
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 77 –

Performance Analysis of a Cluster Management

System with Stress Cases

Gergő Gombos, Attila Kiss, Zoltán Zvara

Eötvös Loránd University, Faculty of Informatics

Pázmány Péter u. 1/c, H-1117 Budapest, Hungary

ggombos@inf.elte.hu, kiss@inf.elte.hu, dyin@inf.elte.hu

Abstract: Cluster computing frameworks are important in the “Big Data” world. The

famous common framework is the MapReduce that was introduced by Google. This

framework is used by many of companies. However, this technique doesn't effectively solve

all analytical problems. Some cases need another framework and these frameworks can

work in the cluster. In this case, the cluster needs a manager that manages the framework.

Therefore, the performance analysis of cluster management systems will be important. In

this paper, we compare the performance of two most well-known cluster management

systems (Yarn, Mesos) with stress cases. We analyze the resource usage techniques of the

management systems.

Keywords: cluster management; resource sharing; scheduling

1 Introduction

For years, Big Data was confined to a group of elite technicians working for

companies like Google and Yahoo, but the databases and the tools used to manage

the data at that scale have been constantly evolving. At that time, Big Data was

only a synonym to the leading tool, the Apache Hadoop [1], a MapReduce [2]

implementation that was used as a data-processing platform for many years,

exclusively. As Big Data continued to evolve, researchers found that MapReduce

– though is still powerful for a large number of applications – was not as effective

at solving many problems. Technicians were working on new cluster computing

frameworks, and it became clear that no framework would be optimal for all

applications. Researchers have been developing a wide array of data-centric

computing frameworks and the need for a major computing platform emerged,

powering both the growing number of data-intensive scientific applications and

large internet services. It has become essential to run multiple frameworks on the

same cluster, so data scientists can pick the best for each application.

mailto:ggombos@inf.elte.hu
mailto:kiss@inf.elte.hu

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 78 –

As new analytic engines began to cover the ever growing space of problems,

sharing a cluster between these frameworks started to get complicated. At the

enterprise level, along with the need of batch processing, the need of real-time

event processing, human interactive SQL queries, machine learning and graphic

analytics emerged.

In a cluster, data are distributed and stored on the same nodes that run

computations shared by frameworks. When the cluster is shared, statically, by

frameworks, unnecessary data replication will appear, along with utilization

issues. When a framework, for example a web-service farm, would be able to

scale down at late hours, the MapReduce framework would perform better if it

were able to use the resources released by the web-service farm. Sharing improves

cluster utilization, through statistical multiplexing and avoids per-framework data

replication and leads to data consolidation.

A cluster management system acts as a cluster-wide operating system by sharing

commodity clusters between multiple and diverse cluster computing frameworks.

Because reading data remotely, is expensive on a distributed file system, it is

necessary to schedule computations near their data. At each node, applications

take turns running computations, executing long or short tasks, spawned by

different frameworks. Locality in large clusters is crucial for performance,

because network bisection bandwidth becomes a bottleneck. [2] A cluster

management system should provide a tool or interface, to design and implement

specialized, distributed frameworks targeted at special problem domains. While

multiple frameworks are operating cluster-wide, the operating system should take

care of difficult problems, like cluster health, fault monitoring, resource arbitration

and isolation.

Energy efficiency also becomes a critical matter for data centers powering large

numbers of clusters [6] [7], since energy costs are ever increasing and hardware

costs are decreasing. Minimizing the total amount of resources consumed will

directly reduce the total energy consumption of a job.

Scalability, resource- and energy-efficiency are key metrics for a cluster

management system, their performance matters for data-center operators, as well

as for end users. [3] [4] [5]

Driven by the need of a cluster-wide operating system to share data among

frameworks, two solutions appeared from the ground of The Apache Software

Foundation that circulated widely in the Big Data community, to provide a

resource management substrate for analytic engines and their applications. One

such solution was designed and presented at U.C. Berkeley, called Apache Mesos

and another one, originated from the Hadoop architecture, named YARN (Yet

Another Resource Negotiator).

