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Abstract: At the outset, the design of an organization-based multiagent system is modeled 

according to the framework of Organization Model for Adaptive Complex Systems 

(OMACS). Subsequently, this design model is transformed into a process-network model. 

Eventually, the resultant process-network model in conjunction with the P-graph-based 

methodology give rise to: (i) the maximal structure of the process network, comprising all 

the feasible combinations of structures, i.e., OMACS-based design configurations, capable 

of yielding the specified products from the specified raw material; (ii) every feasible 

structure for the process of interest; and (iii) the optimal structure of the network, i.e., the 

optimal OMACS-based design configuration. Finally, in light of the tenet of a modeling-

transformation-evaluation paradigm, an appraisal is made of the feasibility as well as the 

flexibility and cost of the optimal OMACS-based design configuration obtained. 

Keywords: Organization-based Multiagent System Design; Model Transformation; Process 

Synthesis; P-graph Framework; OMACS Framework 

1 Introduction 

Designing and implementing large, complex, and distributed systems by resorting 

to autonomous or semi-autonomous agents that can reorganize themselves by 

cooperating with one another represent the future of software systems [4]. A set of 

methodologies [21], a selection of design processes [3], and a collection of 

frameworks [4], [5], [6], [7], [8], [16], [23], [27], [35], [36] are available in the 

mailto:friedler%7d@dcs.vein.hu
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literature to provide the basis for constructing sophisticated autonomous 

multiagent organizations. Moreover, a set of metrics and methods have been 

suggested with the intention of providing useful information about key properties 

(e.g., complexity, flexibility, self-organized, performance, scalability, and cost) of 

these multiagent organizations [24], [26], [31], [33]. 

The above-mentioned methodologies, processes, frameworks, and procedures, 

nevertheless, do not offer techniques for identifying the number of feasible 

configurations
1
 that can be synthesized, or designed, from a set of heterogeneous 

agents. This is an important issue when designing a multiagent system because of 

the nature of the environments where it operates (dynamic, continuous, and 

partially accessible) [29]. The multiagent system must be adaptive (self-

organized) to adjust its behavior to cope with the dynamic appearance and 

disappearance of goals (tasks), their given guidelines, and the overall goal of the 

multiagent system [29], [30]. To address such an issue, i.e., identifying feasible 

agent´s configurations, we propose a novel approach based upon previous work on 

organization-based multiagent systems [4] and the P-graph methodology [10]. 

The current contribution describes the deployment of the P-graph methodology for 

synthesizing organization-based multiagent systems based upon the OMACS 

framework. The remainder of the current contribution comprises: an outline of the 

OMACS framework (Section 2); a brief description of the P-graph methodology 

(Section 3); the motivational example for undertaking the work (Section 4); a 

procedure for transforming an organization-based multiagent system design into a 

process-synthesis problem (Section 5); a description of the mathematical 

programming model for synthesizing organization-based multiagent systems 

(Section 6); the preliminary results of the proposed approach (Section 7); and 

finally, the conclusions as well as the proposed future work (Section 8). 

2 The Framework of Organization Model for 

Adaptive Computational Systems: OMACS 

The Framework of Organization Model for Adaptive Computational Systems 

(hereafter, OMACS) defines the entities in standard multiagent systems and their 

relationship as a tuple OOMACS = 〈GOMACS, ROMACS, AOMACS, COMACS, Φ, POMACS, Σ, 

oaf, achieves, capable, requires, possesses, potential〉, and it is also represented 

via an UML
2
-based organizational meta-model (see Figure 1) [4]. These are 

briefly described in what follows. 

                                                           
1
  These feasible configurations may be seen as agent´s organizations or agents’ teams 

[4]. 
2
  Unified Modeling Language (UML) is a standardized general-purpose modeling 

language in the field of object-oriented software engineering. 
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The organization, OOMACS, is composed of four entities including GOMACS, ROMACS, 

AOMACS, and COMACS. GOMACS defines the goals of the organization (i.e., overall 

functions of the organization); ROMACS defines a set of roles (i.e., positions within 

an organization whose behavior is expected to achieve a particular goal or set of 

goals). AOMACS is a set of agents, which can be either human or artificial (hardware 

or software) entities that perceive their environment (Σ – domain model) and can 

perform actions upon it. In order to perceive and to act, the agents possess a set of 

capabilities (COMACS), which define the percepts/actions at their disposal. 

Capabilities can be soft (i.e., algorithms or plans) or hard (i.e., hardware related 

actions). POMACS formally specifies rules that describe how OOMACS may or may not 

behave in particular situations. 

