
Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 103 –

A Preliminary Study of the Application of the P-

graph Methodology for Organization-based

Multiagent System Designs: Assessment

Juan C. García-Ojeda
1,2

, Botond Bertok
2
, Ferenc Friedler

2
,

Andres Argoti
3
 and L. T. Fan

3

1
Department of Systems Engineering, Autonomous University of Bucaramanga,

Av. 42 No 48-11, El Jardín, Bucaramanga, Santander 680003, Colombia, E-mail:

jgarciao@unab.edu.co

2
Department of Computer Science and Systems Technology, University of

Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary, E-mail: {bertok,

friedler}@dcs.vein.hu

3
Department of Chemical Engineering, Kansas State University, 1005 Durland

Hall, Manhattan, Kansas 66506, U. S. A. E-mail:{argoti,fan}@ksu.edu

Abstract: At the outset, the design of an organization-based multiagent system is modeled

according to the framework of Organization Model for Adaptive Complex Systems

(OMACS). Subsequently, this design model is transformed into a process-network model.

Eventually, the resultant process-network model in conjunction with the P-graph-based

methodology give rise to: (i) the maximal structure of the process network, comprising all

the feasible combinations of structures, i.e., OMACS-based design configurations, capable

of yielding the specified products from the specified raw material; (ii) every feasible

structure for the process of interest; and (iii) the optimal structure of the network, i.e., the

optimal OMACS-based design configuration. Finally, in light of the tenet of a modeling-

transformation-evaluation paradigm, an appraisal is made of the feasibility as well as the

flexibility and cost of the optimal OMACS-based design configuration obtained.

Keywords: Organization-based Multiagent System Design; Model Transformation; Process

Synthesis; P-graph Framework; OMACS Framework

1 Introduction

Designing and implementing large, complex, and distributed systems by resorting

to autonomous or semi-autonomous agents that can reorganize themselves by

cooperating with one another represent the future of software systems [4]. A set of

methodologies [21], a selection of design processes [3], and a collection of

frameworks [4], [5], [6], [7], [8], [16], [23], [27], [35], [36] are available in the

mailto:friedler%7d@dcs.vein.hu

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 104 –

literature to provide the basis for constructing sophisticated autonomous

multiagent organizations. Moreover, a set of metrics and methods have been

suggested with the intention of providing useful information about key properties

(e.g., complexity, flexibility, self-organized, performance, scalability, and cost) of

these multiagent organizations [24], [26], [31], [33].

The above-mentioned methodologies, processes, frameworks, and procedures,

nevertheless, do not offer techniques for identifying the number of feasible

configurations
1
 that can be synthesized, or designed, from a set of heterogeneous

agents. This is an important issue when designing a multiagent system because of

the nature of the environments where it operates (dynamic, continuous, and

partially accessible) [29]. The multiagent system must be adaptive (self-

organized) to adjust its behavior to cope with the dynamic appearance and

disappearance of goals (tasks), their given guidelines, and the overall goal of the

multiagent system [29], [30]. To address such an issue, i.e., identifying feasible

agent´s configurations, we propose a novel approach based upon previous work on

organization-based multiagent systems [4] and the P-graph methodology [10].

The current contribution describes the deployment of the P-graph methodology for

synthesizing organization-based multiagent systems based upon the OMACS

framework. The remainder of the current contribution comprises: an outline of the

OMACS framework (Section 2); a brief description of the P-graph methodology

(Section 3); the motivational example for undertaking the work (Section 4); a

procedure for transforming an organization-based multiagent system design into a

process-synthesis problem (Section 5); a description of the mathematical

programming model for synthesizing organization-based multiagent systems

(Section 6); the preliminary results of the proposed approach (Section 7); and

finally, the conclusions as well as the proposed future work (Section 8).

2 The Framework of Organization Model for

Adaptive Computational Systems: OMACS

The Framework of Organization Model for Adaptive Computational Systems

(hereafter, OMACS) defines the entities in standard multiagent systems and their

relationship as a tuple OOMACS = 〈GOMACS, ROMACS, AOMACS, COMACS, Φ, POMACS, Σ,

oaf, achieves, capable, requires, possesses, potential〉, and it is also represented

via an UML
2
-based organizational meta-model (see Figure 1) [4]. These are

briefly described in what follows.

1
 These feasible configurations may be seen as agent´s organizations or agents’ teams

[4].
2
 Unified Modeling Language (UML) is a standardized general-purpose modeling

language in the field of object-oriented software engineering.

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 105 –

The organization, OOMACS, is composed of four entities including GOMACS, ROMACS,

AOMACS, and COMACS. GOMACS defines the goals of the organization (i.e., overall

functions of the organization); ROMACS defines a set of roles (i.e., positions within

an organization whose behavior is expected to achieve a particular goal or set of

goals). AOMACS is a set of agents, which can be either human or artificial (hardware

or software) entities that perceive their environment (Σ – domain model) and can

perform actions upon it. In order to perceive and to act, the agents possess a set of

capabilities (COMACS), which define the percepts/actions at their disposal.

Capabilities can be soft (i.e., algorithms or plans) or hard (i.e., hardware related

actions). POMACS formally specifies rules that describe how OOMACS may or may not

behave in particular situations.

Figure 1

OMACS Meta-model [4]

In addition, OMACS defines a set of functions – achieves, requires, possesses

capable, potential, oaf, and ϕ – to capture the different relations among the

entities. achieves, a function whose arguments are a goal in GOMACS as well as a

role in ROMACS that generates an output which is a positive real number greater

than or equal to 0 and less than or equal to 1 (achieves, ROMACS x GOMACS → [0,1],

defines the extent of achievement of a goal by a role); possesses, a function with

an agent in AOMACS and a capability in COMACS as inputs yields a positive real

number in the range of [0,1] (possesses, AOMACS x COMACS → [0,1], defines the

quality of an agent´s capability); requires, a function that assumes a role in ROMACS,

thereby yielding a set of capabilities required to play that role (requires, ROMACS →

ρ(COMACS), defines the set of capabilities required to play a role
3
); capable, a

function whose inputs are an agent in AOMACS and a role in ROMACS and generates an

3 ρ denotes power set.

