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Abstract: It is important to find the shortest path for manoeuvres of UAV, since the power 

consumed during manoeuvres is tightly coupled with the length of the flight path. In this 

paper, an algorithm that can find the shortest path during manoeuvres and improve the 

performance of UAV to follow waypoints is described. The shortest path for UAV during 

manoeuvres is derived firstly by the theory of Dubins curve. Secondly, in order to improve 

the ability of UAV to follow the derived optimal path, a real-time path planning algorithm 

is designed by transforming the constraints of Dubins curve into a dynamic equation. To 

demonstrate the applicability and performance of the proposed path planning algorithm, 

two numerical examples are presented. The results show that the proposed algorithm is 

promising to be applied in the path planning for manoeuvres of UAV. 
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1 Introduction 

Nowadays, UAVs have been increasingly used in many applications, especially to 

replace the human presence in repetitive or dangerous missions [1], e.g., in 

environmental monitoring, security, military surveillance, crop and forest 

assessments, and so on [2]. 

A low-cost UAV in these missions must provide coverage of a certain region and 

investigate events of interested waypoints, so central for the development of UAV 

technology are the algorithms for the path planning and tracking [1]. It is 

important to find the shortest path for manoeuvres of a UAV, since the power 

consumed during manoeuvres is tightly coupled with the length of the flight path, 

which is determined by the planned path. Thus, it can be expected that the 

performance of a UAV may greatly benefit from the development of a path 

planning and tracking algorithm [3]. 
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The problem of how to find the shortest path between two oriented points was first 

studied by Dubins [4]. Because it widely exists in applications, great attention was 

paid to this topic once it was proposed. Recently, variations of problems on this 

topic have been studied in literature. The problem is generally formulated as how 

to optimize the coverage costs, such as time [5, 6] or distance [3, 7] with the 

assumption that the location of targets is known [2]. In these cases, the 

manoeuvres of the aircraft lead by mission can be treated as a motion in a 2-D 

plane. The research results can be mainly categorized into two classes. The one is 

to classify Dubins curves, and the aim of real-time path planning is achieved by 

judging the initial and final states [8]. The other is to extend the problem proposed 

by Dubins to how to solve the shortest path when the robot can move forward and 

backward [9] and the UAV is impacted by the wind [10]. 

However, the problem studied by aforementioned papers is with the assumption 

that the orientation of the final point is fixed. In real applications, the circumstance 

that the orientation of the final point is unfixed is also general. In this paper, the 

method to solve the shortest path for the unfixed case is derived based on the 

conclusion of Dubins. In order to improve the ability of the UAV to follow the 

calculated optimal path, a real-time path planning algorithm is also designed. 

The rest of this paper is organized as follows: In Section 2 the problem considered 

in this paper is formulated. A brief interpretation about the bounded curvature path 

(BCP) problem and the Dubins curves set is given in Section 3. The method to 

calculate the shortest path about the formulated problem is derived in Section 4. 

One new real-time path planning algorithm based on the results of Section 4 is 

developed in Section 5. The performance of the designed real-time path planning 

algorithm is analyzed and the numerical examples are carried out in different 

distributions of the waypoints in Section 6. Finally, the conclusions are given at 

the end of the paper. 

2 Problem Formulation 

The problem considered here can be stated as the following: given two oriented 

points (xi, yi, θi) and (xf, yf, θf) in the plane (x and y are the coordinates and the θ is 

the orientation), determine and compute the shortest piecewise paths joining them, 

along which the curvature is bounded everywhere by a given constant ρmin, which 

represents the manoeuvrability of aircraft. 

If θf is fixed, this problem can be solved by the minimum principle of 

Pontryagin[9], and the results can be summarized in a Dubins curves set[8], which 

will be further explained in the next Section; If θf is unfixed, to our best 

knowledge the solution is still open. However, the later circumstance is always 

met in the path planning of UAVs, since the manoeuvres are constrained by 

admissible angles [θfmin, θfmax] when flying along a path with multi-waypoints [2, 

11], as shown in Fig. 1. 
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Figure 1 

Schematic diagram of problem when θf is unfixed 

The problem can be formulated as the following when the θf is unfixed: 
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Because the initial orientation θi can be any angle in 2D plane and the UAV can be 

situated at any position, it is not convenient to discuss the method to solve the 

optimization problem formulated in Eq. (11). For the sake of clarity, all the 

possible cases are divided into sixteen categories [12], as listed in Table 1. Only 

the case that initial point is on the left side of final point is considered here, i.e. the 

case of I-LP. The results of the remaining cases can be obtained by a similar 

method. 

