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Abstract: The Related Parallel Machine Scheduling Problem (R-PMSP) is a type of optimal 
job scheduling problem. The problem is to assign different types of jobs to different parallel 
machines. Every machine has a speed rate that can execute a job faster or slower than other 
machines. This paper focuses on an R-PMSP, with availability and periodical unavailability 
constraints. Some jobs can also have machine preferences. The problem with these 
constraints is NP-hard. This study describes three metaheuristic algorithms for solving the 
problem. Namely, the algorithms are Genetic Algorithm (GA), Simulated Annealing (SA), 
and Discrete Grey Wolf Optimizer (DGWO). This article focuses on examining the 
performance of the algorithms, determined by the required time, to find a suboptimal 
threshold. Simulated Annealing proved to be the best in terms of efficiency and time required 
to find the suboptimal threshold. In addition, the study describes a benchmark generator 
method for this problem, which guarantees to create a problem with given properties and 
with a given optimum. 
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1 Introduction 
Task scheduling problems can be seen in any part of our lives, for example, 
scheduling production lines, scheduling task execution, and assigning clients to 
service queues. That is why scheduling is one of the most dominant problems to be 
solved today. There are many approaches to solving these problems in the literature, 
but the diversity of the problem means many open areas. Time is one of the essential 
resources. Valuable time can be saved by properly allocating tasks to the machines. 
The motivation for this research comes from two problems that need to be solved. 
The first is the scheduling of patients to testing laboratories for individual tests. This 
can include CT, MRI, blood tests, cancer prevention tests, etc. The duration of tests 
varies and patients have the option of choosing laboratories. For instance, the patient 
has an agreement with the laboratory. The testing laboratories have different 
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characteristics: maximum availability (opening times) and periodical unavailability 
time (break times, maintenance time). Some laboratories perform their tasks faster 
than others (diversity of MRI machines, etc.). The second example is the scheduling 
of tasks to various computing devices. With so many different types available, such 
as PCs, supercomputers, and microcontrollers, the processing speed varies, and 
tasks must be assigned accordingly to optimize their running time.  Utilizing a fast 
machine can reduce the running time of all tasks. Additionally, certain tasks may 
be delegated to predetermined machines for reasons such as data protection or 
contractual obligations. These machines possess varying characteristics, including 
reboot time, maintenance schedules, and cleaning intervals. The machine 
scheduling problem can be precisely matched with the patient scheduling problem. 
The characteristics of two examples are perfectly reconcilable.  Patients are the 
tasks, and laboratories are the machines. In both cases, the goal is to minimize the 
makespan, i.e. minimizing the time difference between the start and the end of the 
task sequence. This problem is called the Related Parallel Machine Scheduling 
Problem (R-PMSP) with constraints. 

In the next section, in chronological order, the state of the art on the problem in 
more detail is presented. Then, the types of scheduling problem and present current 
methods are described. In Section 3, a mathematical model of our problem is 
defined. Section 4 presents a benchmark generation method that yields the 
optimum. The used metaheuristic and their problem-specific modifications are 
described in Section 5. The computational results are discussed in Section 6. 
Finally, in the last section, Section 7, the results are concluded, summarized and the 
possibilities for further improvements are discussed. 

2 Related Work 
Researchers have recently defined categories and types of optimal scheduling 
problems. Two broad categories can be distinguished: 

• Single-stage job scheduling Where each job consists 
of only one  

  execution phase 

 

• Multi-stage job scheduling Where each job consists 
of several 

  execution phases that must be executed in 

  parallel or a predefined order according to 

  different rules 
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There are several types of single-stage job scheduling: single-machine scheduling, 
identical-machine scheduling, related-machine scheduling, and unrelated machine 
scheduling. Three types of multi-stage scheduling problems are known: open-shop 
scheduling, flow-shop scheduling, and the job-shop scheduling problem. These 
fundamental problems can be extended with different machine or job constraints. 
Machine constraints can be as follows: a machine can work for a particular time, 
each machine has its own time to process the information needed to complete the 
task, and machines can stop periodically. Task constraints can also be of many 
kinds: tasks must run within a given time, a task can be moved to another machine, 
tasks can only be available after a particular time, and tasks can be split up or not. 
There can be different objective functions to minimize [12]: makespan, maximum 
lateness, the total completion time, number of late jobs, or the total tardiness.  
The interested reader is referred to [5] [16] and the references therein. 

2.1 The Single-Machine Scheduling Problem with Constraints 
The simplest version of the problem is the single-machine scheduling problem, to 
which periodic or random breaks can be assigned. In [7], the single-machine 
scheduling problem with availability constraints is discussed. Two types of 
availability constraints are introduced. A machine must stop maintenance after a 
specific time, or a tool must be replaced after a particular processed job. In this case, 
the goal is to minimize the makespan. It has been shown that a single-machine 
problem with two maintenance constraints is NP-hard. Six types of heuristic 
algorithms are proposed to solve the problem, and it is shown that the best 
performing among them is the decreasing order with first fit algorithm (DFF).  
In [11], the single-machine problem is addressed under tasks due dates and machine 
unavailability constraints. The goal is to minimize the sum of maximum earliness 
and tardiness. A mathematical formulation was developed to exactly solve small 
problems. The Variable Neighborhood Search (VNS) was used to solve real-life 
problems. The VNS was extended with two knowledge module-based local 
searches, which improves the weaknesses of the random search of VNS. 
Experimental results have shown that the modified VNS can achieve optimal or 
near-optimal solutions in a reasonable time. In addition to these works, numerous 
other studies in the literature formulate the problem as a MILP model and solve the 
problem using various proven methods [2] [18]. 