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 106 –

output, which is a positive real number greater than or equal to 0 and less than or

equal to 1 (capable, AOMACS x ROMACS → [0,1], defines how well an agent can play

a role), thus giving rise to

𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎, 𝑟) =

{

 0 𝑖𝑓 ∏ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠(𝑎, 𝑐) = 0

𝑐 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)

∑ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠(𝑎, 𝑐)𝑐 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)

|𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠(𝑟)|
 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒;

(1)

potential, a function with an agent in AOMACS, a role in ROMACS, and a goal in

GOMACS as inputs yields a positive real number in the range of [0,1], thus yielding

potential(a, r, g) = achieves(r, g) * capable(a, r) (2)

(potential, AOMACS x ROMACS x GOMACS → [0,1], defines how well an agent can play

a role to achieve a goal), and assignment set, ϕ, the set of agent-role-goal tuples

<a, r, g>, indicating that agent a  AOMACS has been assigned to play role r 

ROMACS in order to achieve goal g  GOMACS (ϕ is a subset of all the potential

assignments of agents to play roles to achieve goals). Finally, the selection of ϕ

from the set of potential assignments is defined by the organization’s

reorganization function, oaf, that assumes a set of assignments in ϕ, thereby

yielding a positive real number in the range of [0,∞] (oaf, ρ(ϕ) → [0,∞], defines

the quality of a proposed set of assignments, i.e., oaf computes the goodness of the

organization based on ϕ), thus resulting in

𝑜𝑎𝑓 = ∑ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑗).

<𝑎𝑖,𝑟𝑗,𝑔𝑗>∈𝜙𝑂𝑀𝐴𝐶𝑆

 (3)

3 Process Network Synthesis

In a process system, raw materials are consumed through various transformations

(e.g., chemical, physical, and biological) to desired products. Vessels where these

transformations take place are called operating units of the process. A given set of

operating units with likely interconnections can be portrayed as a network.

The desired products can be also manufactured via some sub-networks of the

above-mentioned network. Thus, a given network may give rise to a variety of

processes, or process networks, producing the desired products, and each of such

process networks corresponds to a sub-network, that can be considered regarded

as its structure. Energy and raw material consumption strongly depend on the

selection of a process structure; thus, the optimal design of such a process

structure, i.e., the process network synthesis (PNS), or process synthesis in short,

has both environmental and economic implications [14].

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 107 –

A number of methods has been developed for process synthesis [28]. These

methods can be classified according to whether they are based on heuristics or

algorithms, i.e., mathematical programming approaches. The majority, if not all,

of these methods, however, may not be sufficiently effective for PNS of a realistic

or industrial scale, process because of its combinatorial complexity arising from

the involvement of a large number of interconnected loops [14]. To cope with this,

an innovative approach based on P-graphs (process graphs), which are unique,

mathematically rigorous bipartite graphs, has been proposed to facilitate the

process network synthesis [10]. The P-graphs are capable of capturing not only the

syntactic but also semantic contents of a process network. Subsequently, an axiom

system underlying the P-graph framework is constructed to define the

combinatorial feasible process-network structures. The analysis and optimization

of properties of such structures are performed by a set of efficient combinatorial

algorithms: MSG [9], SSG [9], and ABB [13].

3.1 Process Graph (P-graph)

The mathematical definition of a P-graph and a process structure represented by it

are elaborated below [10].

Finite set M, containing materials, and finite set O, containing operating units, are

given such that

 0  ρ(M) x ρ(M) (4)

Thus, a P-graph can be defined to be a pair, (M,O), as follows:

The vertices of the graph are the elements of

V = M x O (5)

Those belonging to set M are of the M-type vertices, and those belonging to set O

are of O-type vertices. The arcs of the graph are the elements of

A = A1  A2 (6)

where

A1 = {(X,Y) | Y = (α,β) ϵ O and X ϵ α} (7)

and

A2 = {(Y,X) | Y = (α,β) ϵ O and X ϵ β } (8)

In these expressions, X designates an M-type vertex; Y, an O-type vertex; α a set

of M-type vertices from which arcs are directed into the O-type vertices; and, β a

set of M-type vertices to which arcs are directed out of the O-type vertices.

For illustration let M be a set of materials, M={A,B,C,D,E,F}, and O be a set of

operating units given by O={({B,A},{A}),({D,E},{B,C}),({F},{A,C}), ({F},{A,C})}.

It is not difficult to validate that sets M and O satisfies constraint (1), i.e., (M,O) is

a P-graph, as depicted in Figure 2.

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 108 –

3.2 Solution Structures

The materials and operating units in a feasible process structure must always

conform to certain combinatorial properties. For example, a structure containing

no linkage between a raw material and a final product is unlikely to represent any

practical process. Hence, it is of vital importance to identify the general

combinatorial properties to which a structure must conform. More important, the

properties identified should be satisfied by the structure of any feasible solution of

the synthesis problem. In other words, those and only those structures satisfying

these properties can be feasible structures of a process: no other structures or

constraints need to be considered in synthesizing the process.

A set of axioms has been constructed to express necessary and sufficient

combinatorial properties to which a feasible process structure should conform.

Next, each axiom is stated: (S1) Every final product is represented in the graph;

(S2) A vertex of the M-type has no input if and only if it represents a raw material;

(S3) Every vertex of the O-type represents an operating unit defined in the

synthesis problem; (S4) Every vertex of the O-type has at least one path leading to

a vertex of the M-type representing a final product; and, (S5) If a vertex of the M-

type belongs to the graph, it must be an input to or output from at least one vertex

of the O-type in the graph.

Figure 2

P-graph (M,O) where A,B,C,D,E, and F are materials, and 1,2, and 3 are the operating units:

represents raw materials or input elements of the whole process; symbolizes intermediate-materials

or elements, emerging between the operating units; and represents products or outputs of the entire

process

If a P-graph of a given synthesis problem, (P,R,O)
4
, satisfies theses axioms, it is

defined to be a solution-structure of the problem.

4
 Where P  M is the set of product, R  M is the set of raw materials, and O the set of

operating units.

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 109 –

3.3 Algorithms MSG, SSG, and ABB

Both the P-graph representation of a process network and the set of five axioms

for solution structures, i.e., combinatorial feasible networks, render it possible to

fashion the three mathematically rigorous algorithms: MSG, SSG, and ABB. The

algorithm MSG (Maximal-Structure Generation) generates the maximal structure

(super-structure) of a process synthesis network. Also, the algorithm SSG

(Solution-Structure Generation) generates the set of feasible process structures

from the maximal structure, which leads to the algorithm ABB (Accelerated

Branch and Bound) for computing the n-best optimal solution structure [9], [10],

[11], [12], [13].