Table 1 

The classification of distributions of initial point and final point 

 Long Path 

xf - xi > 4ρmin 

Medium Path 

2ρmin < xf - xi ≤ 4ρmin 

Short Path 

ρmin < xf - xi ≤ 2ρmin 

Very Short Path 

0 < xf - xi ≤ ρmin 

Quadrant I 

0 ≤ θ0 < π/2 
I-LP I-MP I-SP I-VSP 

Quadrant II 

π/2 ≤ θ0 < π 
II-LP II-MP II-SP II-VSP 

Quadrant III 

π ≤ θ0 < 3π/2 
III-LP III-MP III-SP III-VSP 

Quadrant IV 

3π/2 ≤ θ0 < 2π 
IV-LP IV-MP IV-SP IV-VSP 
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3 Bounded Curvature Path and Dubins Curves Set 

3.1 Bounded Curvature Path 

In order to solve the optimization problem formulated in Eq. (11), a preliminary 

problem should firstly be investigated. The preliminary problem can be formulated  

to find the shortest path from all the curves in the 2D plane, which pass initial 

point (xi, yi) and final point (xf, yf) with initial orientation θi and final orientation θf, 

and are subjected to minimal curvature radius ρmin, which is called as the problem 

of Bounded Curvature Path (BCP)[13]. A typical problem of BCP can be 

illustrated in Fig. 2: 

 

Figure 2 

Schematic diagram of a typical bounded curvature path 

For the problem of BCP, the mathematical formulation can be given as follows: 
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3.2 Dubins Curves Set 

The theoretical shortest path for BCP problems formulated above was firstly 

studied by L. E. Dubins in 1957 [4]. It is proved that for the problem presented in 

Section 3.1, the solution can be found among a finite set of curves. The set of 

curves consists of six elements, which are usually called Dubins curves. The 

Dubins curves set can be presented as [14]: 

  , , , , ,LSL RSR RSL LSR RLR LRLD  (3) 
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where S represents a straight line segment, L denotes a circular arc to the left, and 

R is a circular arc to the right. The radius of of L and R arcs are exactly ρmin. 

According to Dubins’ result, the shortest path of BCP problem can be obtained by 

selecting the curve in the Dubins curves set with the shortest path length. Taking 

the BCP problem in Fig. 2, for example, by using the Dubins method, the shortest 

path can be obtained and is plotted in Fig. 3. 

 

Figure 3 

Schematic diagram of Dubins curves 

4 Method to Find the Shortest Path 

To solve the problem formulated in Eq. (11), the following theorem is given: 

[THEOREM 1]： 

For all the curves passing through initial point (xi, yi) and final point (xf, yf) with 

initial orientation θi and subjected to minimal curvature radius ρmin, if the final 

orientation θf is not fixed, as formulated in Eq. (11), J[f(x)] achieves the minimum 

when θf satisfies the following equation: 
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where (xi
R
, yi

R
) is the coordinate of the center of right circle, which crosses the 

initial point and is tangent with the vector of initial orientation. 

[PROOF] 

As shown in Fig. 4, the symbols of (xi
R
, yi

R
) and (xf

R
, yf

R
) are denoted as the 

coordinates of the centers of right circle, which cross the initial point and final 

point respectively, and are tangent with the vector of the initial and final 

orientation. 
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Figure 4 

The centers of right circles which across initial and final point 

From the conclusions of Dubins Curves Set, as described in Section 3.2, it can be 

derived that the shortest path in Fig. 4 is formed by the element of RSR. The 

geometry relationship shows that 

minmin
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The total length of path is 

   mini fl s       (6) 

where the symbols of χi and χf represent the central angle of arc corresponding to 

initial point and final point respectively. s is the length of the straight line segment, 

which can be expressed as 
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The following equation can be derived from the geometry relationship 
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By substituting (55)(77) and (88)into(66), there is 
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The derivative of l with respect to θf can be expressed as follows 
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Setting 0
f

dl

d
 , and squaring both sides 
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Substituting (99) into (1111) 
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Rearranging and simplifying (1212), the following expression can be obtained 
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Then the θf
*
 can be given as: 
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Thus the proof is complete. 