 

Figure 1 

OMACS Meta-model [4] 

In addition, OMACS defines a set of functions – achieves, requires, possesses 

capable, potential, oaf, and ϕ – to capture the different relations among the 

entities. achieves, a function whose arguments are a goal in GOMACS as well as a 

role in ROMACS that generates an output which is a positive real number greater 

than or equal to 0 and less than or equal to 1 (achieves, ROMACS x GOMACS → [0,1], 

defines the extent of achievement of a goal by a role); possesses, a function with 

an agent in AOMACS and a capability in COMACS as inputs yields a positive real 

number in the range of [0,1] (possesses, AOMACS x COMACS → [0,1], defines the 

quality of an agent´s capability); requires, a function that assumes a role in ROMACS, 

thereby yielding a set of capabilities required to play that role (requires, ROMACS → 

ρ(COMACS), defines the set of capabilities required to play a role
3
); capable, a 

function whose inputs are an agent in AOMACS and a role in ROMACS and generates an 

                                                           
3  ρ denotes power set. 
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output, which is a positive real number greater than or equal to 0 and less than or 

equal to 1 (capable, AOMACS x ROMACS → [0,1], defines how well an agent can play 

a role), thus giving rise to 

𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎, 𝑟) =

{
 
 

 
 0 𝑖𝑓  ∏ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠(𝑎, 𝑐) = 0

𝑐 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)

 

∑ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠(𝑎, 𝑐)𝑐 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)

|𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)|
 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒;

 

(1) 

 

potential, a function with an agent in AOMACS, a role in ROMACS, and a goal in 

GOMACS as inputs yields a positive real number in the range of [0,1], thus yielding 

potential(a, r, g) = achieves(r, g) * capable(a, r)  (2) 

(potential, AOMACS x ROMACS x GOMACS → [0,1], defines how well an agent can play 

a role to achieve a goal), and assignment set, ϕ, the set of agent-role-goal tuples         

<a, r, g>, indicating that agent a  AOMACS has been assigned to play role r  

ROMACS in order to achieve goal g  GOMACS (ϕ is a subset of all the potential 

assignments of agents to play roles to achieve goals). Finally, the selection of ϕ 

from the set of potential assignments is defined by the organization’s 

reorganization function, oaf, that assumes a set of assignments in ϕ, thereby 

yielding a positive real number in the range of [0,∞] (oaf, ρ(ϕ) → [0,∞], defines 

the quality of a proposed set of assignments, i.e., oaf computes the goodness of the 

organization based on ϕ), thus resulting in 

𝑜𝑎𝑓 = ∑ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑗).

<𝑎𝑖,𝑟𝑗,𝑔𝑗>∈𝜙𝑂𝑀𝐴𝐶𝑆

 (3) 

3 Process Network Synthesis 

In a process system, raw materials are consumed through various transformations 

(e.g., chemical, physical, and biological) to desired products. Vessels where these 

transformations take place are called operating units of the process. A given set of 

operating units with likely interconnections can be portrayed as a network. 

The desired products can be also manufactured via some sub-networks of the 

above-mentioned network. Thus, a given network may give rise to a variety of 

processes, or process networks, producing the desired products, and each of such 

process networks corresponds to a sub-network, that can be considered regarded 

as its structure. Energy and raw material consumption strongly depend on the 

selection of a process structure; thus, the optimal design of such a process 

structure, i.e., the process network synthesis (PNS), or process synthesis in short, 

has both environmental and economic implications [14]. 
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A number of methods has been developed for process synthesis [28]. These 

methods can be classified according to whether they are based on heuristics or 

algorithms, i.e., mathematical programming approaches. The majority, if not all, 

of these methods, however, may not be sufficiently effective for PNS of a realistic 

or industrial scale, process because of its combinatorial complexity arising from 

the involvement of a large number of interconnected loops [14]. To cope with this, 

an innovative approach based on P-graphs (process graphs), which are unique, 

mathematically rigorous bipartite graphs, has been proposed to facilitate the 

process network synthesis [10]. The P-graphs are capable of capturing not only the 

syntactic but also semantic contents of a process network. Subsequently, an axiom 

system underlying the P-graph framework is constructed to define the 

combinatorial feasible process-network structures. The analysis and optimization 

of properties of such structures are performed by a set of efficient combinatorial 

algorithms: MSG [9], SSG [9], and ABB [13]. 

3.1 Process Graph (P-graph) 

The mathematical definition of a P-graph and a process structure represented by it 

are elaborated below [10]. 

Finite set M, containing materials, and finite set O, containing operating units, are 

given such that 

 0  ρ(M) x ρ(M) (4) 

Thus, a P-graph can be defined to be a pair, (M,O), as follows: 

The vertices of the graph are the elements of 

V = M x O (5) 

Those belonging to set M are of the M-type vertices, and those belonging to set O 

are of O-type vertices. The arcs of the graph are the elements of 

A = A1  A2   (6) 

where 

A1 = {(X,Y) | Y = (α,β) ϵ O and X ϵ α}  (7) 

and 

A2 = {(Y,X) | Y = (α,β) ϵ O and X ϵ β } (8) 

In these expressions, X designates an M-type vertex; Y, an O-type vertex; α a set 

of M-type vertices from which arcs are directed into the O-type vertices; and, β a 

set of M-type vertices to which arcs are directed out of the O-type vertices. 

For illustration let M be a set of materials, M={A,B,C,D,E,F}, and O be a set of 

operating units given by O={({B,A},{A}),({D,E},{B,C}),({F},{A,C}), ({F},{A,C})}. 