4 Motivational Example: Cooperative Robotic Search

Team System

To demonstrate the application of the P-graph framework for assessing the design

of OMACS-based multiagent systems, a survey is given of a simplified

Cooperative Robotic Search Team
5
 (CRST) system [20], [33]. Essentially, we are

to design a team of robots whose goal is to search for different areas of a given

location on a map. The team should be able to search any area of the given

location even when faced with failures of individual robots or specific capabilities

of those robots. This implies that the team must be able to: (1) assign areas based

on individual team member´s reliability; (2) recognize when a robot is unable to

perform adequately its duties; and (3) reorganize the team to allow it to achieve its

goals in spite of individual failures.

4.1 Overview of CRST Organization

For illustration, it is presumed that four goals be achieved by the CRST. In other

words, G = {g1, g2, g3, g4} where gi for 1  i  4 signifies “search area i.” In the

CRST, two roles are identified, i.e., R = {r1,r2} where r1 and r2 represent the

Searcher and Patroller roles, respectively. In particular, role r1requires the Sonar,

Movement, and GPS capabilities for achieving goals g1, g2, g3, and g4. Likewise,

role r2 requires the Movement, GPS, and Range Finder capabilities for achieving

the same goals as those of role r1. Moreover, for each goal, gj, an achieve value is

assigned. This achieve value defines the extent of achievement of a goal by a role.

Both, the requires and achieves relations can be formally stated as:

requires = {(r1,{c1, c2, c3}),(r2,{c2, c3, c4})} and achieves = {(r1, g1, 0.2), (r1, g2,

0.4), (r1, g3, 0.8), (r1, g4, 1.0), (r2, g1, 1.0), (r2, g2, 0.7), (r2, g3, 0.4), (r2, g4, 0.1)}.

5
 Although the CRST presented in this paper has been simplified (due to space

constraint), it is still interesting enough to illustrate our work.

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 110 –

Also, four capabilities are specified. They are Sonar (c1), Movement (c2), GPS

(c3), and Range Finder (c4). c1 captures information about all objects around agent

ai (in a 360° view). c2 allows agent ai to move in any direction, north, south, east,

or west (up, down, left, or right). c3 provides the ability to read the absolute

position of agent ai in the environment. Finally, c4 renders it possible for agent ai

to measure the distance of the closest object directly in front of it.

In addition, three different agents are modeled; they are a1, a2, and a3.

Specifically, agent a1 possesses capabilities c1, c2, c3, and c4 while both agents a2

and a3 possess capabilities c2, c3, and c4. The possesses relationship is formulated

as follows: possesses = {(a1,c1,0.3), (a1,c2,0.5), (a1,c3,0.3), (a1,c4,0.3), (a2,c2,0.7),

(a2,c3,0.5), (a2,c4,0.7), (a3,c2,0.4), (a3,c3,0.9), (a3,c4,0.2)}.

Additionally, the cost of each individual agent a1, a2, and a3 is $850, $900, and

$950, respectively (see Figure 3).

Figure 3

Overview of the CRST Organization. The boxes at the top of the diagram represent agents identified

by their types, circles represent the roles, pentagons represent capabilities, and squares are system’s

goals. The arrows between the entities represent functions/relations achieves, requires, and possesses

5 Algorithm OMACStoPNS

Algorithm OMACStoPNS comprises two mayor parts, the initialization and the

construction parts. The initialization part (statements st1, st2, st3, and loop lp1)

specifies the sets of available raw materials and desired products to be

manufactured as well as their parameters. The construction part (loop lp3)

specifies the set of candidates operating units as well as their parameters (see

Figure 3).

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 111 –

Figure 4

Algorithm OMACStoPNS written in Pidgin Algol

Each agent ai in AOMACS, is transformed into raw material r and added to set R

(loop lp1); as such, Axiom (S2) is satisfied. Algorithm OMACStoPNS generates

the resources, Ra
i
; Ra

1
, Ra

2
, and Ra

3
. Furthermore, lower bound La

i
, upper bound

𝐢𝐧𝐩𝐮𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆 defines a set of roles, 𝐴𝑂𝑀𝐴𝐶𝑆 is a set of
agents, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the extent of achievement of a goal by a role, (𝐺𝑂𝑀𝐴𝐶𝑆 × 𝑅𝑂𝑀𝐴𝐶𝑆 → [0 … 1])
𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 defines the quality of an agent´s capability (𝐴𝑂𝑀𝐴𝐶𝑆 × 𝐶𝑂𝑀𝐴𝐶𝑆 → [0 … 1]), and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines
the set of capabilities required to play a role (𝑅𝑂𝑀𝐴𝐶𝑆 → ℘(𝐶𝑂𝑀𝐴𝐶𝑆)). The 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 function
 𝐴𝑂𝑀𝐴𝐶𝑆 × 𝑅𝑂𝑀𝐴𝐶𝑆 → 0 … 1
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅
𝐛𝐞𝐠𝐢𝐧
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm;
𝐬𝐭𝟏: 𝑀 ∶= 𝑀 ∪ 𝑜𝑎𝑓 ;
𝐬𝐭𝟐: 𝑃 ∶= 𝑃 ∪ {𝑜𝑎𝑓};
𝐬𝐭𝟑: 𝑈𝑜𝑎𝑓 ∶= ∞; 𝐿𝑜𝑎𝑓 ∶= 0; 𝑐𝑜𝑎𝑓 ∶= 1;

𝐥𝐩𝟏: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪ 𝑎𝑖 ;𝑈𝑎𝑖

∶= ∞; 𝐿𝑎𝑖
∶= 0; 𝑐𝑎𝑖

∶= 𝑐𝑜𝑠𝑡(𝑎𝑖);

 𝐞𝐧𝐝;
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm;
𝐥𝐩𝟐: 𝐟𝐨𝐫 𝑔𝑖 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧

 𝑀 ∶= 𝑀 ∪ 𝑔𝑖 ; 𝑔𝑖_𝑜𝑎𝑓 ≔ 𝑔𝑖 , 𝑜𝑎𝑓 ; 𝑂 ∶= 𝑂 ∪ 𝑔𝑖_𝑜𝑎𝑓 ;