By investigating the theorem, three remarks can be concluded: 

[REMARK1]： 

It can be seen from Eq. (1414) that the optimal final angle θf
*
 is only determined 

by the coordinate of right circle center of initial point (xi
R
, yi

R
), the coordinate of 

final point (xf, yf) and the minimal curvature radius ρmin. Denoting: 
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As can be seen from Fig. 5, the geometric meaning of θf
a
 and θf

b
 are obvious. θf

a
 is 

the angle between the line d and the horizontal axis of coordinates x, where d is 

the line connected with center of right circle of initial point (xi
R
, yi

R
) and final 

point (xf, yf). θf
b
 is the angle between the line s and the line d, where s is the 

straight line of path. It thus can be concluded that the optimal solution in Fig. 4 is 

a degenerated Dubins curve of RS, which is composed of an arc in the right circle 

of the initial point and a straight line segment. Substituting Eq. (44) into Eq. (99), 

the length of the shortest path can be calculated. 
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Figure 5 

The angles composed of the optimal final angle 

[REMARK2]： 

It can be found from the proof of Theorem1 that the supposed final orientation θf 

is smaller than the optimal final angle θf
*
, which indicates that the supposed 

shortest path is formed by the element of RSR; on the contrary, if the supposed 

final orientation θf is greater than the optimal final angle θf
*
, as shown in Fig. 6, 

the supposed shortest path will be formed by the element of RSL, in which the 

same result can be obtained by the same method discussed above. Therefore, θf
*
 

can be computed by Eq. (44), whatever the supposed θf is smaller or greater than 

θf
*
. 

 

Figure 6 

The case that θf is greater than θf
* 

[REMARK3]： 

In the discussion in Remark 1, the initial point is on the left side of final point, and 

thus the shortest path is composed by RSC; if the initial point is on the right side of 
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final point, the shortest path will be composed by LSC, in which case Eq. (44) 

must be changed into Eq. (16): 

   
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The proof method of Eq. (1616) is similar to that of Eq. (44), and thus is omitted 

here for the sake of clarity. 

In the discussion in REMARK1 and REMARK3, θf is not subjected to any other 

constraints in 2D plane. In the following, a more general case is taken into account, 

in which θf lies in the interval (θfmin, θfmax], where –π<θfmin<θfmax<π. Combining 

the result of Dubins and above discussion, the method to solve Eq. (11) can be 

concluded as follows: 

[Method to solve the problem in Eq. (11)] 

For all the curves passing initial point (xi, yi) and final point (xf, yf) with initial 

orientation θi and subjected to minimal curvature radius ρmin, if the final 

orientation θf is not fixed, as formulated in Eq. (11), the optimal final 

orientation θf
*
 can be calculated as in the following steps: 

Step1： 

Supposing the θf is a constant which can be any value in (-π, π], according to 

results from Dubins, the element composed of the shortest path with the supposed 

θf can be determined. 

Step2： 

If the shortest path is composed by RSR, the optimal final orientation θf
*
 can be 

computed by Eq. (44); otherwise, if the shortest path is composed by RSL, the 

optimal final orientation θf
*
 is computed by Eq. (1616). 

Step3： 

If θfmin≤θf
*
≤θfmax, which means that the optimal final orientation θf

*
 is located in 

the arc AB as shown in Fig. 7, then θf = θf
*
, and the shortest length of path can be 

computed by substituting θf into Eq. (99); if –π≤θf
*
≤θfmin or π–(θfmin+θfmax)/2 

≤θf
*
≤π, which means that the optimal final orientation is located in the arc BC of 

Fig. 7, then θf = θfmin since θfmin is closer to θf
*
 than θfmax, and the shortest length of 

path can be calculated by the result of Dubins; if θfmax≤θf
*
≤π+(θfmin+θfmax)/2, which 

means the optimal final azimuth is located in the arc AC of Fig. 7, then θf = θfmax 

since θfmax is closer to θf
*
 than θfmin, and the shortest length of path can be 

computed by the result of Dubins too. 

To this end, the problem formulated in Eq. (11) can be solved. 
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Figure 7 

Relative distribution of θf
*, θfmin and θfmax 

5 Path Planning Algorithm 

5.1 The Structure of Algorithm 

To apply the result in Section 4 in the path plan of a high altitude UAV, it is 

necessary to store the planned path into the UAV’s onboard computer before take-

off, then to track this planed path during flight, since the method in Section 4 to 

solve the problem would need to explicitly calculate the lengths of all arcs and 

straight line segment in the Dubins curve set, and then choose the shortest of the 

computed paths; furthermore, many judgments need to be considered. The time 

necessary for this calculation may become a bottleneck in real-time applications 

[8]. 