2.2 The Two-Machine Scheduling Problem with Constraints 
Many papers in the literature focus on the two-machine R-PMSP with various 
constraints. In [9], the problem was studied under the periodic availability constraint 
of a machine. Their goal is to minimize the makespan. They showed that the 
Longest Processing Time first algorithm (LPT) has a worst-case ratio of 3/2 if the 
problem is offline. In [8], the two-machine probability was graded under the 
constraint that one machine is unavailable at a given time. Their goal is to minimize 
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the total weighted completion time. They developed a fully polynomial-time 
approximation scheme (FPTAS) for this problem. They also generalized this 
scheme to m parallel machines. In [1], the two-machine scheduling problem with 
unavailability of a single machine for a specific time was addressed. Their goal was 
to minimize the makespan. They separately chose five cases for this problem and 
developed a separate solution method for each case. It was shown that these 
methods are efficient even for a large number of items. 

2.3 Multiple Machine Scheduling Problem with Constraints 
There are also papers in the literature related to multi-machine task scheduling. For 
multi-machine task scheduling, several types of constraints can be found in the 
literature, for which different algorithms have been developed. The work [3] deals 
with a pseudo-analysis of the classical scheduling problem, for which unavailability 
times for machines and release dates and delivery deadlines for tasks are introduced. 
A branching strategy and a new lower and upper bound for the tasks are developed 
based on a representation taking all the permutations of tasks. It is shown that 
embedding a semi-preemptive lower bound based on max-flow computations in a 
branch-and-bound algorithm yields very promising performance. Using this 
method, they were able to solve 700 tasks with 20 machines within a reasonable 
CPU time. The authors of [10] focus on the multi-machine task scheduling problem 
without extra constraints. Their goal is to minimize the maximum delay. To solve 
this problem, the Largest the sum of Processing time and Delivery Time first 
Simulated Annealing algorithm called LPDT-SA is developed. The initial solution 
was generated using a heuristic LPDT method. In addition to these, they used an 
effective solution for the representation that efficiently implements swapping and 
insertion into the neighborhood and avoids worse solutions. The resulting algorithm 
is able to solve problems with 350 tasks in 90 seconds, and the average error 
between the lower bounds for all 2400 random instances is 0.339%. In the study 
[13], the parallel machine scheduling problem is studied with multiple scheduled 
unavailability periods. In their presented case, they allow the tasks to be restarted. 
Their goal is to minimize the makespan. They first formulate the problem as a MILP 
for small, medium, and moderately large instances. They proposed an enumeration 
algorithm using lexicographic sequencing. They compared this method with the 
MILP model. It is shown that the proposed algorithm obtains the optimal solution 
and is faster. In [4], the scheduling problem of static m identical parallel machines 
with shared server and sequence-dependent setup times is addressed. Their goal is 
to minimize the makespan. They describe a MILP model for the problem and, in 
addition, implement a Simulated Annealing and Genetic Algorithm for large-scale 
problems. After comparing the efficiency of the three methods, they concluded that 
the GA algorithm provides better quality solutions in a reasonable computation 
time. 
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3 Model Description 
In this section, we describe our problem. The problem studied is single-stage offline 
job scheduling. In other words, we want to assign a predefined set of jobs to 
machines (offline). All tasks are unrelated; this means that they do not form jobs, 
and we cannot break the jobs into smaller tasks or pause them (single-stage). Thus, 
we will use task and job as synonyms. Data are fixed and deterministic. We assign 
machine-specific constraints to the problem: maximum availability constraint and 
periodical unavailability constraint. Machines can have different speeds, which 
means that a machine can execute all tasks faster (or slower). Thus, the lengths of 
tasks are given in number of machine instructions (NMI), where one machine 
instruction is done in one-time unit on a unit-speed machine. We can consider one 
unit of time as one minute for an easier discussion. Suppose that we have an 
examination with ten machine instructions, a laboratory with 0.9 speed, and a faster 
laboratory with 0.5 speed. For example, the second laboratory has faster CT 
equipment and better-qualified staff than the first one. The first laboratory can 
complete this task in nine minutes, while the second laboratory in five minutes.  
The machine availability constraint means that a machine is unavailable after a 
particular time. For example, if we have a laboratory with a four-hour daily work 
schedule, we cannot assign more than four hours of examination. The periodic 
unavailability constraint consists of two components: maintenance time and uptime. 
After the end of the uptime, the machines must be periodically suspended for 
maintenance time. Suppose that we have a laboratory whose internal rules require 
that workers need to take a ten-minute break every 120 minutes. In this case, the 
uptime is 120 minutes, and the maintenance time is 10 minutes. The machine 
parameters are different for each machine. If the same constraint were imposed on 
all machines, we would obtain a particular case of the problem. Similarly, as we can 
introduce features for a machine, we can also introduce features for tasks.  
The machine preference for a task is set to a predefined machine and specifies that 
the task must be executed on that machine. It is important to point out that splitting 
a task into smaller sub-tasks in our problem is impossible. The tasks have no setup 
time, no appearance date, and no execution date. All tasks are known and available 
at the starting time. Our goal is to minimize the makespan. 