It is not difficult to validate that sets M and O satisfies constraint (1), i.e., (M,O) is 

a P-graph, as depicted in Figure 2. 
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3.2 Solution Structures 

The materials and operating units in a feasible process structure must always 

conform to certain combinatorial properties. For example, a structure containing 

no linkage between a raw material and a final product is unlikely to represent any 

practical process. Hence, it is of vital importance to identify the general 

combinatorial properties to which a structure must conform. More important, the 

properties identified should be satisfied by the structure of any feasible solution of 

the synthesis problem. In other words, those and only those structures satisfying 

these properties can be feasible structures of a process: no other structures or 

constraints need to be considered in synthesizing the process. 

A set of axioms has been constructed to express necessary and sufficient 

combinatorial properties to which a feasible process structure should conform. 

Next, each axiom is stated: (S1) Every final product is represented in the graph; 

(S2) A vertex of the M-type has no input if and only if it represents a raw material; 

(S3) Every vertex of the O-type represents an operating unit defined in the 

synthesis problem; (S4) Every vertex of the O-type has at least one path leading to 

a vertex of the M-type representing a final product; and, (S5) If a vertex of the M-

type belongs to the graph, it must be an input to or output from at least one vertex 

of the O-type in the graph. 

 

Figure 2 

P-graph (M,O) where A,B,C,D,E, and F are materials, and 1,2, and 3 are the operating units:  

represents raw materials or input elements of the whole process;  symbolizes intermediate-materials 

or elements, emerging between the operating units; and  represents products or outputs of the entire 

process 

If a P-graph of a given synthesis problem, (P,R,O)
4
, satisfies theses axioms, it is 

defined to be a solution-structure of the problem. 

                                                           
4
  Where P  M is the set of product, R  M is the set of raw materials, and O the set of 

operating units. 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 109 – 

3.3 Algorithms MSG, SSG, and ABB 

Both the P-graph representation of a process network and the set of five axioms 

for solution structures, i.e., combinatorial feasible networks, render it possible to 

fashion the three mathematically rigorous algorithms: MSG, SSG, and ABB. The 

algorithm MSG (Maximal-Structure Generation) generates the maximal structure 

(super-structure) of a process synthesis network. Also, the algorithm SSG 

(Solution-Structure Generation) generates the set of feasible process structures 

from the maximal structure, which leads to the algorithm ABB (Accelerated 

Branch and Bound) for computing the n-best optimal solution structure [9], [10], 

[11], [12], [13]. 

4 Motivational Example: Cooperative Robotic Search 

Team System 

To demonstrate the application of the P-graph framework for assessing the design 

of OMACS-based multiagent systems, a survey is given of a simplified 

Cooperative Robotic Search Team
5
 (CRST) system [20], [33]. Essentially, we are 

to design a team of robots whose goal is to search for different areas of a given 

location on a map. The team should be able to search any area of the given 

location even when faced with failures of individual robots or specific capabilities 

of those robots. This implies that the team must be able to: (1) assign areas based 

on individual team member´s reliability; (2) recognize when a robot is unable to 

perform adequately its duties; and (3) reorganize the team to allow it to achieve its 

goals in spite of individual failures. 

4.1 Overview of CRST Organization 

For illustration, it is presumed that four goals be achieved by the CRST. In other 

words, G = {g1, g2, g3, g4} where gi for 1  i  4 signifies “search area i.” In the 

CRST, two roles are identified, i.e., R = {r1,r2} where r1 and r2 represent the 

Searcher and Patroller roles, respectively. In particular, role r1requires the Sonar, 

Movement, and GPS capabilities for achieving goals g1, g2, g3, and g4. Likewise, 

role r2 requires the Movement, GPS, and Range Finder capabilities for achieving 

the same goals as those of role r1. Moreover, for each goal, gj, an achieve value is 

assigned. This achieve value defines the extent of achievement of a goal by a role. 

Both, the requires and achieves relations can be formally stated as:                       

requires = {( r1,{c1, c2, c3}),( r2,{c2, c3, c4})} and achieves = {(r1, g1, 0.2), (r1, g2, 

0.4), (r1, g3, 0.8), (r1, g4, 1.0), (r2, g1, 1.0), (r2, g2, 0.7), (r2, g3, 0.4), (r2, g4, 0.1)}. 

                                                           
5
  Although the CRST presented in this paper has been simplified (due to space 

constraint), it is still interesting enough to illustrate our work. 
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Also, four capabilities are specified. They are Sonar (c1), Movement (c2), GPS 

(c3), and Range Finder (c4). c1 captures information about all objects around agent 

ai (in a 360° view). c2 allows agent ai to move in any direction, north, south, east, 

or west (up, down, left, or right). c3 provides the ability to read the absolute 

position of agent ai in the environment. Finally, c4 renders it possible for agent ai 

to measure the distance of the closest object directly in front of it. 

In addition, three different agents are modeled; they are a1, a2, and a3. 