 𝑈𝑔𝑖_𝑜𝑎𝑓 ∶= ∞; 𝐿𝑔𝑖_𝑜𝑎𝑓 ∶= 0; 𝑐𝑔𝑖_𝑜𝑎𝑓 ∶= 0;

 𝑎𝑔𝑖 ,𝑔𝑖_𝑜𝑎𝑓
∶= 1; 𝑎𝑔𝑖_𝑜𝑎𝑓 ,𝑜𝑎𝑓 ∶= 1;

 𝐞𝐧𝐝;
𝐥𝐩𝟑: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅;

 𝐟𝐨𝐫 𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′ ∈ 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑎′ = 𝑎𝑖 𝐭𝐡𝐞𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐};

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐟𝐨𝐫 𝑟𝑘 , ℘(𝑐) ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 ℘ c ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧

 𝑎𝑢𝑥 ≔ ∅;
 𝐟𝐨𝐫 𝑟′′ , 𝑔𝑗 , 𝑣𝑎𝑙𝑢𝑒′′ ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑟𝑘 = 𝑟′′ 𝐭𝐡𝐞𝐧

 𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔ 𝑎𝑖_𝑟𝑘_𝑔𝑗 , {𝑔𝑗 } ;

 𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑂 ∶= 𝑂 ∪ 𝑎𝑖_𝑟𝑘_𝑔𝑗 ;

 𝑈𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= ∞; 𝐿𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 0; 𝑐𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 0;

 𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 1; 𝑎𝑎𝑖_𝑟𝑘 _𝑔𝑗 ,𝑔𝑗

∶= 𝑣𝑎𝑙𝑢𝑒 ′′ ;

 𝑎𝑎𝑖 ,𝑎1_𝑟𝑘
= 1; 𝑎𝑎𝑖_𝑟𝑘 ,𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎𝑖 , 𝑟𝑘);

 𝐞𝐧𝐝;
 𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧

 𝑎𝑖_𝑟𝑘 ≔ 𝑎𝑖 , 𝑎𝑢𝑥 ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘};

 𝑈𝑎𝑖_𝑟𝑘
∶= 1; 𝐿𝑎𝑖_𝑟𝑘

∶= 0; 𝑐𝑎𝑖_𝑟𝑘
: = 0;

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 112 –

Ua
i
, and cost ca

i
, are set for each resource, Ra

i
; as such, algorithm OMACStoPNS

specifies the total amount of available resources for the motivational problem (see

Table 1). Thus, only a single product, oaf, is specified and added to set P

(statements st1, st2, and st3); as such, Axiom (S1) is automatically satisfied. Note

that this is analogous to the notion of the goodness of the organization based on

the quality of a proposed set of assignments. In other words, the set of agent-role-

goal tuples <ai, rk, gj> indicates that agent ai ϵ AOMACS has been assigned to play

role rk ϵ ROMACS in order to achieve goal gj ϵ GOMACS. For outcome oaf, algorithm

OMACStoPNS sets lower bound Loaf, upper bound Uoaf, and cost coaf; as such, the

amount of product to be manufactured for meeting the demand of the problem is

specified (see Table 2).

Table 1

Resources to be considered in process synthesis for the example

Resource Rj Lower bound Rj Upper bound Rj Cost cj

a1 0 ∞ 0

a2 0 ∞ 0

a3 0 ∞ 0

Table 2

Targets to be considered in process synthesis for the example

Target Pj Lower Bound Lj Upper Bound Uj Cost cjcj

oaf 0 ∞ 1

Subsequently, algorithm OMACStoPNS systematically specifies the operating

units in loops lp2 and lp3, representing organizational assignments, as described in

section 3; as such, Axioms (S3) and (S4) are satisfied. First, the algorithm loops

through every goal gj ϵ G. Each goal gj is transformed into material m for

inclusion in set M. Algorithm OMACStoPNS generates materials Mg
j
; Mg

1
, Mg

2
,

Mg
3
, and Mg

4
. Note that material Mg

j
 represents the goals to be accomplished by the

organization. This gives rise to the creation of operating unit o for inclusion in set

O for each gj. Algorithm OMACStoPNS generates operating units Ogj_oaf.

Additionally, lower bound Lg
j
_oaf, upper bound Ug

j
_oaf, cost cg

j
_oaf, and aji, the

consumption rate of entity mj by operating unit oi are set for each operating unit

Og
j
_oaf; as such, algorithm specifies the goals to be achieved by the system (see

Table 1).

Afterwards, algorithm OMACStoPNS loops through every agent ai  A.

Consequently, for each agent ai, algorithm OMACStoPNS checks whether ai is

capable of playing a given role rk in R. If so, algorithm OMACStoPNS searches

for every gj in G, such that gj is achieved by rk. As a result, algorithm

OMACStoPNS generates materials Ma
i
_r

k
_g

j
; Ma

1
_r

1
_g

1
, Ma

1
_r

1
_g

2
, Ma

1
_r

1
_g

3
, Ma

1
_r

1
_g

4
,

Ma
1

_r
2
_g

1
, Ma

1
_r

2
_g

2
, Ma

1
_r

2
_g

3
, Ma

1
_r

2
_g

4
, Ma

2
_r

2
_g

1
, Ma

2
_r

2
_g

2
, Ma

2
_r

2
_g

3
, Ma

2
_r

2
_g

4
,

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 113 –

Ma
3

_r
2
_g

1
, Ma

3
_r

2
_g

2
, Ma

3
_r

2
_g

3
, and Ma

3
_r

2
_g

4
. Subsequently, for each agent ai, role rk,

and goal gj, two operating units o are created and added to set O. One indicates

that agent ai is capable of playing role rk; the second implies that agent ai has been

assigned to play role rk in order to achieve goal gj. Accordingly, algorithm

OMACStoPNS generates the operating units Oa
i
_r

k
 and Oa

i
_r

k
_g

j
. Moreover, lower

bounds La
i
_r

k
 and La

i
_r

k
_g

j
; upper bounds Ua

i
_r

k
 and Ua

i
_r

k
_g

j
; and costs ca

i
_r

k
 and

ca
i
_r

k
_g

j
; and the consumption flow rate of material mj, aji, by operating unit oi, are

set for each of operating units Oa
i
_r

k
 and Oa

i
_r

k
_g

j
Oai_rk_gj; as such, algorithm

specifies whether agent ai has been assigned to play role rk in order to achieve

goal gj (see Table 3). As a result, the execution of loop lp3 assures that Axiom

(S5) is satisfied by the maximal structure. Figure 5 displays the maximal structure

of the motivational example generated by algorithm MSG.