Taking an investigation on current path planning algorithm in non-holonomic and 

car-like robot [13, 15-17], multiple UAVs [18-20] and Dubins vehicles [21, 22], it 

can be seen that all of them are designed to plan the path by the current states and 

waypoints information, rather than by storing all the planned path on on-board 

computer. The main advantages are that, on one hand, it reduces the storage 

requirement of the on-board computer; on the other hand, it can adjust route in 

real-time when the waypoints are changed. This kind of path planning algorithm 

enhances the systems’ intelligence, so it has been widely applied in actual 

systems. 

In this Section, the real-time path planning algorithm base on the results of Section 

4 will be designed. The structure of the algorithm is in Fig. 8. 

It can be seen from Fig. 8 that this structure is analogical from real-time control 

system, and the path planning algorithm is equivalent with control law. 
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Figure 8 

The structure of real-time path planning algorithm 

5.2 The Real-time Path Planning Algorithm 

In order to design the real-time path planning algorithm based on the results of 

Section 4, the so called Control Lyapunov Function (CLF) is adopted [23].  

The state variables are selected as DLL/DRR, min(αLL, αRR) and current orientation 

θi, as shown in Fig. 9. For clarity, min(αLL, αRR) is denoted as αL when DLL is 

shorter than DRR, and is denoted as αR when DLL is greater than DRR. 

 

Figure 9 

Schematic diagram of state variables 

The physical meaning of Eq. (11) can be interpreted as the path planning problem 

for a UAV moving in the plane subject to the constraints of velocity and turning 

radius [24]. The state space formula can be presented as follows: 
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where, -1 ≤ u ≤ 1, representing the maneuverability constraints of UAVs, and the 

velocity of UAVs is supposed to be 1. 
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From the result of Dubins, it can be determined that Eq. (18) is satisfied when the 

path of UAV is the shortest one. 

 { 1,0,1}u   (18) 

It has been proven in Ref. [23] that u
*
 is the optimal control law only if u

*
 can 

make min(αLL, αRR) decrease and min(αLL, αRR)→0 for the case of I-LP. 

Without the loss of generality, the way to design a real-time path planning 

algorithm is demonstrated with the aid of Fig. 9. It also needs to be noted that: 
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From the geometry relationship, the following equation can be derived 
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Substituting Eq. (2222) into Eq. (2121) 
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1 cos cos sin sin
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Here,-2π<αR-θi≤2π since -π<αR,θi≤π. The range of αR-θi is shown in Fig. 10. For 

the reason that 

  1 0,1,2i   (24) 

So, only if Eq. (25) or Eq. (26) satisfied, the left hand of Eq. (2323) is smaller than 

zero, and DRR→0. 

    cos 0 1 1,2R i iand       (25) 

  cos 0 1 0R i iand       (26) 
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Fig. 10 also shows that, UAV will fly along a straight line and make DRR→0 when 

αR=θi or αR=θi±2π. 

According to this result, Table 2 about the control function can be designed. 

 

Figure 10 

The range of αR-θi 

Table 2 

Value table I of control function 

Distribution 

range 

αR-θi 

Approaching 

value  

αR-θi 

Monotonicity 

αR-θi
 

 

Monotonicity 

θi  

Value  

i  

(-2π, -3π/2] -2π Decreasing Increasing 1 

(-π/2, 0] 0 Increasing Decreasing -1 

0 -- -- -- 0 

(0, π/2] 0 Decreasing Increasing 1 

(3π/2, 2π] 2π Increasing Decreasing -1 

else 
-- -- -- -1 

However, the control function in Table 2 can only guarantee DRR→0. Once 

DRR=0, min(αLL, αRR) will be meaningless, but obviously, the aim has not been 

achieved yet, because θi is not equal to θf at this moment. Here, (θf - θi) can also be 

picked up as a state variable when DRR=0, the goal is (θf - θi)→0 the value table of 

control function  about (θf - θi) can be designed as shown in Table 3. 

Table 3 

Value table II of control function 

Distribution 

range  

(θf - θi) 

Approaching 

value  

(θf - θi) 

Monotonicity  

(θf - θi) 

Monotonicity
 

θi 

Value 

i
 

 

(-2π, -π/2] -2π Decrease Increase 1 

(-π, 0] 0 Increase Decrease -1 

0 -- -- -- 0 

(0, π] 0 Decrease Increase 1 

(π, 2π] 2π Increase Decrease -1 
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So far, Table 2 and Table 3 show a complete control law for the real-time path 

planning algorithm for UAVs. 