Specifically, agent a1 possesses capabilities c1, c2, c3, and c4 while both agents a2 

and a3 possess capabilities c2, c3, and c4. The possesses relationship is formulated 

as follows: possesses = {(a1,c1,0.3), (a1,c2,0.5), (a1,c3,0.3), (a1,c4,0.3), (a2,c2,0.7), 

(a2,c3,0.5), (a2,c4,0.7), (a3,c2,0.4), (a3,c3,0.9), (a3,c4,0.2)}. 

Additionally, the cost of each individual agent a1, a2, and a3 is $850, $900, and 

$950, respectively (see Figure 3). 

 

Figure 3 

Overview of the CRST Organization. The boxes at the top of the diagram represent agents identified 

by their types, circles represent the roles, pentagons represent capabilities, and squares are system’s 

goals. The arrows between the entities represent functions/relations achieves, requires, and possesses 

5 Algorithm OMACStoPNS 

Algorithm OMACStoPNS comprises two mayor parts, the initialization and the 

construction parts. The initialization part (statements st1, st2, st3, and loop lp1) 

specifies the sets of available raw materials and desired products to be 

manufactured as well as their parameters. The construction part (loop lp3) 

specifies the set of candidates operating units as well as their parameters (see 

Figure 3). 



Acta Polytechnica Hungarica Vol. 12, No. 2, 2015 

 – 111 – 

 
Figure 4 

Algorithm OMACStoPNS written in Pidgin Algol 

Each agent ai in AOMACS, is transformed into raw material r and added to set R 

(loop lp1); as such, Axiom (S2) is satisfied. Algorithm OMACStoPNS generates 

the resources, Ra
i
; Ra

1
, Ra

2
, and Ra

3
. Furthermore, lower bound La

i
, upper bound 

𝐢𝐧𝐩𝐮𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝐺𝑂𝑀𝐴𝐶𝑆  defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆  defines a set of roles, 𝐴𝑂𝑀𝐴𝐶𝑆  is a set of  
agents, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the extent of achievement of a goal by a role, (𝐺𝑂𝑀𝐴𝐶𝑆 × 𝑅𝑂𝑀𝐴𝐶𝑆 → [0 … 1])  
𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 defines the quality of an agent´s capability (𝐴𝑂𝑀𝐴𝐶𝑆 × 𝐶𝑂𝑀𝐴𝐶𝑆 → [0 … 1]), and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines  
the set of capabilities required to play a role (𝑅𝑂𝑀𝐴𝐶𝑆 → ℘(𝐶𝑂𝑀𝐴𝐶𝑆 )). The 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 function  
 𝐴𝑂𝑀𝐴𝐶𝑆 × 𝑅𝑂𝑀𝐴𝐶𝑆 →  0 … 1   
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅ 
𝐛𝐞𝐠𝐢𝐧 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm; 
𝐬𝐭𝟏:     𝑀 ∶= 𝑀 ∪  𝑜𝑎𝑓 ; 
𝐬𝐭𝟐:     𝑃 ∶= 𝑃 ∪ {𝑜𝑎𝑓}; 
𝐬𝐭𝟑:     𝑈𝑜𝑎𝑓 ∶= ∞; 𝐿𝑜𝑎𝑓 ∶= 0; 𝑐𝑜𝑎𝑓 ∶= 1; 

𝐥𝐩𝟏:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                       𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪  𝑎𝑖 ;𝑈𝑎𝑖

∶= ∞; 𝐿𝑎𝑖
∶= 0; 𝑐𝑎𝑖

∶= 𝑐𝑜𝑠𝑡(𝑎𝑖); 

            𝐞𝐧𝐝; 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm; 
𝐥𝐩𝟐:    𝐟𝐨𝐫 𝑔𝑖  ∈ 𝐺𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 

                      𝑀 ∶= 𝑀 ∪  𝑔𝑖 ; 𝑔𝑖_𝑜𝑎𝑓 ≔   𝑔𝑖 ,  𝑜𝑎𝑓  ; 𝑂 ∶= 𝑂 ∪  𝑔𝑖_𝑜𝑎𝑓  ; 

                       𝑈𝑔𝑖_𝑜𝑎𝑓  ∶= ∞; 𝐿𝑔𝑖_𝑜𝑎𝑓 ∶= 0; 𝑐𝑔𝑖_𝑜𝑎𝑓  ∶= 0; 

                       𝑎𝑔𝑖 ,𝑔𝑖_𝑜𝑎𝑓
∶= 1; 𝑎𝑔𝑖_𝑜𝑎𝑓 ,𝑜𝑎𝑓 ∶= 1; 

            𝐞𝐧𝐝; 
𝐥𝐩𝟑:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                      𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅; 

                      𝐟𝐨𝐫  𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′  ∈ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 𝐝𝐨 
                       𝐛𝐞𝐠𝐢𝐧 
                                  𝐢𝐟 𝑎′ = 𝑎𝑖  𝐭𝐡𝐞𝐧 
                                      𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐}; 

                                 𝐞𝐧𝐝; 
                       𝐞𝐧𝐝; 
                       𝐟𝐨𝐫  𝑟𝑘 , ℘(𝑐)  ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨 
                       𝐛𝐞𝐠𝐢𝐧 
                                 𝐢𝐟 ℘ c ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧 