Table 3

Operating units to be considered in process synthesis for the example*

Operating

Unit Oi

Input

Material mj

Output

Material mj

Lower

bound

 Li

Upper

bound

Ui

Cost

ci

𝑔1_𝑜𝑎𝑓 g
1
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0

𝑔2_𝑜𝑎𝑓 g
2
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0

𝑔3_𝑜𝑎𝑓 g
3
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0

𝑔4_𝑜𝑎𝑓 g
4
 (1) 𝑜𝑎𝑓 (1) 0 ∞ 0

𝑎1_𝑟1_𝑔1 𝑎1_𝑟1_𝑔1(0.433) 𝑔1(0.2) 0 ∞ 0

𝑎1_𝑟1_𝑔2 𝑎1_𝑟1_𝑔2(0.433) 𝑔2(0.4) 0 ∞ 0

𝑎1_𝑟1_𝑔3 𝑎1_𝑟1_𝑔3(0.433) 𝑔3(0.6) 0 ∞ 0

𝑎1_𝑟1_𝑔4 𝑎1_𝑟1_𝑔4(0.433) 𝑔4(0.8) 0 ∞ 0

𝑎1_𝑟2_𝑔1 𝑎1_𝑟2_𝑔1(0.433) 𝑔1(1.0) 0 ∞ 0

𝑎1_𝑟2_𝑔2 𝑎1_𝑟2_𝑔2(0.433) 𝑔2(0.7) 0 ∞ 0

𝑎1_𝑟2_𝑔3 𝑎1_𝑟2_𝑔3(0.433) 𝑔3(0.4) 0 ∞ 0

𝑎1_𝑟2_𝑔4 𝑎1_𝑟2_𝑔4(0.433) 𝑔4(0.1) 0 ∞ 0

𝑎2_𝑟2_𝑔1 𝑎2_𝑟2_𝑔1(0.633) 𝑔1(1.0) 0 ∞ 0

𝑎2_𝑟2_𝑔2 𝑎2_𝑟2_𝑔2(0.633) 𝑔2(0.7) 0 ∞ 0

𝑎2_𝑟2_𝑔3 𝑎2_𝑟2_𝑔3(0.633) 𝑔3(0.4) 0 ∞ 0

𝑎2_𝑟2_𝑔4 𝑎2_𝑟2_𝑔4(0.633) 𝑔4(0.1) 0 ∞ 0

𝑎3_𝑟2_𝑔1 𝑎3_𝑟2_𝑔1(0.5) 𝑔1(1.0) 0 ∞ 0

𝑎3_𝑟2_𝑔2 𝑎3_𝑟2_𝑔2(0.5) 𝑔2(0.7) 0 ∞ 0

𝑎3_𝑟2_𝑔3 𝑎3_𝑟2_𝑔3(0.5) 𝑔3(0.4) 0 ∞ 0

𝑎3_𝑟2_𝑔4 𝑎3_𝑟2_𝑔4(0.5) 𝑔4(0.1) 0 ∞ 0

𝑎1_𝑟1 𝑎1
𝑎1_𝑟1_𝑔1(0.433), 𝑎1_𝑟1_𝑔2(0.433),

𝑎1_𝑟1_𝑔3(0.433), 𝑎1_𝑟1_𝑔4 (0.433)
0 1 0

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 114 –

𝑎1_𝑟2 𝑎1

𝑎1_𝑟2_𝑔1(0.433), 𝑎1_𝑟2_𝑔2(0.433),

𝑎1_𝑟2_𝑔3(0.433), 𝑎1_𝑟2_𝑔4 (0.433)
0 1 0

𝑎2_𝑟2 𝑎2
𝑎2_𝑟2_𝑔1(0.633), 𝑎2_𝑟2_𝑔2(0.633),

𝑎2_𝑟2_𝑔3(0.633), 𝑎2_𝑟2_𝑔4 (0.633)
0 1 0

𝑎2_𝑟2 𝑎3
𝑎3_𝑟2_𝑔1(0.5), 𝑎3_𝑟2_𝑔2(0.5),

𝑎3_𝑟2_𝑔3(0.5), 𝑎3_𝑟2_𝑔4 (0.5)
0 1 0

* The numbers in the brackets are the flow rates, aji, of the input and output materials relative to the unit capacity of each operating unit.

Figure 5

Maximal structure for the hypothetical example to illustrate the solution-structure generation with

algorithm MSG

6 Mathematical Programming Model

Unlike any of the available algorithmic methods for computing the quality of a

proposed set of assignments based upon OMACS, i.e., agents, ai  AOMACS,

assigned to play roles, rk  ROMACS, in order to achieve goals, gj  GOMACS, where

no mathematical programming model is derived due to the approach adopted, i.e.,

step-by-step computation [4], [20], [30], [33], [37], [38]; we propose a simple

mathematical programming model, which is derived from the maximal structure,

generated by algorithm MSG, and does not impair the optimality of the resultant

solution.

In the present work, a mixed-integer linear programming (MILP) model has been

formulated, which at the very least yields a solution identical with those

conventional OMACS-based assignment algorithms [37], [38].

Let M denote the set of entities; P, the set of products, where P  M; R, the set of

initially available resources, where R  M; and O, the set of activities, where

O = ρ(M) x ρ(M). The relations between entities and activities are denoted by aji

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 115 –

which gives the difference between the production and consumption rate of entity

Mj by activity Oi, where Mj  M and Oi  O. Also given are lower bound LO
i
 and

upper bound UO
i
 for the volume of each activity O

i
, as well as its cost cO

i
. In

addition, lower bound LR
j
 and upper bound UR

j
 are specified for each resource Rj.

In addition, lower bound LP
j
 and upper bound UP

j
 are defined for each product Pj.

