarise the contributions of our work in Section “Conclusions” and outline the

future work in this area.

2 Constructing the Model

The model reflects the results of an empirical research which comprises of two

parts: (1) a qualitative part to determine the model’s inputs, i.e. the quality

properties on which execution tracing quality depends, and (2) a quantitative part

to describe the relationships between the inputs and the output.

The qualitative research results from a brainstorming session and further

processing of the output of this session. Brainstorming served as a method of data

collection, developed by A. Osborn and made more sophisticated by H. C. Clark

as a technique to create, collect, express ideas to a topic [34]. The main principle

of the method is formed by two fundamental factors: (1) each group member must

have the possibility to express ideas without having to expose them to a critic at

first, then (2) the ideas can be developed further by other group members.

Consequently, synergistic effects can lead to the triggering of ideas by those

already present [33]. Before and after the idea generation phase an ideation phase

must take place. Before ideation the participants think over the brainstorming

question individually as preparation for the brainstorming [13]. The idea

generation is followed by an ideation phase again where evaluation of the

collected ideas takes place [34]. The critics towards this method mainly focus on

the idea generation phase regardless of ideation that takes place before and after;

however, Osborn did not propose brainstorming instead of the ideation but as a

supplement to it [13]. In this method the quantity of ideas is not limited. The more

ideas that are collected the more probable it is to have qualitative ideas among

them. The latter has been questioned in [8], which contradicts the views held in

[13] in some respects.

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 52 –

The output of the brainstorming is a list of raw ideas considered to be feasible by

the group [34]. This list forms the possible input candidates of the model, which

need to undergo further analysis.

The quantitative part of the research formalizes the relationships of the inputs in

the output. For collecting this information, experiences of one software developer

involved also in software maintenance for several years were scrutinized. The

quantitative part of the research needs to use methods to deal with subjective

uncertainty. Consequently, fuzzy logic is used to describe the input-output

relationships, which also offers tolerance towards imprecision [37].

Fuzzy logic offers basically two theoretical approaches to the problem: type-1 and

type-2 fuzzy logic. Type-1 fuzzy logic can consider a certain amount of subjective

uncertainty and it usually performs well in process control but shows less positive

results in decision making where larger amounts of uncertainty need to be

considered. In contrast, type-2 fuzzy logic performs well in both situations but the

operations and inference are more complex and computationally more expensive

than the operations and inference of type-1 fuzzy logic. In the pilot study

described in this paper type-1 fuzzy logic is used [23], [5], [17], [18].

Fuzzy modelling makes it possible to incorporate human expertise in the model

directly [14], [4]. Castillo and Melin recommend the following modelling steps

[4]:

1. Determining the relevant input and output variables

2. Choosing the type of the fuzzy inference system

3. Determining the number of linguistic terms associated with each input

and output variable

4. Designing the fuzzy if-then rules

5. Choosing memberships functions

6. Interviewing human experts to determine the parameters of membership

functions

7. Refine the parameters of membership functions

As four fuzzy models have been built and tested in the scope of this pilot study,

the above steps were not performed in the same order as they stand in the list. In

addition, tuning the membership functions did not take place to be able to

compare the performance of the different models with the same membership

functions.

2.1 Determining the Inputs and the Output of the Model

The output of the model, i.e. execution tracing quality, originates from the goals of

the research; meanwhile, the possible inputs, i.e. quality properties on which

execution tracing quality depends, were identified by brainstorming.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 53 –

The brainstorming group was constructed of software developers and maintainers

with several years of experience. The list of feasible ideas collected by the group

underwent analysis by two experts who scored the input candidates according to

their importance with regard to execution tracing quality. The experts had to

distribute the same amount of scores among the items collected i.e. constant sum

scaling was applied [22].

The arithmetic means of the scores assigned by experts were calculated. Each

input candidate that has been selected as input has a relative importance above

10% according to the judgement of the experts. In this way the chosen inputs of

the execution tracing quality model are:

1. Processability

Processability refers to such properties of the execution traces whether

(1) the trace possesses appropriate granularity for the examination of the

execution path, (2) communication dialogs can uniquely be identified, (3)

threads can uniquely be identified, (4) process IDs are traced, (5) error

severity is traced, (6) component interfaces can be traced, (7) trace

entries are marked with a timestamp with appropriate granularity.