In this work we will show and demonstrate the differences of these two, open-

source cluster-wide operating systems, by presenting an infrastructure, resource

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 79 –

management, scheduling overview and performance evaluations, on different

scenarios together with load and stress testing. Both of these systems are used

widely in production systems and by introducing different resource-management

models, it is beneficial to analyze their performance. Using the performance

evaluations we will demonstrate the advantages and disadvantages, of different

configurations, use cases on both YARN and Mesos, with different analytical

frameworks having diverse needs and routines on execution.

2 Design and Concepts

A cluster management system consists of two main components. A master entity,

that manages resources, schedules framework’s resource requirements and slave

entities, which run on nodes to manage tasks and report to the master. These two

components build up the platform. A scheduler is a singular or distributed

component in the platform that schedules jobs (or applications) on the cluster

expressed and written by end-users using a specific framework library. A cluster

management system can be considered as a distributed operating system: it

provides resources for frameworks and schedules their distributed applications.

Frameworks are more or less, independent entities, with their own scheduler and

resource requirements, but there are dissimilarities among design philosophies on

different systems. A live framework is expected to register itself with the cluster’s

master, by implementing a resource-negotiating API defined by the master. Apart

from the global, cluster wide resource management, scheduling, other

expectations, such as fault tolerance, job-level scheduling or logging are the

framework’s duty to provide.

The masters are made to be fault-tolerant on both Mesos and YARN by

ZooKeeper [8]. In a cluster deployed with Mesos, a framework must be set up on

a given node and it must register itself with the master to be able to negotiate for

resources and run tasks on the nodes. YARN requires a client to submit the

framework, as an application to the resource manager. The resource manager will

eventually start the framework on a node, making it live, to be able to request

resources and run tasks on the nodes.

2.1 Resource Management

As previously described, the master entity arbitrates all available cluster resources

by working together with the per-node slaves and the frameworks or applications.

The resource manager component of the master entity does not concern itself with

framework or application state management. It schedules the overall resource

profile for frameworks and it treats the cluster as a resource pool.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 80 –

There are two methods for gathering resources from the cluster. Mesos pushes,

offers resources to frameworks, those implement a Scheduler, while

applications, which implement the YarnAppMasterListener interface are

expected to pull, request resources. Mesos offers resources to the Scheduler

and it chooses to accept, or not, in contrast to the model used by YARN, where the

AppMaster must request resources from the ResourceManager and it

chooses to give resources or not.

Resource allocations in YARN are late binding, that is, the application or

framework is obligated to use the resources provided by the container, but it does

not have to apply them to a logical task on request. The framework or application

can decide which task to run with its own, internal, second-level scheduler. In

Mesos, task descriptions must be sent upon accepting a resource.

On Mesos and YARN the existing grammar of resource requests does not support

specification of complex relationships between containers regarding co-location.

Second-level schedulers must implement such relationships. Also, since Mesos

offers resources to the framework it will hinder locality preferences, while YARN

lets the framework request any node in the cluster, not only from a sub-cluster

offered by the resource manager. To tailor and limit resource consumption of

different frameworks, a pluggable allocation module in the master entity of Mesos

can determine how many resources to offer each framework.

2.2 Scheduling

Given the limited resources in the cluster, when jobs cannot all be executed or

resource requests cannot all be served, scheduling their executions becomes an

important question, allocating resources to frameworks becomes crucial to the

performance. A centerpiece of any cluster management system is the scheduler.

Scheduler architecture design impacts elasticity, scalability and performance in

many dimensions and data-localities within distributed operating systems.

2.2.1 Statically Partitioned

Statically partitioned schedulers lead to fragmentation and suboptimal utilization.

It is not a viable architecture to achieve high throughput and performance, which

is an elemental requirement amongst cluster management systems.

2.2.2 Monolithic

A monolithic scheduler uses a central algorithm for all jobs and it is not parallel,

implements policies and specialized implementations, in one code base. In the

high-performance computing world, this is a common approach, where each job

must be scheduled by the same algorithm. The era of Hadoop on Demand (HoD),

was a monolithic scheduler implementation. The problem with a monolithic

architecture is that it puts too much strain on the scheduler from a certain cluster

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 81 –

size and it becomes increasingly difficult to apply new policy goals, such as,

failure-tolerance and scaling.