Moreover, two classes of variables are involved in the mathematical programming

model. One class consists of binary variables, each denoted by yO
i
 {0,1}

expressing the absence (0) or the existence (1) of operating unit Oi; and the other,

continuous variables, each denoted by xO
i

expressing the size or capacity of

operating unit Oi relative to the unit size. If operating unit Oi is included in the

network, as indicated by yi = 1, the concomitant continuous variable, xO
i
, can be

any real value in the range of 0 to the upper limit for the capacity of operating unit

Oi. Thus, xO
i
  yO

i
Ui, where Ui is the upper limit for the capacity; if such an upper

limit does not exist, the Ui can be any large number L. Finally, z, maximal, is the

objective value. The resultant MILP model is given in the following.

𝑧 = 𝑚𝑎𝑥 (∑ (𝑐𝑃𝑗 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖
𝑂𝑖 ∈ 𝑂

)

𝑃𝑗 ∈ 𝑀 ∩ 𝑃

)

(9)

subject to

 𝑀 = ⋃ 𝛼𝑖 ∪ 𝛽𝑖
(𝛼𝑖,𝛽𝑖) ∈ 𝑂

(10)

0 ≤ 𝑥𝑂𝑖 , 𝐿𝑂𝑖 ≤ 𝑥𝑂𝑖 ≤ 𝑈𝑂𝑖 ∀𝑂𝑖 ∈ 𝑂 (11)

𝐿𝑃𝑗 ≤ ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑃𝑗
𝑂𝑖∈𝑂

 ∀𝑃𝑗 ∈ 𝑀 ∩ 𝑃 (12)

𝐿𝑅𝑗 ≤ ∑ 𝑎𝑗𝑖 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑅𝑗
𝑂𝑖∈𝑂

 ∀𝑅𝑗 ∈ 𝑀 ∩ 𝑅 (13)

𝐿𝑀𝑗 ≤ ∑ 𝑎𝑗𝑖 ∗ 𝑥𝑂𝑖 − ∑ 𝑎𝑖𝑗 ∗ 𝑥𝑂𝑖 ≤ 𝑈𝑀𝑗
𝑂𝑖∈𝑂𝑂𝑖∈𝑂

 ∀𝑀𝑗 ∈ 𝑀\(𝑅 ∪ 𝑃) (14)

𝑥𝑂𝑖 ≤ 𝑦𝑂𝑖𝐿 (15)

 𝑦𝑂𝑖 ∈ {0,1} (16)

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 116 –

The maximal structure serves as the input to the generation and solution of the

MILP model by algorithm ABB [13]. It yields the optimal network and a finite

number of n-best suboptimal networks in ranked order. Algorithm ABB has

identified a total of 65535 structures
6,7

 in less than 75 seconds on an Intel(R)

Core(TM) i5 CPU @ 3.20 GHz. Table 4 shows 10 feasible solutions for the

example. Algorithms MSG and ABB have been executed by software PNS Studio

[32].

Table 4

Subset of Feasible Solutions (less than 1%) generated by algorithm

Sol. #
agent’s organization

assignment set, ϕ
oaf value Agents’ cost ($)

1

{

〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

 }

 4,3112 2700

1280 {

〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

} 3,4452 2700

3204 {

〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

} 3,2112 1750

7813 {

〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

} 2,9186 1800

19883 {
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

} 2,4926 1850

25400 {
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

} 2,3452 1750

36779 {
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉,
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

} 2,0526 1800

6
 It is important to point out that only 77% of the structures, i.e., 50626, are feasible

assignments for the problem. OMACS model imposes that a feasible assignment set is

based on the current set of goals required to be achieved by the system [4]. For

example, assignment set ϕ = {<a1,r1,g1>,<a1,r1,g3>,<a2,r2,g4>,<a3,r2,g4>} is a valid

assignment; however it is unfeasible for the motivational example: goal g2 will never

be achieved.
7
 Algorithm SSG has identified 65535 structures in 4.662 s without computing the

optimal and sub-optimal assignments.

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 117 –

45654 {
〈𝑎1, 𝑟1, 𝑔1〉,〈𝑎1, 𝑟1, 𝑔2〉,〈𝑎1, 𝑟1, 𝑔3〉,〈𝑎1, 𝑟1, 𝑔4〉,
〈𝑎1, 𝑟2, 𝑔1〉,〈𝑎1, 𝑟2, 𝑔2〉,〈𝑎1, 𝑟2, 𝑔3〉,〈𝑎1, 𝑟2, 𝑔4〉

} 1,8186 850

57730 {
〈𝑎2, 𝑟2, 𝑔1〉,〈𝑎2, 𝑟2, 𝑔2〉,〈𝑎2, 𝑟2, 𝑔3〉,〈𝑎2, 𝑟2, 𝑔4〉

} 1,3926 900

62333 {
〈𝑎3, 𝑟2, 𝑔1〉,〈𝑎3, 𝑟2, 𝑔2〉,〈𝑎3, 𝑟2, 𝑔3〉,〈𝑎3, 𝑟2, 𝑔4〉

} 1,1 950

7 Assessment of Organization-based Multiagent

System Designs

To empirically evaluate the flexibility of the different agent-based organization

designs identified by algorithm ABB, we have developed a simulation that steps

through the CRST application. To measure the flexibility, the approach deployed

in [33] is followed; specifically, capability failure has been simulated. At each

step in the simulation, a randomly selected system goal, i.e., g1, g2, g3, and g4, is

achieved. Subsequently, the best available assignment is calculated (see Eq. 2).

The best assignment defines how well an agent, ai  AOMACS, can play a role (see

Eq. 1), rk  ROMACS, to achieve a goal, gj  GOMACS. Afterwards, one of the

capabilities possessed by a robot is randomly selected and tested to see if it has

failed. A predefined capability failure rate (0 – 100%) indicates if the selected

capability has failed. Once failed, a capability is assumed to remain so for the life

of the system. In addition, reorganization is performed to assign available robots

to available goals and to de-assign robots if their capabilities have failed, and thus,

they are no longer able to play their assigned roles.