2. Code Coverage

The property code coverage indicates maximally how many per cent of

the source code is covered with execution tracing.

3. Configurability

Configurability encompasses how easily and sophisticatedly the

execution tracing can be configured. This property includes such

judgements whether (1) execution tracing can be set to different levels of

granularity, (2) the configuration change in execution tracing requires

complex actions from the operators, developers or maintainers, (3) it is

possible to configure a performance trace which only traces method

invocations at the component boundaries to have less impact on the

performance, (4) it is possible to trace in different outputs including file,

database, network socket, (5) it is possible to trace in different formats

including: plain text, xml, html, proprietary binary, ASN.1 BER, ASN.1

PER.

4. Consequent Naming

Consequent naming refers to the property whether the same events are

always traced with the same pattern in the output, including whether (1)

exceptions are always designated with the same identifiers, (2) the same

level of errors and warnings are consequently used, (3) method entry and

exit points are consequently traced.

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 54 –

2.2 Linguistic Variables

The notion of linguistic variables was introduced by L. Zadeh [38]. These

variables are able to handle imprecision and offer a basis also for natural language

computation. The formalism implemented by these variables and the if-then rules

establishes an effective modelling language [37].

Before identifying the appropriate linguistic variables, each input and output

needed to undergo partitioning to determine the granularity with which the system

has to be described. A high number of partitions makes sophisticated description

possible but it also introduces complexity as the number of necessary fuzzy rules

needs to be increased. Moreover, incorporating human expertise with a high

number of linguistic variables exposes difficulties because contradictions can be

introduced in the model in an easy manner. Finding a consensus between the

possibility of a sophisticated model description and the reduction of the possibility

of introducing contradictions in the model, three input partitions and five output

partitions have been defined. The linguistic variables for the defined partitions

have been identified in the following way:

Linguistic variables for all inputs: {poor, medium, good}

Linguistic variables for the output: {very poor, poor, medium, good, very good}

2.3 Membership Functions

Linguistic variables were depicted by means of membership functions to make

inference possible. While developing the model for execution tracing quality, two

types of membership functions were used: (1) triangular and (2) Gaussian, both

types with overlaps as illustrated in Figure 1.

Each membership function maps the interval [0, 100] to the interval [0, 1]. The

domains of the membership functions can be interpreted as percentage values,

while the codomain depicts the degree of membership in the given category.

Figure 1

Membership Functions of the Input: Processability

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 55 –

2.4 Knowledge Base for the Model

The knowledge of one expert with regard to execution tracing quality has been

described with the formalism offered by the if-then rules and the linguistic

variables [37]. The knowledge base is summarized in Table 1. This is not a

complete rule set i.e. it does not contain each variation of all linguistic variables of

all inputs but a complete rule set is not necessary to achieve appropriate

performance. The model was assessed as described in Section 3.

Table 1

Antecedent and Consequent Parts of the Fuzzy Rules

 Antecedent Linguistic Variables are Connected by Logical

AND Operation

Consequent

ID Processability Code

Coverage

Configurability Consequent

Naming

Execution

Trace

Quality

1. poor poor n.a. n.a. very poor

2. medium poor n.a. n.a. poor

3. poor medium n.a. n.a. poor

4. medium medium poor poor poor

5. medium medium poor medium medium

6. medium medium medium medium medium

7. medium medium good medium medium

8. medium medium good poor medium

9. medium medium good good good

10. medium medium poor good medium

11. good medium poor poor poor

12. good medium medium poor medium

13. good medium good poor medium

14. good medium poor medium medium

15. good medium medium medium medium

16. good medium good medium medium

17. good medium poor good good

18. good medium medium good good

19. good medium good good good

20. good good poor poor medium

21. good good medium poor medium

22. good good good poor good

23. good good poor medium medium

24. good good medium medium medium

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 56 –

25. good good good medium good

26. good good poor good medium

27. good good medium good good

28. good good good good very good

29. medium good Good good medium

30. poor n.a. n.a. good medium

31. n.a. poor n.a. medium poor

2.5 Type-1 Fuzzy Inference Techniques

The two most widespread fuzzy methods for inference have been considered: (1)

Mamdani’s approach and (2) the approach of Takagi-Sugeno-Kang. The

Tsukamoto method [28], [14] has been excluded as it requires monotonic

consequent membership functions.