2.2.3 Two-Level

An approach used by many systems is to have a central scheduler, a coordinator

that decides how many resources each sub-cluster will have. This two-level

scheduling is used by Mesos, YARN, Corona [9] and HoD. An offer-based two-

level scheduling mechanism provided by Mesos, works best when the tasks

release resources frequently, meaning that job sizes are also small compared to the

total available resources. Since the Mesos master does not have access to a global

view of the cluster state, only the resources it has been offered, it cannot support

preemption. This restricted visibility of cluster resources might lead to losing

work when optimistic concurrency assumptions are not correct. Mesos uses

resource hoarding to group (gang) schedule frameworks and this can lead to a

deadlock in the system. Also, the parallelism introduced by two-level schedulers is

limited, due to a pessimistic concurrency control.

YARN, is effectively, a monolithic architecture, since the application masters

usually don’t provide scheduling, but only job-management services, like the

Spark [10] master entity. An ApplicationMaster can in fact implement a

second level of scheduling and assign its containers to whichever task is part of its

execution plan. The MRAppMaster is a great example of the dynamic two-level

scheduler as it matches allocated containers against the set of pending map tasks

by data locality.

2.2.4 Comparison

Design comparisons, simulations present the tradeoffs between the different

scheduler architecture approaches [11]. Increasing the per-job scheduling

overhead (the time needed to schedule a job) will increase the scheduler business

in the monolithic, single-path baseline case, linearly. The job wait time will

increase at a similar rate, until the scheduler is fully saturated. On a multi-path

implementation, average job wait time and scheduler activity decreases, but batch

jobs can still get stuck in a queue behind service jobs, which are slow to schedule.

Scheduling batch workloads will result in a busier scheduler when using a two-

level (Mesos) architecture instead of a monolithic architecture, as a consequence

of the interaction between the Mesos offer model and the second-level scheduler

in the framework. Because Mesos achieves fairness by offering all available

cluster resources to schedulers, a long second-level decision time means that

nearly all the resources are locked too long a time, making them inaccessible to

other schedulers. Mesos predicts by making quick scheduling decisions and

having small jobs within a large resource pool, which can cause aforementioned

mentioned problems in a different scenario.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 82 –

4 Experimental Evaluations

In this section we will demonstrate the two cluster management systems in

operation, regarding scheduling and execution performance in different scenarios

using two popular frameworks, the Hadoop MapReduce implementation and

Spark. We test single job execution concerning startup overhead and scheduling

efficiency, throughput along with node performances.

These evaluations were run on 5 computers, each equipped with an Intel Core i5

CPU and 4GB RAM. One computer was set up as a dedicated master, resource

manager for both YARN and Mesos, history server and proxy server for YARN,

but also as a name node and secondary name node for HDFS. The other 4 nodes

were set up as data nodes and slaves to run jobs. In the case of Mesos, the

frameworks (for example Hadoop JobTracker, Hama BSPMaster) were

deployed and activated on the master node.

In these experiments the following cluster and framework versions were used:

Hadoop YARN version 2.5.2 [12], Mesos 0.21.0 [13], with the Hadoop on Mesos

library version 0.0.8 [14] and Spark 1.3.0 [15]. We observed no measurable

performance differences between MRv1 and MRv2, apart from the overhead

originated from launching TaskTrackers.

In each cluster, a total 32 virtual CPUs and 32768 MB of virtual memory were

available while running these tests. Both YARN and Mesos were only able to

isolate CPU and memory as resources. Disk usage or network bandwidth were

managed by the underlying operating system (Ubuntu 14.04). The tests ran 5

times and the results were aggregated to calculate averages. We considered the

resource use as use of CPU and memory.

While each cluster management system provides a REST API to query for the

system, framework, job, task data as well as metrics, the Mesos API seemed to be

a more detailed and precise regarding system parameters. While each job runs as a

separate application in YARN, from a cluster point of view, finer grained snapshot

becomes visible. Mesos does not know and neither concerns of the job granularity,

it really does not know how many map-reduce jobs were ran by the connected

JobTracker framework entity.