Table 1  
Notations 

𝐽𝐽 = {𝑗𝑗𝑖𝑖} Jobs, 𝑖𝑖 = 1, … , 𝑛𝑛 
𝑃𝑃 = {𝑝𝑝𝑖𝑖} Number of machine-instructions of each job 
𝐽𝐽𝐽𝐽 = {𝑗𝑗𝑝𝑝𝑖𝑖 } Machine preference of each job 
𝑀𝑀 = �𝑚𝑚𝑗𝑗� Machines, 𝑗𝑗 = 1, … ,𝑚𝑚 

𝑆𝑆 = �𝑠𝑠𝑗𝑗� Speed of each machine 

𝑈𝑈𝑈𝑈 = �𝑢𝑢𝑡𝑡𝑗𝑗� Periodic uptime of each machine 

𝑀𝑀𝑀𝑀 = �𝑚𝑚𝑡𝑡𝑗𝑗� Maintenance time of each machine 

𝐴𝐴 = �𝑎𝑎𝑗𝑗� Available time of each machine 
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To formalize the problem, we need to introduce notations, summarized in Table 1. 
𝐽𝐽 represents the index array of the tasks. Each task is given by its NMI, 𝑝𝑝𝑖𝑖 , from the 
array 𝑃𝑃. In addition, each task is assigned a 𝑗𝑗𝑝𝑝𝑖𝑖  value, which indicates the machine 
on which a task needs to be executed. If we do not have a machine preference, this 
value is null. 𝑀𝑀 represents the index array of the machines. Each machine is 
assigned its speed 𝑠𝑠𝑗𝑗 from the interval (0, 1.0], where a speed 0.5 means a two-times 
faster machine than speed 1 in relation to processing time. For each machine, 𝑢𝑢𝑡𝑡𝑗𝑗 
and 𝑚𝑚𝑡𝑡𝑗𝑗 specifies the intervals at which the machine is active or paused. In addition, 
the maximum availability time of each machine 𝑎𝑎𝑗𝑗 is also given. From the last 
parameters, one can compute the maximum number of segments for each machine, 
namely, 𝑛𝑛𝑠𝑠𝑗𝑗 = � 𝑎𝑎_𝑗𝑗+𝑚𝑚𝑚𝑚_𝑗𝑗

𝑢𝑢𝑡𝑡𝑗𝑗+ 𝑚𝑚𝑡𝑡𝑗𝑗 
 �. 

Based on the above, we can formulate the following decision variables.  

𝑥𝑥𝑘𝑘𝑘𝑘𝑖𝑖 = � 1,  if the 𝑖𝑖𝑡𝑡ℎ job is run on the 𝑘𝑘𝑡𝑡ℎ segment of the 𝑗𝑗𝑡𝑡ℎ machine; 
 0,  otherwise.

 

With these parameters and variables, one can formulate the mathematical model of 
the problem. Then, such a model can be used to solve the problem by any method 
for ILP. Given the complexity of our problem, aiming for a concrete mathematical 
model is not worthy because ILP solvers cannot solve reasonable problems 
efficiently. Therefore, the goal was to describe the problem at hand, so that the 
reader could use and recreate the problem as presented. 

4 Benchmark Generating Method 
There is no benchmark for this problem in the literature to provide an optimal 
solution. In the papers mentioned in Section 2, randomly generated test instances 
were used. The benchmarks in the literature are not designed for such a problem: 
they do not contain breaks, and the constraints defined are not included. Adapting 
these existing benchmarks for the task is very time-consuming, and one would be 
unable to provide the optimum. Therefore, a benchmark generating method is 
presented, to ensure the optimal solution or to define a value close to the optimal 
one, generate gaps while keeping the optimal solution, and handle all constraints. 
Several parameters of our generating method are controlled, which allows for the 
specification of the generated problem. For example, one can set limits on the 
machine instruction, the maximum availability constraint, the periodical uptime, the 
speed of the machines, and the probability of machine preference. In addition, the 
number of machines and the number of gaps for each machine can be specified. 
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4.1 Description of the Generating Method 
In the first step, the aim is to create a problem for which we know the optimal 
solution. It can be achieved by setting the total time of each machine to the given 
optimum. That is, take random uniform integer values for each machine, from a 
given interval, which will give the total NMI it can process (these have to be larger 
than the optimum and do not take maintenance times into account at this point). Set 
the speed of each machine, such that the execution time of their generated NMIs 
takes exactly the optimal time. After that, assign maintenance times and uptimes to 
each machine between the limits, such that the last segment is always shorter than 
the others, but strictly larger than 0. This will ensure that the optimum will be the 
given value. When generating tasks, make sure that the limit of the number of 
instructions is respected and that there are no gaps (idle times) on the machines. 
Each part of a segment is linked to a job. This means that tasks on the machine must 
follow each other, and only maintenance time can be added between them. Assign 
the maximum availability constraints to the machines randomly between the 
maximum availability limits. Here, we make sure that the generated value is not less 
than the optimum. 

By careful generation, we know that all limits have been met and the optimal 
solution is known, since there are no idle-time slices except for pause times. 

4.2 The Rules for Generating the Gaps for m Related 
Machines 

A gap in a solution is the idle time when the machine is active but not working.  
In the previous step, we generated test cases with no gaps in the optimal solution. 
However, in most practical cases, this does not occur. Therefore, our goal is to 
artificially introduce gaps into a test case such that its optimal solution, 𝑂𝑂𝑂𝑂𝑂𝑂, does 
not change. 

One can observe that for 𝑚𝑚 related-machines, one can reduce the NMI of 𝑚𝑚 − 1 
tasks by one, without affecting the optimal solution.  

To see the above statement, suppose that we have 𝑚𝑚 > 1 machines and 𝑛𝑛 ≥ 𝑚𝑚 
tasks, where the NMI of all tasks are integer, that is, the smallest NMI is one. Let 
us randomly reduce the NMI of 𝑚𝑚 − 1 tasks by one. Consider the case where we 
reduce the NMI of the last tasks on the last segment of the first 𝑚𝑚 − 1 machines. 
Still, the optimum cannot change because on the last machine there were no 
reductions, and the last task finishes at the same time as before. As there are no 
tasks with smaller units, there is no better distribution of the tasks. 