                                      𝑎𝑢𝑥 ≔ ∅; 
                                      𝐟𝐨𝐫  𝑟′′ , 𝑔𝑗 , 𝑣𝑎𝑙𝑢𝑒′′   ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨 

                                      𝐛𝐞𝐠𝐢𝐧 
                                                 𝐢𝐟 𝑟𝑘 = 𝑟′′  𝐭𝐡𝐞𝐧 

                                                     𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔   𝑎𝑖_𝑟𝑘_𝑔𝑗  , {𝑔𝑗 } ; 

                                                      𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑂 ∶= 𝑂 ∪  𝑎𝑖_𝑟𝑘_𝑔𝑗  ; 

                                                     𝑈𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= ∞; 𝐿𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 0; 𝑐𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 0; 

                                                     𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 1; 𝑎𝑎𝑖_𝑟𝑘 _𝑔𝑗 ,𝑔𝑗

∶= 𝑣𝑎𝑙𝑢𝑒 ′′ ; 

                                                    𝑎𝑎𝑖 ,𝑎1_𝑟𝑘
= 1; 𝑎𝑎𝑖_𝑟𝑘 ,𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎𝑖 , 𝑟𝑘); 

                                      𝐞𝐧𝐝; 
                                      𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧 

                                          𝑎𝑖_𝑟𝑘 ≔   𝑎𝑖 ,  𝑎𝑢𝑥   ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘}; 

                                          𝑈𝑎𝑖_𝑟𝑘
∶= 1; 𝐿𝑎𝑖_𝑟𝑘

∶= 0; 𝑐𝑎𝑖_𝑟𝑘
: = 0; 

                                      𝐞𝐧𝐝; 
                       𝐞𝐧𝐝; 
            𝐞𝐧𝐝; 
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Ua
i
, and cost ca

i
, are set for each resource, Ra

i
; as such, algorithm OMACStoPNS 

specifies the total amount of available resources for the motivational problem (see 

Table 1). Thus, only a single product, oaf, is specified and added to set P 

(statements st1, st2, and st3); as such, Axiom (S1) is automatically satisfied. Note 

that this is analogous to the notion of the goodness of the organization based on 

the quality of a proposed set of assignments. In other words, the set of agent-role-

goal tuples <ai, rk, gj> indicates that agent ai ϵ AOMACS has been assigned to play 

role rk ϵ ROMACS in order to achieve goal gj ϵ GOMACS. For outcome oaf, algorithm 

OMACStoPNS sets lower bound Loaf, upper bound Uoaf, and cost coaf; as such, the 

amount of product to be manufactured for meeting the demand of the problem is 

specified (see Table 2). 

Table 1 

Resources to be considered in process synthesis for the example 

Resource Rj Lower bound Rj Upper bound Rj Cost cj 

a1 0 ∞ 0 

a2 0 ∞ 0 

a3 0 ∞ 0 

Table 2 

Targets to be considered in process synthesis for the example 

Target Pj Lower Bound Lj Upper Bound Uj Cost cjcj 

oaf 0 ∞ 1 

Subsequently, algorithm OMACStoPNS systematically specifies the operating 

units in loops lp2 and lp3, representing organizational assignments, as described in 

section 3; as such, Axioms (S3) and (S4) are satisfied. First, the algorithm loops 

through every goal gj ϵ G. Each goal gj is transformed into material m for 

inclusion in set M. Algorithm OMACStoPNS generates materials Mg
j
; Mg

1
, Mg

2
, 

Mg
3
, and Mg

4
. Note that material Mg

j
 represents the goals to be accomplished by the 

organization. This gives rise to the creation of operating unit o for inclusion in set 

O for each gj. Algorithm OMACStoPNS generates operating units Ogj_oaf. 

Additionally, lower bound Lg
j
_oaf, upper bound Ug

j
_oaf, cost cg

j
_oaf, and aji, the 

consumption rate of entity mj by operating unit oi are set for each operating unit 

Og
j
_oaf; as such, algorithm specifies the goals to be achieved by the system (see 

Table 1). 

Afterwards, algorithm OMACStoPNS loops through every agent ai  A. 

Consequently, for each agent ai, algorithm OMACStoPNS checks whether ai is 

capable of playing a given role rk in R. If so, algorithm OMACStoPNS searches 

for every gj in G, such that gj is achieved by rk. As a result, algorithm 

OMACStoPNS generates materials Ma
i
_r

k
_g

j
; Ma

1
_r

1
_g

1
, Ma

1
_r

1
_g

2
, Ma

1
_r

1
_g

3
, Ma

1
_r

1
_g

4
, 

Ma
1

_r
2
_g

1
, Ma

1
_r

2
_g

2
, Ma

1
_r

2
_g

3
, Ma

1
_r

2
_g

4
, Ma

2
_r

2
_g

1
, Ma

2
_r

2
_g

2
, Ma

2
_r

2
_g

3
, Ma

2
_r

2
_g

4
, 
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Ma
3

_r
2
_g

1
, Ma

3
_r

2
_g

2
, Ma

3
_r

2
_g

3
, and Ma

3
_r

2
_g

4
. Subsequently, for each agent ai, role rk, 

and goal gj, two operating units o are created and added to set O. One indicates 

that agent ai is capable of playing role rk; the second implies that agent ai has been 