The deployment of YARN with the different frameworks mentioned above

worked more like an out-of-box application, compared to Mesos, where

permission problems were met several times while running map-reduce jobs along

with the frequent node failures in case of handling too much executors at once.

4.1 Single Batch Job Performance

To examine the performance on accepting, scheduling and preparing a certain

task, we’ve ran a long, batch-like job on each platform, an IO and memory heavy

map-reduce program on a 40 GB dataset that is stored in HDFS with a replication

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 83 –

factor of 2. The cluster utilization was at 0% each time the program gets

submitted. Since Mesos uses Hadoop MapReduce API and architecture of version

1 and YARN uses the next-generation version 2 API, differences are expected in

map-reduce job execution schemes and performance.

While running the map-reduce job on Mesos, it completes in 1130 seconds with

374 maps and 1 reduce task and with total 358 data-local map tasks, that is 24

more maps ran, than in YARN. Figure 1 shows that the first TaskTrackers of

Hadoop version 1 to reach the staging status on an executor launched by Mesos

required 8 seconds from the time the job submitted. Staging status refers to the

state when the slot (container) is allocated and the setup of the executor has been

started. To be able to set up TaskTrackers, the Hadoop v1 architecture needs

to be distributed as a TAR throughout the slaves, stored on HDFS. After the

executors get started, the Hadoop distribution gets downloaded from HDFS, so a

working Hadoop must present on each slave with the capability to invoke the

hadoop command and to communicate with the HDFS. If the Hadoop

distribution in question, is not replicated at each node, the transfer time (of

roughly 250 MB) heavily impacts the ramp-up time of the TaskTrackers.

In a scenario, where network bandwidth is a bottleneck, transferring Hadoop

framework executors can keep many tasks on staging status for a long time.

Figure 1 shows that, with replication factor 4 it took 42 seconds to get the first

few TaskTrackers to get to running state. Other mappers were also considered

slow to start up. The reducer was created and launched in the 95
th

 second, while

map phase was at 7.6% completion. Reaching the maximum utilization, 1 virtual

core and 1024 MB of memory was not used. Mesos set up a total of 11

TaskTrackers on the small cluster.

Figure 1

Number of staging and running tasks in case of long and short batch (map-reduce) jobs on Mesos

 It became clear that TaskTrackers, executors are a huge deal to set up on first

time and could mean a slow response from frameworks as elasticity is being

harnessed. Burst-like jobs from different frameworks could mean too much work

spent on setting up and launching executors.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 84 –

A much smaller, micro map-reduce job on an 8 MB dataset was run for the same

purpose. Mesos created two TaskTrackers on different nodes for 1 map and 1

reduce task, with 1 data-local map task. It took 29 seconds for the job to complete,

while in contrast to the long batch job, the first task reached staging state on the 4
th

second and started to run on the 15 second mark. With smaller jobs, tasks get

staged and run much faster.

Figure 2

Number of containers allocated and reserved in case of long and short batch (map-reduce) job on

YARN

YARN outperformed Mesos on both long and short term. As shown in Figure 2,

YARN completed the short job in 21 seconds on average and the MRAppMaster

was placed on container 0 in a second. Breaking with the Hadoop v1 design really

pays off, as mappers and reducers are placed very fast on the designated nodes

without the TaskTrackers to deploy. We found minimal differences in speed

comparing the map-reduce implementation of Hadoop v1 and v2. As seen in

Figure 2, YARN reserved containers to prevent starvation from smaller

applications. This behavior appeared to be common on long tasks, but the

MRAppMaster never reserved more than 4 containers, even on longer jobs, but

one for each node.

YARN completed the long map-reduce job with 1 application master, 1 reduce

and 360 map containers in total. The advantage of this granularity pays off, when

new applications enter the scheduling phase and DRF wishes to free resources for

them. Killing a few map tasks to be able to allocate cluster resources for new

applications would not result in a major drawback for the map-reduce program

running on YARN, since 360 mappers are reserved and used up linearly in the

execution timeframe. On a long map-reduce job in case of Mesos, while

TaskTrackers would allocate slots for a long time, an allocation module

would kill a few of them, to place new frameworks’ tasks on the cluster. Map-

reduce is resilient to task failures, since work lost could be repeated, but on a long

term this can hurt utilization and hinder completion time in a much greater aspect.