We also observe that when we reduce more than 𝑚𝑚 − 1 machine instructions in 
total, the optimum might decrease. Still, we can obtain a lower bound on the 
optimum by calculating the maximum possible decrease of the optimum. Let 𝑟𝑟 ≥
𝑚𝑚 be smaller than the smallest NMI of the last segments times 𝑚𝑚. If we reduce the 
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total NMI of all tasks by 𝑟𝑟, then the optimum can improve at most by 𝑟𝑟
∑ 𝑠𝑠𝑖𝑖𝑖𝑖=1,..,𝑚𝑚

  unit 

time.  

To understand this formula, suppose that we have 𝑚𝑚 > 1 machines and 𝑛𝑛 ≥ 𝑚𝑚 
tasks. We randomly reduce the NMI of some tasks, in total, by 𝑟𝑟. To analyze the 
worst case, we reduce the last tasks of the jth machine by 𝑟𝑟

∑ 𝑠𝑠𝑖𝑖𝑖𝑖=1,..,𝑚𝑚
 ⋅ 𝑠𝑠𝑗𝑗. Thus, the 

length of each machine is reduced by the same amount,  𝑟𝑟
∑ 𝑠𝑠𝑖𝑖𝑖𝑖=1,..,𝑚𝑚

. It modifies the 

optimal solution to   𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑟𝑟
∑ 𝑠𝑠𝑖𝑖𝑖𝑖=1,..,𝑚𝑚

. 

In the deletion mechanism, we can choose whether maintaining the optimum is 
necessary or whether a good lower and upper bound on the optimum is sufficient. 
We aim to reduce the NMI of any task in the non-last segment such that it cannot 
be changed by any task in the last segment. Note that by generation, the last segment 
is always shorter than the other segments on all machines. As a consequence, the 
gaps cannot be moved to the last segment. This also implies that there is a maximum 
reduction which can be made. 

Namely, we can reduce the time of tasks from a non-last segment until the 
combination of all possible tasks does not fill the segment better. Generating all 
possible solutions (combinations) is too expensive because the segments can be 
placed in any order within a machine having the same optimal value. Therefore, the 
algorithm controls this with a parameter to display all solutions or just the first 
possible one. The second step results in a test case that adheres to the task 
specification and contains gaps. If only 𝑚𝑚 − 1 NMI is reduced in total, optimality 
is guaranteed, while if reduction is higher, we can bound the optimum. 

The result of the generating method is shown in Figure 1, visualized in Figure 2. 
The figure shows a test case with three machines. It is observed that the optimal 
solution is 15 units, the number of tasks is 13, and there are gaps (marked with a 
red striped box) in the solution. The generated case obeys all constraints of the 
control parameters. 

5 Algorithms 
The R-PMSP problem with the introduced constraints is NP-hard, so we cannot give 
an exact algorithm that can solve our problem for real-life test cases in a reasonable 
time. There are exact algorithms for problems with two machines or without 
constraints, but if we increase the number of machines, tasks, and/or add constraints, 
we can only solve the problem using heuristics. Simulated Annealing (SA) and 
Genetic Algorithm (GA) are commonly used methods to solve these problems [4] 
[10]. We have used these algorithms and introduced our modifications to obtain 
results close to the optimal solution. In addition, we applied a discrete version of 
the Grey Wolf Optimizer (DGWO) to solve the problem. 
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5.1 Common Representation and Operators of the Algorithms 
The three algorithms use the same representation for the solutions. In addition, we 
use the same fitness function, crossover, mutation, and initial solution generation 
procedure. 

5.1.1 Representation of Individuals or Solutions 

We can achieve faster convergence with a well-chosen representation of an 
individual or a solution. A good representation allows us to better explore our search 
space. A one-dimensional array represents individuals or solutions. The 𝑖𝑖𝑡𝑡ℎ element 
of the array correspond to the task 𝑗𝑗𝑖𝑖, and encode which segment of which machine 
it is assigned (see the Solution line in Figure 1). To do this, we first enumerate each 
segment of each machine (within the available time of the machine) sequentially 
from the first machine to the last. We store which segments belong to which 
machines in an index array. In addition, to speed up the calculations, we store the 
gaps (idle times) of each solution in an array, that is, how much empty space is 
available on each machine segment. In this way, during crossover and mutation, we 
do not need to calculate which segment has enough space for a task. The required 
storage space increases by storing the gaps in the segments but reduces the 
computational time considerably. 

Two solutions are equivalent, where only the permutation of non-last segments of 
any machine is different. These individuals differ because the segments are in a 
different order, but the tasks assigned to a given segment are mutually equivalent. 
The above representation considers these solutions different. Thus, we order the 
segments, except the last, within the machine in descending order based on their 
idle time. With this sorting, the loaded segments are moved to the front (see the 
segments gaps in Figure 1). In the case where two segments have the same idle time, 
the choice is based on the number of tasks in the segments. 