assigned to play role rk in order to achieve goal gj. Accordingly, algorithm 

OMACStoPNS generates the operating units Oa
i
_r

k
 and Oa

i
_r

k
_g

j
. Moreover, lower 

bounds La
i
_r

k
 and La

i
_r

k
_g

j
; upper bounds Ua

i
_r

k
 and Ua

i
_r

k
_g

j
; and costs ca

i
_r

k
 and 

ca
i
_r

k
_g

j
; and the consumption flow rate of material mj, aji, by operating unit oi, are 

set for each of operating units Oa
i
_r

k
 and Oa

i
_r

k
_g

j
Oai_rk_gj; as such, algorithm 

specifies whether agent ai has been assigned to play role rk in order to achieve 

goal gj (see Table 3). As a result, the execution of loop lp3 assures that Axiom 

(S5) is satisfied by the maximal structure. Figure 5 displays the maximal structure 

of the motivational example generated by algorithm MSG. 

Table 3 

Operating units to be considered in process synthesis for the example* 

Operating  

Unit Oi  

Input  

Material mj  

Output  

Material mj 

Lower  

bound 

 Li 

Upper  

bound 

Ui 

Cost 

ci 

𝑔1_𝑜𝑎𝑓 g
1
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0 

𝑔2_𝑜𝑎𝑓 g
2
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0 

𝑔3_𝑜𝑎𝑓 g
3
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0 

𝑔4_𝑜𝑎𝑓 g
4
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0 

𝑎1_𝑟1_𝑔1 𝑎1_𝑟1_𝑔1(0.433) 𝑔1(0.2) 0 ∞ 0 

𝑎1_𝑟1_𝑔2 𝑎1_𝑟1_𝑔2(0.433)  𝑔2(0.4) 0 ∞ 0 

𝑎1_𝑟1_𝑔3 𝑎1_𝑟1_𝑔3(0.433) 𝑔3(0.6) 0 ∞ 0 

𝑎1_𝑟1_𝑔4 𝑎1_𝑟1_𝑔4(0.433)  𝑔4(0.8) 0 ∞ 0 

𝑎1_𝑟2_𝑔1 𝑎1_𝑟2_𝑔1(0.433) 𝑔1(1.0) 0 ∞ 0 

𝑎1_𝑟2_𝑔2 𝑎1_𝑟2_𝑔2(0.433) 𝑔2(0.7) 0 ∞ 0 

𝑎1_𝑟2_𝑔3 𝑎1_𝑟2_𝑔3(0.433)  𝑔3(0.4) 0 ∞ 0 

𝑎1_𝑟2_𝑔4 𝑎1_𝑟2_𝑔4(0.433) 𝑔4(0.1) 0 ∞ 0 

𝑎2_𝑟2_𝑔1 𝑎2_𝑟2_𝑔1(0.633) 𝑔1(1.0) 0 ∞ 0 

𝑎2_𝑟2_𝑔2 𝑎2_𝑟2_𝑔2(0.633) 𝑔2(0.7) 0 ∞ 0 

𝑎2_𝑟2_𝑔3 𝑎2_𝑟2_𝑔3(0.633)  𝑔3(0.4) 0 ∞ 0 

𝑎2_𝑟2_𝑔4 𝑎2_𝑟2_𝑔4(0.633) 𝑔4(0.1) 0 ∞ 0 

𝑎3_𝑟2_𝑔1 𝑎3_𝑟2_𝑔1(0.5) 𝑔1(1.0) 0 ∞ 0 

𝑎3_𝑟2_𝑔2 𝑎3_𝑟2_𝑔2(0.5) 𝑔2(0.7) 0 ∞ 0 

𝑎3_𝑟2_𝑔3 𝑎3_𝑟2_𝑔3(0.5)  𝑔3(0.4) 0 ∞ 0 

𝑎3_𝑟2_𝑔4 𝑎3_𝑟2_𝑔4(0.5) 𝑔4(0.1) 0 ∞ 0 

𝑎1_𝑟1 𝑎1 
𝑎1_𝑟1_𝑔1(0.433), 𝑎1_𝑟1_𝑔2(0.433), 

𝑎1_𝑟1_𝑔3(0.433), 𝑎1_𝑟1_𝑔4 (0.433) 
0 1 0 
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𝑎1_𝑟2 𝑎1 

𝑎1_𝑟2_𝑔1(0.433), 𝑎1_𝑟2_𝑔2(0.433), 

𝑎1_𝑟2_𝑔3(0.433), 𝑎1_𝑟2_𝑔4 (0.433) 
0 1 0 

𝑎2_𝑟2 𝑎2 
𝑎2_𝑟2_𝑔1(0.633), 𝑎2_𝑟2_𝑔2(0.633), 

𝑎2_𝑟2_𝑔3(0.633), 𝑎2_𝑟2_𝑔4 (0.633) 
0 1 0 

𝑎2_𝑟2 𝑎3 
𝑎3_𝑟2_𝑔1(0.5), 𝑎3_𝑟2_𝑔2(0.5), 

𝑎3_𝑟2_𝑔3(0.5), 𝑎3_𝑟2_𝑔4 (0.5) 
0 1 0 

* The numbers in the brackets are the flow rates, aji, of the input and output materials relative to the unit capacity of each operating unit. 