Map-reduce on YARN, provides much better elasticity, along with, a faster

execution.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 85 –

Another issue to point out with Mesos, is that during the execution of the map-

reduce long job it consumed relatively more resources on the execution timeframe

than the MR implementation on YARN. As Figure 2 shows after the 940
th

 second,

only one reducer was running on one container aggregating results from mappers,

but in case of Mesos, until the very end of the job’s last phase, all

TaskTrackers were still running and the JobTracker freed them after the

job was completed. As higher resource consumption directly affects money spent

in a cloud environment, choosing Mesos might result in a higher bill than

expected.

Running a micro Spark job on each system resulted in an average 4 second

difference, in favor of Mesos. It worth mentioning, that the current Spark

implementation does not support cluster deployment mode in for Mesos. Running

a Spark job on YARN requires a Spark ApplicationMaster to be created on

container 0, which impacts the startup time of the actual job. Spark jobs can run in

client mode with YARN, but this setup did not yield a better result. The same job

on Mesos was run by a Spark client on the master node, thus it was able to

negotiate resources and launch containers without the time to deploy itself. Spark

jobs on Mesos can run by using a predefined executor with the

spark.executor.uri configuration parameter or by deploying packages

manually to each node with the appropriate configuration.

It is evident, that the deploy-the-application approach introduced by YARN is

more convenient from the client’s point of view than the connect-the-framework

concept. A client does not have to keep its instance of framework running and can

disconnect from the cluster after the application got submitted. On the other hand,

deploying a framework manually to a node could lead to uncontrolled resource

consumption as the framework is not managed and isolated by the resource

manager. Using Spark in client mode means that multiple Spark-framework

instances will appear and act as tenants for the DRF scheduler, while one

JobTracker runs multiple map-reduce programs. This approach will eventually

make the tasks of the allocator module harder, when it tries to enforce

organizational policies.

Figure 3

Number of containers allocated (YARN) and number of tasks staging and running (Mesos) in case of

running the short Spark job

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 86 –

As seen in Figure 3, YARN completed the Spark job in 18 seconds using 3

containers (including the Spark master on container 0), while Mesos in 14 seconds

using 4 containers. The running container 0, on YARN, required roughly 5

seconds to request, prepare and run the Spark executors, on the allocated

containers. The executors were running for 11 seconds and the application master

went offline after 2 seconds. The execution of Spark job on 4 containers resulted

in a timeframe of 7 seconds.

Table 1

Summary of single job performances on YARN and Mesos

Case Runtime Maximum number of containers used

YARN, short map-reduce job 21 s 2 (including application master)

Mesos, short map-reduce job 28 s 2

YARN, long map-reduce job 1061 s 31 (including application master)

Mesos, long map-reduce job 1129 s 11

YARN, short Spark job 18 s 3 (including application master)

Mesos, short Spark job 14 s 4

4.2 Mixed Job and Framework Performance (Scenario 1)

To test the scheduling performance of Mesos and YARN, we’ve created a client

that submits map-reduce and Spark jobs periodically. In this scenario, a micro

map-reduce and a CPU Spark job was submitted every 10 seconds, and a long

batch map-reduce job every 100 seconds. A total of 22 jobs were submitted.