For example, we can see the test case from Figure 1 on the machines in Figure 2. 
We have three machines, 13 tasks (jobs), and the optimum is 15. In the example, 
we see one gap (marked with a red striped box) on the first machine and one on the 
first segment of the second machine. The characteristics of the machines are shown 
in Table 2. We see the solution representation of the same in Figure 1. The first 
array contains the NMI of the tasks, the second describes the segment index of the 
machines, the next encodes the solution, and the last array presents the gaps on the 
segments. We can see in the solution array the segment indexes. For example, the 
first task, named Job 1 in Figure 2, will be performed on the segment with index 
one, which is the segment of the first machine. The third task, called Job 3 in Figure 
2, will be executed on the segment with index five, which is the first segment of the 
third machine. 
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Table 2  
Machine characteristics 

Constraints 𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 
Maximum 
availability 

22 22 23 

Speed 0.75 1.0 0.5 
Uptime 30 7 16 
Maintenance time 0 2 4 

 
  

Solution representation 

  
Generated test case with 3 machines, 13 jobs with the optimum 15 

5.1.2 Generation of Initial Solutions or Individuals 

The initial population or solution is generated at random. We first assign tasks with 
machine preference to their corresponding machines, but the segment within a 
machine is chosen randomly. Second, the remaining tasks are assigned to randomly 
selected machine segments from those where they fit in. Finally, we regenerate the 
individual or solution if the task cannot be assigned to a machine even after multiple 
attempts. 

5.1.3 Fitness Function 

The fitness function measures how close a given solution is to the optimal solution 
of the problem. It is a numeric value assigned to an individual or a solution. We 
could use only the makespan as a fitness function, but instead we use a more 
complex fitness function: we add the number of occupied segments and the total 
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idle time on the occupied segments to the makespan. We can formalize the fitness 
function as 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥). 

5.1.4 Crossover 

A crossover is a genetic operator in which genetic information from two selected 
individuals (parents) is combined to produce new individuals (children). We have 
implemented several types of crossover operators that can be used with the one-
dimensional array representation. Different crossovers per algorithm were shown to 
be better. We have implemented k-point, uniform, and three-parents crossover [14]. 
We swapped randomly selected segments of the individuals. For each substitution, 
we checked the feasibility of the solution, and dropped the children which were not 
feasible (the new segment does not fit into its new place). We observed that the 
crossovers used in this way were almost useless, and the methods converge to a 
wrong solution quite quickly. 

Consequently, we created modified crossovers that perform segment replacement 
by randomly selecting the segment from those that fit on the replacement machine. 
In cases where it was not possible to swap due to machine preference or none of the 
segments fit, we left the element unchanged. In this way, the crossover operators 
generate more correct solutions and better traverse the search space. 

5.1.5 Mutation 

A mutation is a genetic operator responsible for diversifying a population. It is a 
slight modification of an individual or a solution. The discrete version of the Grey 
Wolf Optimizer requires several mutations to maintain population, namely, pack of 
wolves, diversification. We have implemented bit flip, swap, inverse, and reverse 
mutation [15]. In these implementations, segments are modified to other segments. 
We consider a mutation to have been used if the resulting individual satisfies the 
constraints of the problems. Otherwise, a new individual is generated from scratch. 
In addition, we implemented a modified version of each mutation named above.  
In these implementations, we swapped the machines, but we chose the segments 
randomly. 

5.1.6 Selection 

Selection is a rule that determines the individuals in the following population or the 
individuals participating in the crossover and mutation. For crossover and mutation, 
we randomly select individuals from the current population. We use the tournament 
selection rule to create a new population for our problem [6]. 

5.2 The Algorithms and their Adaptations 
We modify the SA, the GA, and the DGWO with changes that achieve faster 
convergence and improve the quality of the solutions. 
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5.1.7 Simulated Annealing 

The Simulated Annealing algorithm originates from metallurgy, which aims to 
change the physical properties of a material by heating and controlled cooling.  
The method employs an iterative motion according to the varying temperature 
parameters based on the annealing operation of metals. 

Algorithm 1 describes the Simulated Annealing algorithm we use, where 
𝑝𝑝𝑚𝑚 denotes the mutation, 𝑝𝑝𝑐𝑐𝑐𝑐 denotes the cooling scheme parameters, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
encodes the problem to be solved. 

The algorithm requires an initial temperature, a reduction scheme, a number of 
iterations, and an initial solution, which will be called the current solution. There 
are several temperature reductions schemes: linear, logarithmic, exponential, and 
quadratic. The linear scheme is the best for the problem. The temperature is reduced 
from the initial temperature according to the reduction mechanism. In each iteration, 
we generate a neighboring solution using the current solution. The current solution 
is compared with the neighboring solution. It is swapped if its fitness value is better 
than the current fitness value. Otherwise, it is swapped with a certain probability. 
The role of the acceptance probability is to be able to move out of the local 
minimum points and move towards better solutions. As the temperature decreases, 
the value of this acceptance probability decreases. Several stopping conditions can 
be introduced: after a given number of steps 𝑟𝑟, if the best solution has not improved, 
or the maximum number of iterations has been reached. Due to the heuristic nature 
of the algorithm, the optimal solution can be reached after multiple runs.  

In our version, we use the mutation operators to generate a neighboring solution. In 
contrast to the basic algorithm, we do not generate an adjacent solution per iteration. 
Instead, we generate 𝑛𝑛 and compare the best one with the current solution. 