 

 

Figure 5 

Maximal structure for the hypothetical example to illustrate the solution-structure generation with 

algorithm MSG 

6 Mathematical Programming Model 

Unlike any of the available algorithmic methods for computing the quality of a 

proposed set of assignments based upon OMACS, i.e., agents, ai  AOMACS, 

assigned to play roles, rk  ROMACS, in order to achieve goals, gj  GOMACS, where 

no mathematical programming model is derived due to the approach adopted, i.e., 

step-by-step computation [4], [20], [30], [33], [37], [38]; we propose a simple 

mathematical programming model, which is derived from the maximal structure, 

generated by algorithm MSG, and does not impair the optimality of the resultant 

solution. 

In the present work, a mixed-integer linear programming (MILP) model has been 

formulated, which at the very least yields a solution identical with those 

conventional OMACS-based assignment algorithms [37], [38]. 

Let M denote the set of entities; P, the set of products, where P  M; R, the set of 

initially available resources, where R  M; and O, the set of activities, where                

O = ρ(M) x ρ(M). The relations between entities and activities are denoted by aji 
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which gives the difference between the production and consumption rate of entity 

Mj by activity Oi, where Mj  M and Oi  O. Also given are lower bound LO
i
 and 

upper bound UO
i
 for the volume of each activity O

i
, as well as its cost cO

i
. In 

addition, lower bound LR
j
 and upper bound UR

j
 are specified for each resource Rj. 

In addition, lower bound LP
j
 and upper bound UP

j
 are defined for each product Pj. 

Moreover, two classes of variables are involved in the mathematical programming 

model. One class consists of binary variables, each denoted by yO
i
 {0,1} 

expressing the absence (0) or the existence (1) of operating unit Oi; and the other, 

continuous variables, each denoted by xO
i 

expressing the size or capacity of 

operating unit Oi relative to the unit size. If operating unit Oi is included in the 

network, as indicated by yi = 1, the concomitant continuous variable, xO
i
, can be 

any real value in the range of 0 to the upper limit for the capacity of operating unit 

Oi. Thus, xO
i
  yO

i
Ui, where Ui is the upper limit for the capacity; if such an upper 

limit does not exist, the Ui can be any large number L. Finally, z, maximal, is the 

objective value. The resultant MILP model is given in the following. 

𝑧 = 𝑚𝑎𝑥 ( ∑ (𝑐𝑃𝑗 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖
𝑂𝑖 ∈ 𝑂

)

𝑃𝑗 ∈ 𝑀 ∩ 𝑃

)  

(9) 

 

subject to 

 𝑀 = ⋃ 𝛼𝑖  ∪  𝛽𝑖
(𝛼𝑖,𝛽𝑖) ∈ 𝑂

 

 

 

 

(10) 

 

0 ≤ 𝑥𝑂𝑖 , 𝐿𝑂𝑖 ≤ 𝑥𝑂𝑖 ≤ 𝑈𝑂𝑖  ∀𝑂𝑖 ∈ 𝑂 (11) 

 

𝐿𝑃𝑗 ≤ ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑃𝑗
𝑂𝑖∈𝑂

 ∀𝑃𝑗 ∈ 𝑀 ∩ 𝑃 (12) 

 

𝐿𝑅𝑗 ≤ ∑ 𝑎𝑗𝑖 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑅𝑗
𝑂𝑖∈𝑂

 ∀𝑅𝑗 ∈ 𝑀 ∩ 𝑅 (13) 

 

𝐿𝑀𝑗 ≤ ∑ 𝑎𝑗𝑖 ∗ 𝑥𝑂𝑖 − ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑀𝑗
𝑂𝑖∈𝑂𝑂𝑖∈𝑂

 ∀𝑀𝑗 ∈ 𝑀\(𝑅 ∪ 𝑃) (14) 

 

𝑥𝑂𝑖 ≤ 𝑦𝑂𝑖𝐿  (15) 

 𝑦𝑂𝑖 ∈ {0,1}  (16) 
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The maximal structure serves as the input to the generation and solution of the 

MILP model by algorithm ABB [13]. It yields the optimal network and a finite 

number of n-best suboptimal networks in ranked order. Algorithm ABB has 

identified a total of 65535 structures
6,7

 in less than 75 seconds on an Intel(R) 

Core(TM) i5 CPU @ 3.20 GHz. Table 4 shows 10 feasible solutions for the 

example. Algorithms MSG and ABB have been executed by software PNS Studio 

[32]. 