Using YARN as a platform, with the fair scheduler and unlimited application

preferences, we were able to encumber the system to a point, where the context

switching and administration overhead turned each running application into a

zombie as NodeManagers were overwhelmed. As seen in Figure 4, after

completing 22 applications, the last 20 never reached a complete state, but

actually did not make any progress in hours. The scenario became complicated for

YARN, when the long-job entered the cluster and a huge portion of resources

were allocated to it, rendering micro-job executions slower, causing them to pile

up. It became evident that concurrent application limits are crucial for

performance, after a certain threshold on YARN as context switching and

parallelism overhead went out of control. For this system and with this scenario, it

happened with 15 applications. As memory-intensive applications were still

running and requesting a resource vector with memory greater than (1 CPU, 1

GB), in average, 12 virtual cores were never used. The reserved values on the

dimension of memory were introduced by the long running map-reduce job. The

characteristic leap of the allocated plot line refers to the time when the first long

job appeared and started to acquire all available resources.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 87 –

Figure 4

Evaluation of scenario 1 on YARN using fair scheduler with unlimited applications configuration in

terms of number of applications and memory usage

Using YARN’s capacity scheduler with a limit of 4 concurrent applications, this

scenario was completed in 2168 seconds and as seen in Figure 5, compared to fair

scheduler with an application limit of 10, was slower. Fair scheduler completed

applications in 2132 seconds, while also performed with a better response-time as

smaller jobs were able to run earlier. For larger job sizes, capacity scheduler

provided a better response-time with a lower application limit. In the case of

capacity scheduler no reservations were made for new containers. By not

reserving containers, it seems a few containers were unused and scheduled on-the-

fly after they became available.

Figure 5

Evaluation of scenario 1 on YARN using capacity scheduler with maximum of 4 concurrent

applications in terms of number of applications and memory usage

The FIFO scheduler with unlimited applications completed this scenario, on

average 2153 seconds. This scheduling scheme can hurt smaller jobs and can

cause starvation when a single, long job gets all resources as seen in Figure 6.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 88 –

Figure 6

Evaluation of scenario 1 on YARN using FIFO scheduler with unlimited applications configuration in

terms of number of applications and memory usage

Figure 7

Evaluation of scenario 1 on YARN a maximumir scheduler with maximum of 10 concurrent

applications in terms of number of applications and memory usage

Comparing the DRF implementation of Mesos to YARN’s, YARN was able to

perform much better and achieved a high utilization by allocating 100% of the

available cluster resources for a long period of time, as shown on Figure 7. With

the use of reserved amounts by the scheduler, containers were allocated and ran

much faster achieving a higher utilization, than the capacity scheduler. Mesos, on

the other hand, was not able to utilize all cluster resources. For a long time, the

resource manager reported 4 CPUs and 6.1 GB memory idle, but the fine-grained,

rapid tasks of Spark were utilizing the 4 CPUs as seen in Figure 8. Spark was set

up in fine-grained mode in the first place, which means a separate Mesos task was

launched for each Spark task. This allows frameworks to share cluster resources in

a very fine granularity, but it comes with an additional overhead for managing

task lifespans in a rapid rate. Focusing on the number of cores in the fine- and

coarse-grained setup this behavior seems clear, as the fast task allocation pattern

appears on the plot in the fine-grained case. A noticeable difference shows in the

memory allocation pattern of different task-resolutions as (Spark) tasks with a

lifespan measured in milliseconds allocated containers with <1 CPU, 128 MB>

resource vectors instead of <1 CPU, 512 MB> or <1 CPU, 768 MB> as in the

coarse-grained mode. In certain circumstances, it might be a good practice to

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 89 –

place and force very fast tasks of different fine-grained setup frameworks next to

memory-intensive jobs to improve utilization and fairness with Dominant

Resource Fairness.

The map-reduce jobs were managed by a single JobTracker and Spark jobs

were submitted by multiple Spark clients. By increasing the number of Spark

clients, the utilization improved. Figure 8 shows the utilization best achieved

while 6 Spark frameworks were active.

Figure 8

Evaluation of scenario 1 on Mesos using coarse- and fine-grained setup with fair scheduler and

unlimited tasks configuration in terms of number of applications, virtual core and memory usage

In this scenario, multiple issues were found with Mesos. On some runs, an average

of 24 TaskTrackers were lost and some of them were stuck in staging status,

never reached running state. Also, one or two slaves were tended to disconnect

from the master and froze in the first minutes of this scenario. The recorded and

aggregated results were used, when Mesos did not lose a task.