2.6 Comparison of the Created Models

For the purpose of comparison, four models were created with the same inputs and

output: (1) type-1 fuzzy logic with Mamdani’s approach with triangular

membership functions, (2) type-1 fuzzy logic with Mamdani’s approach with

Gaussian membership functions, (3) type-1 fuzzy logic with the approach of

Takagi-Sugeno-Kang with triangular membership function, (4) type-1 fuzzy logic

with the approach of Takagi-Sugeno-Kang with Gaussian membership functions.

In addition, Mamdani’s approach was also tested with two different

defuzzification techniques: (1) mean of maxima (MOM), and (2) centroid of

gravity (COG). The validation charts are presented only for the best performing

method which in this context was implemented by the inference mechanism of

Takagi-Sugeno-Kang with Gaussian membership functions. The outcomes of the

other approaches are briefly introduced below.

The acceptance criteria towards the model and its output can be summarized in the

following way:

1. Representation of expert’s knowledge

2. Appropriate response for the changes in inputs

3. No oscillation in the output for input changes

4. Full output range needs to be used

5. The smoothness of the output is desired as it satisfies the problem better

than fitting 2D planes together which build sharp edges where they join

causing drastic responses in the output for small changes at certain points

of the input.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 57 –

2.6.1 Mamdani’s Approach

Inference was performed with the min-max method [28]. The model built with

Gaussian and triangular membership functions did not show significant

differences, nevertheless, the surfaces achieved with Gaussian membership

functions were slightly smoother.

The defuzzification methods applied indicated considerable deviations when the

inputs reached the limits of the input range: the COG method did not use the full

output range in contrast to the MOM method, which used the full output range.

The MOM method can cause oscillation in the output [29].

The model built according to Mamdani’s approach also shows sharp edges on the

surfaces of the validation charts. With triangular membership functions thirty one

rules were applied to describe the system and thirty rules were used with Gaussian

membership functions for the same purpose.

2.6.2 Approach of Takagi-Sugeno-Kang

In the course of constructing the Takagi-Sugeno-Kang model, zero order functions

(constants) were applied in the output range. This approach does not require

computationally expensive defuzzification. For obtaining the output values

weighted averages were calculated. Inference was performed with the product and

probabilistic OR method.

The input Gaussian membership functions in comparison to the triangular ones

resulted in more even transients between the different surface areas of the

functions constructed from the input variables. The model with triangular

membership functions contained thirty rules, meanwhile the model with Gaussian

membership functions contained thirty one rules. Fine tuning of both models can

be subject of further investigations.

The model built with the approach of Takagi-Sugeno-Kang with Gaussian

membership functions provided the best performance compared to the other

models on the basis of the above listed acceptance criteria. This inference

technique helped to avoid sharp edges on the surfaces of the functions between the

input and output variables.

Research also shows that the overlap of the antecedent membership functions

determines the smoothness of the output behaviour with this inference method

[14]. Further investigation of Jassbi et al. confirms that Takagi-Sugeno-Kang

method shows more tolerance towards input noise than Mamdani’s method [15],

which is an advantageous property in the problem domain of the current research.

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 58 –

3 Validation

As the best results were produced by the Takagi-Sugeno-Kang approach with

Gaussian membership functions, the validation of this model is presented in this

section. The model possesses four inputs; consequently, six different combinations

of the input pairs are possible to depict the influence of the inputs on the output,

i.e. on execution tracing quality. Face validity [20] was applied to validate the

model. An expert checked whether potential changes in the inputs cause

appropriate response changes in the output according to the charts.

Figure 2

Code Coverage and Processability vs. Execution Trace Quality

Figure 2 shows that the decrease of the inputs “Processability” and “Code

Coverage” below the medium level have a drastic impact on the execution tracing

quality which also reflects the expert’s opinion. On the other hand, maximum

quality of “Processability” and “Code Coverage” cannot cause a more than 50%

increase in execution tracing quality, which supports the idea that these two inputs

in themselves cannot cause the output to reach its maximum value.