5.3 Implementation Steps 

The real-time path planning algorithm for the manoeuvres of UAVs can be 

summarized as follows with the steps to implement: 

BEGIN 

Step1： 

The current position of UAV is denoted as Pi, and the next two waypoints are 

denoted as Mi and Mi+1. If d(Mi, Mi+1)≥2ρmin, the UAV flies along the path planed 

by Dubins curves set; if d(Mi, Mi+1)<2ρmin, switch to Step2. 

Step2： 

The current position Pi is denoted as (xi, yi, θi) and the next waypoint position Mi is 

denoted as (xf, yf, θf) The θf is calculated by the method in Section 4, then check 

whether min(αLL, αRR) is zero; if yes, switch to Step4; if no, switch to Step3. 

Step3： 

Computing min(αLL, αRR) - θi, and obtaining the value of control function 

according to Table2. Switch to Step2. 

Step4： 

Checking whether (θf - θi) is zero, if yes, switching to Step5；if no, obtaining the 

value of control function according to Table3, switching to Step2. 

Step5： 

Checking whether the task is complete, if yes, switching to Step6; if no, switching 

to Step1. 

Step6： 

END. 

6 Simulation Examples 

In this Section, the performance of the designed real-time path planning algorithm 

is analyzed. For the reason that the distribution of the waypoints has a great 

influence on the performance of the path planning algorithm, the simulation 

examples are carried out with different distributions of waypoints. Two types of 

quadrilateral routes are investigated here; for the other cases, similar discussions 

can be followed. 
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6.1 Case 1 

In this subsection, the case of a quadrilateral route in which the distances of every 

two points are greater than 2ρmin is considered. The velocity of UAV is V = 20m/s, 

the initial orientation is θi = 90
o
, the time step of path planning algorithm is 1 

second, and the constraint of manoeuvrability is Δθ= 10
o
/s. The equivalent 

minimal radius is 

 
min

20
114.6

10 /180

V
m

 
  


 (27) 

The coordinates of each waypoint are list in Table 4: 

Table 4 

Distribution of the waypoints in case 1 

waypoints x coordinate(m) y coordinate(m) 

A  0 0 

B  100 500 

C  500 500 

D  200 0 

 

Figure 11 

Compare between two algorithms for case 1 

The comparison between the paths planned by Dubins curves and proposed real-

time algorithm is shown in Fig. 11. Because the distances of every two points are 

greater than 2ρmin in this case, both of methods can find the shortest path to pass 

all of waypoints.  

This result shows that the performance of the proposed real-time algorithm is 

equivalent to the Dubins curves in the case that the distances of every two points 

are greater than 2ρmin. 
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6.2 Case 2 

In this subsection, the case of a quadrilateral route in which some of the distances 

of two points are shorter than 2ρmin is considered. The simulation parameters are 

the same as those in subsection 6.1. 

In this case, the coordinates of each waypoints are listed in Table 5; obviously, the 

distance of waypoint C and D is shorter than 2ρmin, so the manoeuvres of the 

aircraft will be constrained by admissible angles [θfmin, θfmax] when flying along a 

path passing the waypoints of C and D. 

Table 5 

Distribution of the waypoints in case 2 

waypoints x coordinate(m) y coordinate(m) 

A  0 0 

B  100 500 

C  500 500 

D  500 350 

 

Figure12 

Compare between two algorithms for case 2 

It can be seen from Fig. 12 that the UAV cannot fly across waypoint D even by 

the maximal manoeuvrability when the path is planned by Dubins curves, since 

d(C, D)< 2ρmin and Dubins curves cannot deal with the circumstance that the θf is 

not fixed and constrained by admissible angles [θfmin, θfmax]. 

On the contrary, by the proposed algorithm, the UAV takes off from point A, and 

flies across point B, but the UAV flies along the way of RSR type of Dubins 

curves instead of flying toward point C directly, for the reason that d(C, D)< 2ρmin. 

This result shows that the performance of the proposed real-time algorithm is 

better than the Dubins curves in this case. 
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Conclusions 

The discussion about how to find the shortest path for manoeuvres of a UAV is 

present in this paper, and an algorithm that can find the shortest path during 

manoeuvres and improve the ability of the UAV to follow waypoints is described. 

The method to calculate the shortest path for the UAV during manoeuvres is 

firstly derived by the theory of the Dubins curve set. Secondly, in order to improve 

the ability of the UAV to follow the calculated optimum path, a real-time path 

planning algorithm is designed by transforming the constraints of the Dubins 

curve into a dynamic equation. 

To demonstrate the applicability and performance of the proposed path planning 

algorithm, some typical numerical examples are presented. The results show that 

the proposed algorithm is promising for application in the path planning for 

manoeuvres of UAVs. 
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