Figure 6

Comparison of Sol. #1 and Sol. # 19883

Each agent-based organization (see Section 6) has been simulated for failure rates

ranging from 0 to 100% for 1000 system executions. The comparison of Figures 6

and 7 reveals a difference among the agent-based organization configurations,

thereby rendering it possible to offer significant remarks about the claim, “the

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 100

Su
cc

e
ss

 R
at

e
 (

%
)

Capability Failure Rate (%)
Sol. #1 Sol. #19883

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 118 –

higher the organization score (i.e., the oaf function), the better the performance of

the organization.”[36]. First, it is not always the rule that the higher the oaf

function score, the better the performance of the agent-based organization. For

instance, Figure 6 displays a scenario where an agent-based organization, i.e., Sol.

19883, with an oaf value of ϕ = 2.4926 and the cost of $1850 performing

equally well when compared to the best agent organization, i.e., Sol. # 1, with an

oaf value of ϕ = 4.3112 and the cost of $2700.

Moreover, Figure 7 demonstrates another scenario where an agent-based

organization, i.e., Sol. #7183, with an oaf value of ϕ = 2.9186 and the cost of

$1800, is outperformed
8
 by other agent-based organizations, i.e., Sol. #25400 and

Sol. #57730, with oaf values of ϕ = 2.3452 and ϕ = 1.3926 whose costs are $1800

and $900, respectively.

Figure 7

Comparison of Sol. #7813, Sol. #25400, and Sol. #57730

Conclusions and Future Work

In this work we have introduced an algorithmic method for assessing the n-best

organizational-based multiagent system design based upon the OMACS

framework. The method has been crafted by transforming an organizational-based

multiagent system design into a PNS problem and solving the resultant problem

by the algorithms and the software of the P-graph framework.

The potential of the proposed method has been illustrated by solving an example

in which the optimal and suboptimal organizational-based multiagent system

designs in ranked order emerge by defining its cost (in terms of the oaf function,

i.e., ϕ; see Eq. 3), as the objective function. However, an optimal solution does not

always capture the expected behavior of the organizational-based multiagent

system design. Thus, additional research is needed to explore the combinations of

the P-graph framework with other techniques (e.g., system reliability [16], self-

organization [25], complex systems [34], genetic algorithms [1]), which can

8
 This behavior emerges when the capability failure rate ranges from 30% through

70%.

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 100

Su
cc

e
ss

 R
at

e
 (

%
)

Capability Failure Rate (%)

Sol. #7813 Sol. #25400 Sol. #57730

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 119 –

effectively capture the expected behavior of an organizational-based multiagent

system in the design phase.

Finally, we propose the construction of a computational tool for transforming

OMACS organizational-based multiagent systems into PNS problems and

integrating it into existing tools [17], [18]. Our efforts will be the subject of future

contributions in this research area; as well, its application in other domains [2],

[15].

Acknowledgments

The first author would like to thank Virag Varga for her kind support in the

definition of the mathematical model.

In memoriam, Prof. L. T. Fan (1929-2014)

References

[1] Arezki Mellal, M., Adjerid, S., Benazzouz, D., Berrazouane, S., Edward J.

Williams, E. J. Optimal Policy for the Replacement of Industrial Systems

Subject to Technological Obsolescence – Using Genetic Algorithm. Acta

Polytechnica Hungarica, 10(1), 197-208 (2013)

[2] Barrera-Sanabria, G., Arenas-Seleey, D., García-Ojeda, Juan C., Méndez-

Ortiz, F. Designing Adaptive Educational Web Sites: General Framework.

In Proceedings of the IEEE International Conference on Advanced Learning

Technologies, ICALT 2004, pp. 973-977, IEEE Computer Society, Joensuu,

Finland (2004)

[3] Cossentino, C., Hilaire, V., Molesini, A., Seidita, V.: Handbook on Agent-

Oriented Design Processes. An IEEE-FIPA Standard Compliant Description

Approach. Springer-Verlag, Berlin (2014)

[4] DeLoach, S. A., Oyenan, W. H., Matson, E. T.: A Capabilities-based Model

for Artificial Organizations. Journal of Autonomous Agents and Multiagent

Systems. 16(1), 13-56 (2008)

[5] Dignum, V., Vázquez-Salceda, J., Dignum, F.: Omni: Introducing Social

Structure, Norms and Ontologies into Agent Organizations. In: Bordini, R.

H. et al. (eds.) PROMAS 2004, LNAI 3346, pp. 181-198, Springer-Verlag,

Berlin Heildeberg (2005)

[6] Dignum, V. A.: Model for Organizational Interaction: Based on Agents,

Founded in Logic. PhD Dissertation, Utrecht University (2004)

[7] Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of

Organizations in Multiagent Systems. In Proceedings of the 3
rd

 International

Conference on Multi Agent Systems, pp. 128-135, IEEE Computer Society,

Washington, DC (1998)

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 120 –

[8] Fortino, G., Russo, W.: ELDAMeth: An Agent-oriented Methodology for

Simulation-based Prototyping of Distributed Agent Systems. Information

and Software Technology. 54(6), 608-624 (2012)

[9] Friedler, F., Tarján, K., Huang, Y. W. and Fan, L. T.: Combinatorial

Algorithms for Process Synthesis. Computers Chem. Engng. 16, S313-320

(1992)

[10] Friedler, F., Tarján, K., Huang, Y. W. and Fan, L. T.: Graph-Theoretic

Approach to Process Synthesis: Axioms and Theorems. Chem. Engng. Sci.

47, 1972-1988 (1992)

[11] Friedler, F., Tarján, K., Huang, Y. W., Fan, L. T.: Graph-Theoretic

Approach to Process Synthesis: Polynomial Algorithm for Maximal

Structure Generation. Computers Chem. Engng. 17, 929-942 (1993)

[12] Friedler, F., Varga, J. B., Fan, L. T.: Decision-Mapping for Design and

Synthesis of Chemical Processes: Applications to Reactor-Network

Synthesis. In: Biegler, L., Doherty, M. (eds.) AIChE Symposium Series,

Vol. 91, pp. 246-250, American Institute of Chemical Engineers, New York

(1995)

[13] Friedler, F. Varga, J. B., Feher, E., Fan, L. T.: Combinatorially Accelerated

Branch-and-Bound Method for Solving the MIP Model of Process Network

Synthesis. In: Floudas, C. A., Pardalos, P. M. (eds.) Global Optimization,

Computational Methods and Applications, State of the Art, pp. 609-626,

Kluwer Academic Publishers, Dordrecht, Netherlands (1996)

[14] Friedler, F., Fan, L. T., Imreh, B.: Process Network Synthesis: Problem

Definition. Networks. 28, 119-124 (1998)

[15] Garcia-Ojeda, J. C., B. Bertok, F. Friedler. “Planning Evacuation Routes

with the P-Graph Framework,” Chemical Engineering Transactions, 29,

1531-1536 (2012)

[16] García-Ojeda, J. C., DeLoach, S. A., Robby, Oyenan, W. H., Valenzuela, J.