Figure 3

Code Coverage and Consequent Naming vs. Execution Trace Quality

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 59 –

Figure 3 illustrates that “Code Coverage” has a far stronger impact on the output

than “Consequent Naming”. The system needs some fine tuning with regard to

“Consequent Naming” in the medium range as the surface has a slight

enhancement which slowly falls back when the value of “Consequent Naming”

increases. The maximum of “Code Coverage” and “Consequent Naming” in

themselves cannot cause the output to reach its maximum value. The diagram

reflects the expert’s opinion.

Figure 4

Configurability and Code Coverage vs. Execution Trace Quality

Figure 4 depicts that “Configurability” has a far smaller impact on the execution

tracing quality than “Code Coverage”. Significant decrease of the output can be

observed if “Code Coverage” is below medium, which reflects the expert’s

opinion. The maximum quality of “Configurability” and “Code Coverage”

without the other inputs cannot cause the output to reach its maximum value.

Figure 5

Configurability and Processability vs. Execution Trace Quality

Figure 5 shows that “Processability” contributes more to the execution trace

quality than “Configurability”. With regard to the “Processability”-

“Configurability” input pair, the diagram shows that “Configurability” has nearly

no influence on the output in comparison to “Processability”. The fuzzy rules

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 60 –

need to undergo fine tuning to remove the slight waves from the chart, when

“Configurability” changes; moreover, “Configurability” has little more than zero

influence on the output in comparison to “Processability”, which has to be

reflected by the model.

Figure 6

Configurability and Consequent Naming vs. Execution Trace Quality

Figure 6 shows that “Configurability” and “Consequent Naming” contribute to

the output approximately to the same extent. Moreover, in comparison to the

previously presented input pairs this combination has the most influence on the

output in the good-good range. However, even if both inputs carry the highest

value, the execution tracing quality is limited i.e. it depends on the other inputs

too, as with the previously investigated pairs.

Figure 7

Consequent Naming and Processability vs. Execution Trace Quality

Figure 7 illustrates that both “Consequent Naming” and “Processability” have

strong impacts on the output. The influence of the input pair reaches the same

extent on the output as the “Configurability”-“Consequent Naming” input pair

combination. The medium-medium ranges require fine tuning to avoid a slight

local maximum on this area, depicted on the chart.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 61 –

Table 2

Summary of the Validation Charts

4 Related Works

Canfora, Aggarwal, Nerurkar amongst others have already illustrated how fuzzy

mathematics can help to make judgements or predictions in connection with

software maintainability [1], [3], [24] or reusability [26], [32]. However, these

models cannot help with the assessment of software product quality as a whole

because they are not linked to extensive software product quality frameworks like

ISO/IEC 25010 [10]. In addition, the maintainability models investigated do not

handle execution tracing quality.

Canfora, Cerulo, Troiano in [3] applied fuzzy logic to consider the following

particularities in maintainability:

1. The assessment of software maintainability is influenced by qualitative

and quantitative data including their subjective uncertainty.

2. Qualitative data which are often gathered by surveys are not always

available.

Summary of the validation charts

ID Diagram Conclusion

1. From Figure 2. to

Figure 7.

Changes of the inputs produce appropriate

responses in the output.

2. Figure 2. The inputs Code Coverage and Processability have

a significant impact on Execution Trace Quality.

3. Figure 3. Code Coverage influences Execution Trace Quality

to a bigger extent than Consequent Naming.

4. Figure 4. Code Coverage influences Execution Trace Quality

to a bigger extent than Configurability.

5. Figure 5. Processability influences Execution Trace Quality

to a bigger extent than Configurability.

6. Figure 6. The inputs Consequent Naming and Configurability

have approximately the same impact to Execution

Trace Quality.

7. Figure 7. Processability has a bigger impact on Execution

Trace Quality than Consequent Naming.

8. Figure 7. The fuzzy rules or the parameters of the

membership functions need to undergo fine tuning

to avoid the local maximum in the medium-medium

range of the input variables Consequent Naming

and Processability.

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 62 –

3. The different sub-characteristics of maintainability contribute to the

overall maintainability to different extents.

Aggarwal et al. discussed in [3] how an integrated metric of maintainability

correlated with the time devoted to error corrections, however individually none

of the investigated inputs of their model correlated with the time spent on error

corrections. The model was constructed by means of type-1 fuzzy logic.

Nerurkar, Kumar, Shrivastava in [26] proposed a model based on type-1 fuzzy

logic for reusability of aspect-oriented systems. Singh, Bhatia, Sangwan in [32]

examined different soft computing techniques for software reusability assessment.