 
Algorithm 1 SimulatedAnnealing(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑇𝑇, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑐𝑐𝑐𝑐, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
1: 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ← GeneneratePopulation(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 1); 
2: 𝑖𝑖 ← 0; 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐;  𝑟𝑟𝑟𝑟𝑟𝑟 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; 
3: while (𝑖𝑖 ˂ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 && 𝑟𝑟𝑟𝑟𝑟𝑟) do 
4:    𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ← CalcTemp(𝑖𝑖, 𝑇𝑇, 𝑝𝑝𝑐𝑐𝑐𝑐); 
5:    𝑋𝑋 ← GenerateNeighboors(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑝𝑝𝑚𝑚, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠); 
6:    𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 ← SelectBestNeighboor(𝑋𝑋); 
7:    if Fitness(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡) ≤ Fitness(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐) then 
8:       𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡; 
9:       if Fitness(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡) ≤ Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
10:          𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡; 
11:       end if 
12:    else 
13:       if Random(0, 1) ˂ exp((Fitness(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐)−Fitness(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡))/ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) then 
14:          𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡; 
15:       end if 
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16:    end if 
17:     𝑟𝑟𝑟𝑟𝑟𝑟 ← ExamineStopCriterion(); 
18: end while 
19: return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

  
Simulated Annealing 

5.1.8 Genetic Algorithm 

The Genetic Algorithm is a population-based metaheuristic algorithm inspired by 
natural selection. Instead of one solution, we work with a set of solutions, namely, 
population. The elements of the population are called individuals, and the number 
of iterations is called generations. 

Algorithm 2 presents the pseudocode of the Genetic Algorithm, where 𝑝𝑝𝑐𝑐 is the 
crossover, 𝑝𝑝𝑚𝑚 is the mutation, and 𝑝𝑝𝑠𝑠 is the selection parameter. 

Algorithm 2 GeneticAlgorithm(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑠𝑠) 
1: 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 ← GeneratePopulation(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠); 
2: 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← SelectBestIndividual(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐); 
3: for 𝑖𝑖 = 1, . . . , 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  do 
4:    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← {};  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← {}; 
5:    for 𝑗𝑗 = 1 , . . . , 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
 do 

6:       𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 ← RandInt(0, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠); 
7:       𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∪ Crossover(𝑝𝑝𝑐𝑐, 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟1, 𝑟𝑟2); 
8:       𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∪ Mutation(𝑝𝑝𝑚𝑚, 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟3); 
9:    end for 
10:    𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐  ← 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐  ∪ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∪ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; 
11:    𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ← SelectBestIndividual(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐); 
12:    if Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ˃ Fitness(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐) then 
13:       𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐; 
14:    end if 
15:    𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 ← Selection(𝑝𝑝𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐); 
16: end for 
17: return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

  
Genetic Algorithm 

The algorithm requires a population size, a generation size, and an initial 
population. Individuals from the current population are selected according to some 
selection rule. We use our modified crossover and mutation operators. Then, the 
population of the new generation is selected from the current population, including 
mutation and crossover results. This selection can be based on age or fitness. The 
algorithm can be stopped when a generation number is reached or if no 
improvement is observed after 𝑟𝑟 steps. 
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In our implementation, we work with a fixed population. The initial population is 
generated randomly according to the method described in Subsection 5.1.2. In each 
iteration or generation, we generate new individuals equal to half the population 
size by crossover and mutation operators. The individuals involved here are selected 
randomly. We use tournament selection for the selection of new populations. 

5.1.9 Discrete Version of the Grey Wolf Optimizer 

The Gray Wolf Optimizer is a population-based metaheuristic algorithm inspired 
by nature. The method attempts to mimic the hierarchy and hunting mechanism of 
grey wolves. Grey wolves are organized into a hierarchy: alpha, beta, delta, and 
omega wolves. Each level of the hierarchy has its role, and no one can be absent 
from the hierarchy. The alpha wolf is at the top of the hierarchy. His role is to make 
decisions about the pack and to lead the pack. The beta wolf is the second level of 
the hierarchy. His role is to assist the alpha wolf in decision-making, to relay the 
decisions of the alpha wolf to the pack, but he also has a leadership role. The lowest 
level of the hierarchy is the omega wolf, which represents the weakest wolf in the 
pack. He does not have an important role in the pack, but his absence can create 
internal conflict. All wolves that do not belong to the previous three are delta 
wolves. Their role is to scout, protect, and hunt. The hunting mechanism of grey 
wolves also plays an important role in the algorithm. The algorithm mimics hunting, 
prey search, prey enclosure, and prey attack in its methods. 

Algorithm 3 presents the pseudocode for the used Grey Wolf Optimizer, where 𝑝𝑝𝑐𝑐 
is the crossover, 𝑝𝑝𝑚𝑚 is the mutation, 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  and  𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  are the local and global 
stage measures, respectively. 

 
Algorithm 3 DiscreteGWO(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑝𝑝𝑐𝑐, 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) 
1: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ← GeneratePopulation(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠); 
2: 𝑥𝑥𝛼𝛼, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛿𝛿 ← SelectBestWolfs(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝); 
3: 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝑥𝑥𝛼𝛼; 
4: for 𝑖𝑖 = 1, . . . , 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 do 
5:    𝑥𝑥𝛼𝛼, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛿𝛿 ← LocalSearchUpdate(𝑥𝑥𝛼𝛼, 𝑥𝑥𝛽𝛽, 𝑥𝑥𝛿𝛿, 𝑝𝑝𝑚𝑚); 
6:    for 𝑗𝑗 = 1, . . . , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 do 
7:       if Random(0, 1) ≤  𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) · 𝑖𝑖/𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 then 
8:          𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ← SeekingMode(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖, 𝑝𝑝𝑐𝑐); 
9:       else 
10:          𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ← TracingMode(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖, 𝑝𝑝𝑐𝑐); 
11:       end if 
12:    end for 
13:    𝑥𝑥𝛼𝛼, 𝑥𝑥𝛽𝛽, 𝑥𝑥𝛿𝛿 ← SelectBestWolfs(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝); 
14:    if Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ˃ Fitness(𝑥𝑥𝛼𝛼) then 
15:       𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ← 𝑥𝑥𝛼𝛼; 
16:    end if 
17: end for 
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18: return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, Fitness(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

  
Discrete version of the Grey Wolf Optimizer 

The algorithm requires a population or pack size and a number of iterations. In the 
algorithm, the tails 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿 indicate the first three solutions with the lowest 
fitness values. The 𝜔𝜔 denotes all other solutions. The first step of the algorithm is 
to generate an initial pack, from which we select the first three wolves. Then, in 
each iteration, a local search method is applied to the wolves 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿 and their 
values are updated. Then, for each wolf in the pack, we use the seeking mode or the 
tracing mode in addition to the selection probability. The stopping conditions can 
be the maximum number of iterations or no change in our best solution after 𝑟𝑟 steps. 