O-MaSE: A Customizable Approach to Developing Multiagent

Development Processes. In: Michael Luck, Lin Padgham (Eds.): Agent-

oriented Software Engineering VIII, 8
th

 International Workshop, AOSE

2007, Honolulu, HI, USA, May 14, 2007, Revised Selected

Papers, LNCS 4951, 1-15, Springer-Verlag: Berlin (2008)

[17] García-Ojeda, J. C., DeLoach, S. A., Robby: AgentTool III: From Process

Definition to Code Generation. In: Proceedings of the 8
th

 international

Conference on Autonomous Agents and Multiagent Systems - Volume 2,

pp. 1393-1394, Budapest, Hungary (2009)

[18] García-Ojeda, J. C., DeLoach, S. A., Robby: AgentTool Process Editor:

Supporting the Design of Tailored Agent-based Processes. In: Proceedings

of the 2009 ACM Symposium on Applied Computing, pp. 707-714,

Honolulu, Hawaii (2009)

Acta Polytechnica Hungarica Vol. 12, No. 2, 2015

 – 121 –

[19] Garro, A., Tundis, A.: A Model-based Method for System Reliability

Analysis. In: Proceedings of the 2012 Symposium on Theory of Modeling

and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS 2012),

Article No 2, Society for Computer Simulation International, San Diego,

CA (2012)

[20] Harmon, S. J., DeLoach, S. A., Robby, Caragea, D.: Leveraging

Organizational Guidance Policies with Learning to Self-Tune Multiagent

Systems. In: Proceedings of the Second IEEE International Conference on

Self-Adaptive and Self-Organizing Systems, pp. 223-232, IEEE Computer

Society, Venice, Italy (2008)

[21] Henderson-Sellers, B., Giorgini, P.: Agent-oriented Methodologies. Idea

group Inc. Hershey, PA (2005)

[22] Horváth, A.: Investigation of Failure Systems. Acta Polytechnica Hungarica,

5(2), 127-132 (2008)

[23] Hübner, J. F., Sichman, J. S., Boissier, O.: Developing Organised

Multiagent Systems using the MOISE+ Model: Programming Issues at the

System and Agent Levels. Int. J. Agent-Oriented Softw. Eng. 1(3), 370-395

(2007)

[24] Jin, Y., Levitt, R. E.: The Virtual Design Team: A Computational Model of

Project Organizations. Computational & Mathematical Organization

Theory. 2(3), 171-196 (1996)

[25] Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-

Organization and Complexity. Oxford University Press, Oxford (1995)

[26] Klügl, F.: Measuring Complexity of Multiagent Simulations – An Attempt

Using Metrics. In Dastani, M. et al. (eds.) LADS 2007, LNAI 5118, pp.

123-138, Springer-Verlag, Berlin Heildeberg (2006)

[27] Kota, R., Gibbins, N. and Jennings, N. R.: A Generic Agent Organisation

Framework for Autonomic Systems. In: 1
st
 International ICST Workshop on

Agent-based Social Simulation and Autonomic Systems (ABSS 2009), 09-

11 Sep, Limassol, Cyprus. pp. 203-219 (2009)

[28] Minoux, M.: Networks Synthesis and Optimum Network Design Problems:

Models, Solution Methods and Applications. Networks, 19, 313-360 (1989)

[29] Nair, R., Tambe, M., Marsella, S.: Team Formation for Reformation.

In: Proceedings of the AAAI Spring Symposium on Intelligent Distributed

and Embedded Systems, pp. 52-56, AAAI Press, Menlo Park, CA (2002)

[30] Oyenan, W. H., DeLoach, S. A., Singh, S.: An Organizational Design for

Adaptive Sensor Networks. In: 2010 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology WI-IAT,

pp. 239-242, IEEE computer Society, Toronto, Canada (2010)

http://www.informatik.uni-trier.de/~ley/pers/hd/d/DeLoach:Scott_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Singh:Gurdip.html
http://www.informatik.uni-trier.de/~ley/db/conf/iat/iat2010.html#OyenanDS10
http://www.informatik.uni-trier.de/~ley/db/conf/iat/iat2010.html#OyenanDS10

J. C García-Ojeda et al. A Preliminary Study of the Application of the P-graph Methodology for
 Organization-based Multiagent System Designs: Assessment

 – 122 –

[31] Picard, G., Mellouli, S., and Gleizes, M.: Techniques for Multiagent System

Reorganization. In: Dikenelli, O. et al. (eds.) ESAW 2005, LNAI 3963, pp.

142-152, Springer-Verlag, Berlin Heidelberg (2006)

[32] P-graph – PNS studio, http://www.p-graph.com

[33] Robby, DeLoach S. A., and, Kolesnikov, V. A.: Using Design Metrics for

Predicting System Flexibility. In: Baresi, L. et al. (eds.) FASE 2006. LNCS,

Vol. 3922, pp. 184-198. Springer-Verlag, Berlin Heidelberg (2006)

[34] Serugendo, G. D. M, Gleizes, M. P., Karageorgos, A.: Self-Organisation and

Emergence in Mas: An Overview. Informatica 30(1), 45-54 (2006)

[35] Sims, M., Corkill, D., Lesser, V.: Automated Organization Design for

Multiagent Systems. Auton. Agents and Multiagent Syst 16(2), 151-185

(2008)

[36] Vazquez-Salceda, J., Dignum, F.: Modelling Electronic Organizations. In

Mark, V. et al. (eds.) Multiagent Systems and Applications III, LNAI 2691,

pp. 584-593 Springer-Verlag, Berlin Heidelberg (2003)

[37] Zhong, C., DeLoach, S. A.: An Investigation of Reorganization Algorithms.

In: 2006 International Conference on Artificial, pp. 514-517, CSREA Press

(2006)

[38] Zhong, C.: Integrating Humans into and with Computing Systems. Ph.D.

Dissertation, Kansas State University (2010)