In their publication type-1 fuzzy logic, neural network and adaptive neuro-fuzzy

inference were compared for evaluating software reusability.

5 Limitations of the Pilot Study and Outlook to the

Final Model

We need to make a distinction between the research methods applied for the pilot

model described by this paper and the final model. Both approaches are empirical

in nature and comprise of qualitative and quantitative research methods. The

qualitative research part determines the inputs of the quantitative research i.e. the

quality properties on which execution tracing quality depends in both cases. In

addition, the quantitative research determines the impacts of these properties in

execution tracing quality.

The reliability of the model strongly depends on the reliability of the data

collected. The data of the pilot originate from the output of one brainstorming

session processed by two experts in the field; meanwhile, the knowledge base

formalises the knowledge of one expert. In contrast, the data of the final model

will be based on a well-defined study population: software developers and

maintainers will be selected from companies which have at least 50 employees in

Hungary. The study population is distributed among 37
1
 companies and its size

amounts to 6010
2
 individuals. Participants of the brainstorming sessions will be

selected from this study population with judgmental sampling [22] for the

qualitative research. Several brainstorming sessions will take place until a

saturation point is reached or appropriately approached [20]. To implement this,

two coders will look for synonyms in the outputs of the brainstorming sessions.

1
 Online database of HBI Online, [Online], 2012, [Accessed: 23.05.2012], Available from:

www.hbi.hu, Search criteria: TEAOR’08=6201 and number of employees greater or

equal 50
2
 Source: Hungarian Central Statistical Office, Social Statistics, Labour Market, 2012,

[Online], [Accessed: 14.09.2012], Available from:

http://statinfo.ksh.hu/Statinfo/themeSelector.jsp?&lang=en

http://www.hbi.hu/
http://statinfo.ksh.hu/Statinfo/themeSelector.jsp?&lang=en

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 63 –

Moreover; the data collected will undergo first and second cycle coding to

establish the quality properties [30]. Coding also assumes calculating intercoder

reliability for the coding process between the coders.

Regarding the quantitative stage, the same study population will be sampled with

random multistage sampling to ensure a p<.05 statistical significance [22], [9].

The knowledge base, i.e. the rule set, of the model will be constructed from the

knowledge gained from the sample by on-line surveying.

Conclusions

The pilot results illustrate that fuzzy modelling can be deployed to create a model

for execution tracing quality to encompass the subjective uncertainty associated

with the measurements process of software product quality.

In addition, modelling the knowledge of experts manually even if this knowledge

is formalised with only thirty rules, introduces the chance for contradictions in the

rule base. The number of these contradictions can considerably be reduced if the

knowledge of several experts is considered in order to find a consensus and if

automatic rule generation is used with adaptive neuro-fuzzy inferencing. Different

algorithms for parameter tuning will also be considered [16].

The experimental models furthermore showed that the Gaussian membership

functions performed better under the same settings because they contributed to

avoiding sharp transients on the three-dimensional validation charts. Moreover,

the most preferential smoothness in the output was achieved with the inference of

Takagi-Sugeno-Kang while using overlapping Gaussian membership functions. In

addition, Mamdani’s inference method with the COG or MOM defuzzification

techniques could not be applied as it does not satisfy the acceptance criteria

introduced.

The pilot has been validated by face validity. For the pilot study the purpose was

to test the research methodology and analysis methods to show the feasibility of

the approach to model execution tracing quality. For this purpose face validity was

sufficient to show that the selected approach is workable and can yield usable

results. For the final model of execution tracing quality a more rigorous validation

will be required. According to the plans its validity will be based on statistical

evidence beside face and content validity [20]. Furthermore, the final model is

planned to be constructed by using the adaptive neuro-fuzzy approach (ANFIS)

which helps to keep the internal consistency by creating the model on the

randomly selected one half of the data and checking it on the other half [14].

Application of ANFIS is also necessary due to automatic processing lager amount

of data planned to be collected during the quantitative research. Reliability will

also be embedded in the whole process of the research reaching from intercoder

reliability to the reliability of the sampling and statistical inference. Moreover, in

the qualitative part credibility, transferability, dependability and confirmability

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 64 –

will also be considered [20]. Research methods for the final model are presented

in more detail in the previous section.