In detail, the local search and update algorithm (line 5 in Algorithm 3) calls the local 
search for the wolves 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿 and sorts these three wolves by fitness value.  
In the local search, we improve the fitness value using three types of mutation. We 
use two search modes in the algorithm, corresponding to the local and global search 
stages. We apply the search selection mentioned in line 7 in Algorithm 3, which 
explores the global space in the first stages of the search, clustering around local 
optima. In later stages, it converges to the global optimum. In the seeking mode, we 
aim to preserve population diversity and avoid premature convergence. This can be 
achieved by using the crossover between a randomly selected individual and the 
current individual. The tracking mode is used for local searches. The method selects 
the 𝛼𝛼, 𝛽𝛽 and 𝛿𝛿 with fitness-based selection, and execute a crossover on the selected 
with the current solution [17].  

6 Experimental Results 
In this section, we present our computational results. First, we show the test cases, 
which were generated using the method described in Section 4. Then, we discuss 
how we determined the parameters of the algorithms. Finally, we also discuss the 
methods for comparing the algorithms. 

6.1 Generating Test Cases 
Test cases were generated using the method described in Section 4. We wanted to 
see the results compared to a known optimal solution for each test case, so we 
generated only as many gaps that did not change the optimal solution. It is 
impossible to directly control the number of segments and the number of tasks in 
the generating method. Therefore, some parameters of the generation method are 
controlled and others are left with a higher degree of freedom. We strictly set the 
parameter controlling the machine preference to 0.1 (so 10% of the tasks have 
preference), the number of machines to 𝑚𝑚 =  5, 10, 20, and the machine speed to 
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the interval [0.8, 1.0]. We set maximum availability at [30, 120], periodical uptime 
at [10, 40] and the maintenance time at [0, 10]. The number of segments per 
machines are either 0, or chosen from [1,10] by the generator, denoted by 𝑛𝑛𝑛𝑛��� =
0, 10. We set the number of tasks to be chosen from three intervals: 𝑛𝑛 ∈ [25-50], 
[51-100] and [101-200]. For the easier, we will denote these by 𝑛𝑛� = 50, 100, 200. 
For each task, NMI is set to [1,18]. With these parameters, we generated 25 test 
cases. From each set of test cases, we randomly selected 5 test cases. 

In total, we have the following classes for both 𝑛𝑛𝑛𝑛��� = 0, 10 (See in Table 3). 

Table 3  
Benchmark generating test case classes 

𝑚𝑚 5 10 20 
𝑛𝑛� 50 100 200 50 100 200 50 100 200 

6.2 Parameter Tuning of the Algorithms 
We fine-tune all parameters of the three metaheuristic algorithms by controlled grid 
search. The test cases for fine-tuning are randomly generated. We considered each 
combination mentioned in Section 6.1. Each test case was run ten times. We try to 
define the parameters and operators based on improving the mean, minimum, and 
variance per iteration. We focus on keeping the variance large initially and 
decreasing slightly per iteration so that our search space is well-traversed. We also 
ensured that the average converges to the minimum by the end of the iterations. 
This method allowed us to filter out most of the parameters. To determine the 
additional parameters, we considered how many times out of ten runs reached 98% 
of the optimal value. We consider the winning parameter to be the one that reaches 
the limit more times and is closer to the optimum on average.  

6.3 Experiences and Results 
All runs were performed on a 2.00 GHz Intel Xeon Processor (E5-2660 v4 35M 
cache) with 64 GB RAM. We examine the average performance of the algorithms 
from 12 runs on the test cases presented in the Subsection above. Additionally, we 
compare the time required for the algorithms to reach a suboptimal threshold. 

6.1.1 The Performance of the Algorithms 

We study the performance of the algorithms on the generated test cases. First, we 
divide the test cases into two groups, one that does not contain periodical 
availability constraints, and the other that contains periodical availability 
constraints. Then, we run the algorithms on each test case 12 times and examine the 
optimum. If the algorithm does not stop after 3600 seconds, it is stopped, and the 
best solution is assigned to the run. We normalize the result of each run by dividing 
the absolute error of each result of the run with the optimal value. This value 



Acta Polytechnica Hungarica Vol. 21, No. 2, 2024 

‒ 105 ‒ 

represents the relative deviation error from the optimum. Next, we calculate the 
maximum, minimum, and mean of this relative for each test class. These values are 
grouped in increasing order by algorithm, number of machines, and tasks. For 
example, the group 𝑚𝑚 = 5, 𝑛𝑛 = [51, 100], SA means 𝑚𝑚 = 5, 𝑛𝑛 = [51, 100] using 
the SA. Finally, we calculate the mean, the mean minimum, and maximum error 
percentage of the group. In the figures, the colored column gives the relative 
average error, while the thin black line shows the range by the minimum and 
maximum of the relative error, all in percentages. 