The following table shows a summary of the results experienced from scenario 1.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 90 –

Table 2

Summary of runtimes and average utilization experienced in scenario 1

Case Runtime Average

utilization

(CPU)

Average

utilization

(memory)

YARN, fair scheduler, unlimited infinite 100% 100%

YARN, capacity scheduler, 4 2168 s 82.35% 89.87%

YARN, FIFO scheduler, unlimited 2153 s 83.27% 92.71%

YARN, fair scheduler, 10 2132 s 86.27% 92.90%

Mesos fine, fair scheduler, unlimited 3604 s 83.96% 78.46%

Mesos coarse, fair scheduler,

unlimited

2256 s 90.81% 89.25%

The Spark implementation in fine-grained mode using Mesos spanned close to

20000 tasks in this scenario, it has put a strain worth mentioning on the master to

schedule resources. While YARN performed about 1.7 times better than Mesos

(with fine setup) with a relaxed (unlimited applications or tasks) DRF setting, due

to the lightweight nature of Mesos it handled fine-grained tasks better as a first

level scheduler. It has become clear that Mesos is more reliable and more suited

for running large amounts of frameworks and tasks-per-framework with very fine-

grained tasks.

4.3 Micro-Job Performance (Scenario 2)

In scenario 2, we’ve prepared a script, which submitted 4 micro-applications or

jobs if you will, 2 map-reduce and 2 Spark job in each 10
th

 second for 30 times. A

total of 120 jobs reached the cluster. Our goal were to evaluate how fast short jobs

can enter and leave the cluster on both systems and to see if there’s any chance of

overwhelming the slaves by increasing parallelism overhead to an undesirable

level.

It has been shown in the demonstration of Mesos running a long batch job,

TaskTrackers have a high startup overhead so our expectations were met

about the difficulties these cases would produce. A standby TaskTracker might

provide significant benefit regarding task start-ups, but it would also introduce

data-locality problems, since a data might not be available where our TaskTracker

has been deployed. Designing heuristics to keep TaskTrackers wisely on certain

nodes, suggested by workload statistics, would not solve all of our problems on a

long term. As seen on Figure 9 YARN performed very well, by not letting

pending tasks to reach 3 as applications were able to finish in a fast rate and were

not interrupted by and overcrowded cluster. Applications were completed linearly

with time and on average roughly 10 were running concurrently. In case of Mesos,

as seen on the curve of staging tasks, in the first 60 seconds every Spark job

entered the system were able to run and complete without unnecessary staging.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 91 –

In the first 100 seconds only TaskTrackers were staging for a longer period of

time, which meant that because of their startup time, those rapid map-reduce jobs

arriving in every 10 seconds were not reached running status fast enough. Due to

the fact that map-reduce programs were spawning on TaskTrackers,

unnecessary parallelism appeared on slaves and about 20 map-reduce jobs were

running concurrently along with the Spark jobs on the cluster.

Figure 9

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair

scheduler in terms of number of tasks and application

On the memory footprint produced by tasks running on Mesos as shown in Figure

10, the TaskTrackers crowding the cluster are visible on the 30
th

 to 110
th

second interval. After that point a few of them were broken down to be able to

offer resources to Spark programs. YARN, in contrast, kept resource consumption

constant as applications were not able to encumber the cluster.

The container reservations used by YARN’s fair scheduler helps applications to

receive and utilize containers faster than the resource offer approach introduced by

Mesos. Mesos completed this scenario in 328 seconds, while YARN in 297

seconds. Again, issues were found, but this time with the JobTracker (Hadoop

v1): in some cases map-reduce jobs were stuck and never reached running state on

TaskTrackers.

Figure 10

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair

scheduler in terms of memory consumption

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 92 –

4.4 Micro-Job Interruptions (Scenario 3)

To evaluate the problems related to granting fairness and job interruptions, we’ve

prepared a scenario, where micro Spark programs were submitted on a long

running map-reduce batch job. After the submission of the same long job, that was

previously evaluated, for every 100 seconds a Spark CPU-heavy program was

submitted, nine times longer overall.

Interrupting the map-reduce job’s execution with micro Spark jobs on Mesos

added, on average 9 seconds to the overall completion time, which became 1138

seconds. Recall the results of the same long job performance of YARN and Mesos

from Figure 1 and Figure 2. On YARN, the same scenario stretched the

completion time of the map-reduce batch job, from 1061 to 1092 seconds.