The present model is a standalone model but it also offers the possibility to be

linked to the analysability sub-characteristic of the characteristic maintainability

of ISO/IEC 9126-1 [10] or ISO/IEC 25010 software product quality models [10].

Linking the developed model to the standards is possible after formal description

of the inputs, required by ISO/IEC 25021 [12], and after applying decomposition

according to the internal-external view of the software product quality expressed

by the ISO/IEC software product quality models.

Acknowledgement

The authors would like to acknowledge gratefully to all colleagues who

participated in the brainstorming session and in the qualification of the input

candidates of the model or contributed in any other way to the research.

References

[1] Aggarwal, K. K., Y. Singh, P. Chandra, and M. Puri. “Measurement of

Software Maintainability Using a Fuzzy Model.” Journal of Computer

Sciences, 2005: pp. 537-541

[2] Buch, I. Park and R. “Improve Debugging and Performance Tuning with

ETW.” MSDN Magazine, [Online], [Accessed: 01.01.2012], Avaliable

from: http://msdn.microsoft.com/en-us/magazine/cc163437.aspx, 2007

[3] Canfora, G., L. Cerulo, and L.Troiano. “Can Fuzzy Mathematics enrich the

Assessment of Software Maintainability?” ICEISSAM - Software Audit and

Metrics, 2004: 85-89

[4] Castillo, O., and P. Melin. Contributions to Fuzzy and Rough Set Theories

and Their Applications, Type-2 Fuzzy Logic: Theory and Applications,

Studies in Fuzzyness and Soft Computing. Vol. 223, Springer, 2010

[5] Coupland, S., M. Gongora, R. John, and K. Wills. “A Comparative Study

of Fuzzy Logic Controllers for Autonomous Robots.” Proceedings of

IPMU 2006 Conference, [Online], [Accessed: 07.12.2011], Available from:

https://www.dora.dmu.ac.uk/handle/2086/184, 2006

[6] Ernst, M. D. “Static and Dynamic Analysis: Synergy and Duality.” In

Proceedings ICSE Workshop on Dynamic Analysis, 2003: 24-27

[7] Fjeldstad, R. K. and W. T. Hamlen, “Application Program Maintenance

Study: Report to Our Respondents,” Proceedings GUIDE 48, Philadelphia,

PA, 1983

[8] Goldenberg, O., and J. Wiley. “Quality, Conformity, and Conflict:

Questioning the Assumptions of Osborn’s Brainstorming Technique.” The

Journal of Problem Solving 3, No. 2 (2011)

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 65 –

[9] Hunyadi, L., and L Vita. Statisztika II. (Translated Title: Statistics II.).

Aula Kiado, 2008

[10] International Organization for Sandardization. “ISO/IEC 25010:2011,

Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- System and software quality

models.” 2011

[11] International Organization for Sandardization. “ISO/IEC 9126-1:2001,

Software engineering -- Product quality -- Part 1: Quality model.” 2001

[12] International Organization for Sandardization. “ISO/IEC TR 25021:2007,

Systems and software engineering -- Systems and software Quality

Requirements and Evaluation (SQuaRE) -- Quality measure elements.”

2007

[13] Isaksen, S. G., and J. P. Gaulin. “A Reexamination of Brainstorming

Research: Implications for Research and Practice.” Gifted Chiled Quarterly

The Official Journal of the National Association for Gifted Children 49,

No. 4 (2005)

[14] Jang, J.-S. R., C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft

Computing. Prentice Hall, 1997

[15] Jassbi, J., P. J. A. Serra, R. A. Ribeiro, and A. Donati. “A Comparison of

Mandani and Sugeno Inference Systems for a Space Fault Detection

Application.” Proceedings of World Automation Congress WAC06 (doi:

10.1109/WAC.2006.376033), 2006: 1-8

[16] Johanyák, Zsolt Csaba, Olga Papp. “A Hybrid Algorithm for Parameter

Tuning in Fuzzy Model Identification.” Acta Polytechnica Hungarica, Vol.