Figure 3 shows the results for the test cases without periodical availability 
constraints. The three algorithms obtain the optimum with a small error for the test 
cases with 𝑚𝑚 = 5. As the number of machines increases, the percentage error 
increases linearly. The algorithms obtained the minimum out of 12 runs for all test 
cases. For the 20 machine runs, the maximum average error increased, but the 
average error did not exceed 3%. As the number of tasks increased, the performance 
of the algorithms increased. There may be several possible solutions for many tasks 
close to the optimum. In conclusion, as the number of tasks increases, the average 
error decreases. As the number of machines increases, the error increases.  

 
  

Test cases without periodical unavailability constraints. Relative average error from the optimum, with 
the minimum and maximum errors grouped by class 

We can see in Figure 4 the relative average error grouped by machine, task, and 
algorithm for test cases with periodical availability constraints. The relative average 
error increases linearly as a function of the number of machines. The algorithms 
obtained the minimum out of 12 runs for all test cases. The relative average error of 
the algorithms does not exceed 5%, even for problems with 20 machines. In a few 
cases, it is observed that the maximum error decreases when increasing the number 
of tasks. The best performing algorithm here is also the SA. In this case, the 
maximum average does not exceed 15.5%. 
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Test cases with periodical unavailability constraints. Relative average error from the optimum, with the 
minimum and error grouped by class 

We can see in Figure 5, the overall average error calculated for each algorithm 
taking into account all test cases without periodical availability constraints.  
In general, SA has the lowest average failure rate of all the test cases. The relative 
average error of the algorithms does not exceed 1.5%. 

Figure 6 shows the overall average error calculated for each algorithm for the all 
test cases without periodical availability constraints. The average error percentage 
for all algorithms for all test cases is below 5%, and the average maximum error 
percentage is below 12%. Furthermore, we can see that the average minimum error 
percentage is equal to 0%, which means that all algorithms find the optimal solution 
at least once in all test cases.  

 

Test cases without periodical unavailability 
constraints. Average error from the optimum, with 

the minimum and maximum errors grouped by 
algorithm. 

 

Test cases with periodical unavailability 
constraints. Average error from the optimum, with 

the minimum and maximum errors grouped by 
algorithm.

6.1.2 The Time Required to Find a Suboptimal Threshold 

We study the average time required to reach some suboptimal threshold. We 
introduce four types of the suboptimal threshold: 30%, 20%, 10% and 5% the 
optimal solution plus the optimal solution. We divide the test cases into two groups, 
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one that does not contain periodical availability constraints and the other that 
contains periodical availability constraints. In the first case, we set the maximum 
runtime to 600 seconds because it does not require more time to find the suboptimal 
threshold and in the second case, it to 3600 seconds. We run the algorithms on each 
test case 12 times and examine the required time. If the algorithm did not reach the 
suboptimal threshold, we set the time to maximum runtime. We calculated the 
average of 12 runs. Then, we calculate the average of the average using some 
grouping rule. For example, we can group by the number of machines, the range of 
tasks, and the algorithms. In the figures, the points represent the average time 
required to reach the suboptimal threshold. 

Figure 7 shows the average time required to reach some suboptimal threshold for 
test cases with periodical availability constraints. The test cases are grouped by the 
number of machines, tasks, and algorithms. If we increase the thresholds, the time 
required increases linearly.  We observe that DGWO reaches the first two thresholds 
faster than GA. After that, DGWO slows down. SA is the fastest in all three 
categories. 

 
  

Test cases without periodical unavailability constraints. Relative average error from the optimum, with 
the minimum and maximum errors grouped by class. 

Figure 8 shows the average time to reach some suboptimal threshold for test cases 
with periodic availability constraints. The test cases are grouped as above. If we 
increase the number of machines, the average running times increase exponentially. 
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Test cases without periodical unavailability constraints. Relative average error from the optimum, with 
the minimum and maximum errors grouped by class. 

Summary and Conclusions 

This work focused on the related parallel machine problem (R-PMSP) with 
availability and periodical unavailability constraints. A robust benchmark 
generating method was proposed for the problem, which can generate a large variety 
of test cases, by controlling the parameters of the methods and knowing the 
optimum with certainty. In addition, a deletion mechanism that generates gaps in 
the solution, was offered. Gaps can be created, keeping the optimum or giving a 
lower and upper bound on the optimum. An implementation of three metaheuristic 
algorithms to solve the problem are given: Genetic Algorithm, Simulated Annealing 
and the Discrete version of Grey Wolf Optimizer. We introduced an efficient 
representation of the solution and methods to improve the algorithms in terms of 
solving the problem. Simulated annealing was also complemented with multiple 
neighborhood methods. Common operators and functions were used in the 
algorithms. 

The performance of the algorithms was examined and compared to the average time 
required to find a suboptimal threshold. In the case without periodical unavailability 
constraints, the average relative error and the average of maximum relative errors 
of the algorithms are below 1.5% and 4.5%, respectively. Furthermore, with 
unavailability constraints, the average errors of the algorithms were below 4% and 
11.5%, respectively. The running times of the algorithms increase exponentially by 
decreasing the threshold for many machines. However, for relatively few machines, 
this indicator is linear. The Simulated Annealing algorithm performs the best on 
average. The DGWO algorithm is not efficient for this problem, as it tends to get 
stuck in local optima and is time-consuming. GA takes longer on average than SA. 
However, it generates several near-optimal solutions, which can be beneficial in 
various cases where multiple solutions are needed, or we want to examine critical 
points. Therefore, we recommend utilizing this approach when sufficient computing 
time is available and several near-optimal or optimal solutions are required. 
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Future goals are to improve the SA and GA methods, with local search and 
procedures to reduce the searching space. The goal would be to generalize the SA 
method for semi-online R-PMSP, with constraints using local methods, but also to 
develop a Matheuristic, that handles the semi-online case. 
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