Table 4 

Subset of Feasible Solutions (less than 1%) generated by algorithm 

Sol. # 
agent’s organization 

assignment set, ϕ 
oaf value Agents’ cost ($) 

1 

{
 
 

 
 
〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉 

 }
 
 

 
 

 4,3112 2700 

1280 {

〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉 

 

} 3,4452 2700 

3204 {

〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

 

} 3,2112 1750 

7813 {

〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉 

 

} 2,9186 1800 

19883 {
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉 

 

} 2,4926 1850 

25400 {
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

 

} 2,3452 1750 

36779 {
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉 

 

} 2,0526 1800 

                                                           
6
  It is important to point out that only 77% of the structures, i.e., 50626, are feasible 

assignments for the problem. OMACS model imposes that a feasible assignment set is 

based on the current set of goals required to be achieved by the system [4]. For 

example, assignment set ϕ = {<a1,r1,g1>,<a1,r1,g3>,<a2,r2,g4>,<a3,r2,g4>} is a valid 

assignment; however it is unfeasible for the motivational example: goal g2 will never 

be achieved. 
7
  Algorithm SSG has identified 65535 structures in 4.662 s without computing the 

optimal and sub-optimal assignments. 
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45654 {
〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉

 

} 1,8186 850 

57730 {
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

 

} 1,3926 900 

62333 {
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

 

} 1,1 950 

7 Assessment of Organization-based Multiagent 

System Designs 

To empirically evaluate the flexibility of the different agent-based organization 

designs identified by algorithm ABB, we have developed a simulation that steps 

through the CRST application. To measure the flexibility, the approach deployed 

in [33] is followed; specifically, capability failure has been simulated. At each 

step in the simulation, a randomly selected system goal, i.e., g1, g2, g3, and g4, is 

achieved. Subsequently, the best available assignment is calculated (see Eq. 2). 

The best assignment defines how well an agent, ai  AOMACS, can play a role (see 

Eq. 1), rk  ROMACS, to achieve a goal, gj  GOMACS. Afterwards, one of the 

capabilities possessed by a robot is randomly selected and tested to see if it has 

failed. A predefined capability failure rate (0 – 100%) indicates if the selected 

capability has failed. Once failed, a capability is assumed to remain so for the life 

of the system. In addition, reorganization is performed to assign available robots 

to available goals and to de-assign robots if their capabilities have failed, and thus, 

they are no longer able to play their assigned roles. 

 

Figure 6 

Comparison of Sol. #1 and Sol. # 19883 

Each agent-based organization (see Section 6) has been simulated for failure rates 

ranging from 0 to 100% for 1000 system executions. The comparison of Figures 6 

and 7 reveals a difference among the agent-based organization configurations, 

thereby rendering it possible to offer significant remarks about the claim, “the 
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higher the organization score (i.e., the oaf function), the better the performance of 

the organization.”[36]. First, it is not always the rule that the higher the oaf 

function score, the better the performance of the agent-based organization. For 

instance, Figure 6 displays a scenario where an agent-based organization, i.e., Sol. 

# 19883, with an oaf value of ϕ = 2.4926 and the cost of $1850 performing 

equally well when compared to the best agent organization, i.e., Sol. # 1, with an 

oaf value of ϕ = 4.3112 and the cost of $2700. 

Moreover, Figure 7 demonstrates another scenario where an agent-based 

organization, i.e., Sol. #7183, with an oaf value of ϕ = 2.9186 and the cost of 

$1800, is outperformed
8
 by other agent-based organizations, i.e., Sol. #25400 and 

Sol. #57730, with oaf values of ϕ = 2.3452 and ϕ = 1.3926 whose costs are $1800 

and $900, respectively. 

 

Figure 7 

Comparison of Sol. #7813, Sol. #25400, and Sol. #57730 

Conclusions and Future Work 

In this work we have introduced an algorithmic method for assessing the n-best 

organizational-based multiagent system design based upon the OMACS 

framework. The method has been crafted by transforming an organizational-based 

multiagent system design into a PNS problem and solving the resultant problem 

by the algorithms and the software of the P-graph framework. 

The potential of the proposed method has been illustrated by solving an example 

in which the optimal and suboptimal organizational-based multiagent system 

designs in ranked order emerge by defining its cost (in terms of the oaf function, 

i.e., ϕ; see Eq. 3), as the objective function. However, an optimal solution does not 

always capture the expected behavior of the organizational-based multiagent 

system design. Thus, additional research is needed to explore the combinations of 

the P-graph framework with other techniques (e.g., system reliability [16], self-

organization [25], complex systems [34], genetic algorithms [1]), which can 

                                                           
8
  This behavior emerges when the capability failure rate ranges from 30% through 

70%. 
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effectively capture the expected behavior of an organizational-based multiagent 

system in the design phase. 

Finally, we propose the construction of a computational tool for transforming 

OMACS organizational-based multiagent systems into PNS problems and 

integrating it into existing tools [17], [18]. Our efforts will be the subject of future 

contributions in this research area; as well, its application in other domains [2], 

[15]. 
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