9, No. 6, pp. 153-166, 2012

[17] John, R., and J. Mendel. “Type-2 Fuzzy Sets Made Simple.” IEEE

Transactions on Fuzzy Systems, 2002: pp. 117-127

[18] John, R., and S. Coupland. “Extensions to Type-1 Fuzzy Logic: Type-2

Fuzzy Logic and Uncertainity.” In Computational Intelligence: Principles

and Practice, by eds. G. Y. Yen ET AL, 89-102, 2006

[19] Karahasanovic, A., and R. Thomas. “Difficulties Experienced by Students

in Maintaining Object-oriented Systems: An Empirical Study.”

Proceedings of the 9th Australasian Conference on Computing Education,

2007: pp. 81-87

[20] Kumar, R. Research Methodology, A Step-by-step Guide for Beginners.

Sage, 2011

[21] Laddad, R. AspectJ in Action. Manning, MEAP, Second Edition, 2009

[22] Malhotra, N. H. Marketingkutatas (Translated title: Marketing Research).

Akademia Kiado, 2009

T. Galli et al. Introducing Execution Tracing to Software Product Quality Frameworks

 – 66 –

[23] Mendel, J. “Type-2 Fuzzy Sets: Some Questions and Answers.” IEEE

Neural Networks Society, 2003: 10-13

[24] Mittal, H., and P. Bhatia. “Software Maintainability Assessment Based on

Fuzzy Logic Technique.” ACM SIGSOFT Software Engineering Notes

Volume 34, No. 3 (2009)

[25] Nelson, M. L. “A Survey of Reverse Engineering and Program

Comprehension.” ODU CS 551 - Software Engineering Survey, 1996

[26] Nerurkar, N. W., A. Kumar, and P. Shrivastava. “Assessment of

Reusability in Aspect-Oriented Systems using Fuzzy Logic.” ACM

SIGSOFT Software Engineering Notes Volume 35, No. 5 (2010)

[27] Research Triangle Institute. “RTI Project Number 7007.011, The Economic

Impacts of Inadequate Infrastructure for Software Testing.” [Online],

[Accessed: 06.12.2012], Avaliable from:

http://www.nist.gov/director/planning/upload/report02-3.pdf (U.S

Department of Commerce), 2002

[28] Ross, T. Fuzzy Logic with Engineering Application. Wiley, 2010

[29] Runkler, T. “Selection of Appropriate Defuzzification Methods Using

Applicationspecific Properties.” IEEE Transactions on Fuzzy Systems 5,

No. 1 (1997)

[30] Saldana, J. The Coding Manual for Qualitative Researchers. Sage, 2009

[31] Shi, Z. “Visualizing Execution Traces, Master Thesis.” [Online],

[Accessed: 17.05.2011], Available from:

http://www.mcs.vuw.ac.nz/comp/graduates/archives/mcompsc/reports/2004

/Zhenyu-Shi-final-report.pdf, 2005

[32] Singh, Y., P. K. Bhatia, and O. Sangwan. “Software Reusability

Assessment Using Soft Computing Techniques.” ACM SIGSOFT Software

Engineering Notes Volume 36, No. 1 (2011)

[33] Spinczyk, O., D. Lehmann, and M. Urban. “AspectC++: an AOP Extension

for C++.” Software Developers Journal, 2005: pp. 68-74

[34] Univeristy of Cologne, Methodenpool. “Brainstorming, [Online],

[Accessed: 27.07.2012], Available from: http://methodenpool.uni-

koeln.de/brainstorming/frameset_brainstorming.html.”

[35] V. Uzelac, A. Milenkovic, M. Burtscher, M. Milenkovic. “Real-time

Unobtrusive Program Execution Trace Compression Using Branch

Predictor Events.” CASES 2010 Proceedings of the 2010 international

conference on Compilers, Architectures and Synthesis for Embedded

Systems, ISBN: 978-1-60558-903-9, 2010

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 67 –

[36] Young, M. “Symbiosis of Static Analysis and Program Pesting.” In Proc.

6th International Conference on Fundamental Approaches to Software

Engineering, 2003: 1-5

[37] Zadeh, L. A. “Fuzzy logic = computing with words.” IEEE Transactions on

Fuzzy Systems 4, No. 2 (1996): 103-111

[38] Zadeh, L. A. “The Concept of a Linguistic Variable and its Application to

Approximate Reasoning-II.” Information Sciences, 1975: 301-357

[39] Zadeh, L.A. “Fuzzy Sets.” Information and Control, 1965: pp. 338-355