On Mesos, 1 CPU was available with 1 GB RAM and the Spark client was able to

initiate a start on a free container, where it completed in 48 seconds on average.

Since YARN were utilizing all cluster resources during the execution of the map-

reduce job most of the time, the Spark programs needed to wait on average 13.3

seconds to be able to progress to running state from pending state. Theoretically,

every 2.6 seconds, a mapper finish (from the length map phase and number of

maps) and its resources <1 CPU, 1 GB> frees up. On average, 3 containers were

reserved by the MRAppMaster and the Spark job needs 2 containers (including

the application master) to be able to run. When the Spark job reached the pending

state, on average, 5 containers needed to free up, to be able to reach running state,

which is roughly 13 seconds.

Figure 11

Evaluation of scenario 3 on Mesos (unlimited tasks) and YARN (unlimited applications) using fair

scheduler in terms of number of tasks, application and memory usage

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 93 –

As seen in Figure 11, the same Spark job on YARN needed more time to start,

mainly because the application master is necessary to be placed on a free

container, which set back and slowed subsequent pending mappers. Utilization of

YARN still proved to be better than in the case of Mesos.

Conclusions

Cluster management systems are the backbone of any Big Data analytical toolsets

that are used by an Enterprise, their performance is determined significantly, by

their design and greatly affects energy consumption for a data center. Evolution of

Hadoop had the greatest impact in the motivation, concept and birth of these

systems. We focused on the main two-level, open-source schedulers available,

YARN and Mesos.

YARN is perfect for ad-hoc application deployment, as it ships the application to

the requested node by carefully setting up the process in all cases. YARN has been

made for an environment with higher security demands, as it protects the cluster

from malicious clients and code in many cases. The differences in resource

allocation methods showed that the push-method used by Mesos might hinder

utilization and locality preferences in some cases, but proved to be faster than

YARN’s, which provides agility by using late-binding in opposite fashion.

Applications running on YARN have the benefit of making better second-level

scheduling decisions, because they have a global view of the cluster, whereas a

framework have sight of only a subset of the cluster on Mesos. In a consequence

of the resource allocation method, YARN supports preemption to prevent

starvation. Restricted visibility of cluster resources might lead to losing work and

resource hoarding used by Mesos can lead to a deadlock within the system. Mesos

predicts outcomes to make quick scheduling decisions.

The functionality of YARN proved to be richer by providing convenient services

for applications, but also supports more scheduling methods and algorithms.

Capacity schedulers can work effectively when the workloads are well known.

Fair scheduler introduces several problems with head-of-line jobs, but Delay

scheduling addresses them and improves locality. HaSTE is a good alternative on

YARN, when the goal is to minimize makespan in the cluster.

Regarding system parameters, the API provided by Mesos is more detailed and

precise, but YARN gives a finer grained snapshot as each job runs as a separate

application. Mesos does not know the job granularity of a connected framework,

which can cause several problems. Deployment of YARN is usually more

convenient, due to the higher level and more comprehensive interfaces available.

It works more like an out-of-box product. During the evaluations, several issues

were found with Mesos regarding permissions and node failures.

YARN has a wider and more diverse analytical toolset (frameworks) available

than Mesos, but a practical decision between these platforms might include special

requirements. The mainstream frameworks are mostly available on both systems.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 94 –

As single job performance evaluations show, executors are difficult to set up the

first time and can mean a slow response from frameworks like Hadoop

MapReduce. YARN deploys mappers and reducers, much faster on the designated

nodes and can provide better locality, also, this task-granularity provides better

elasticity along with a faster execution. As TaskTrackers are expensive to deploy

and they are long running, killing them to provide fairness is usually a significant

drawback. Cached or standby TaskTrackers might provide significant

improvements in task start-ups, but it would introduce other problems, for

instance, a hindered data locality. Single job benchmarks also showed, that map-

reduce jobs on Mesos run longer and consume more resources, which directly

affects money spent in a cloud environment. YARN is 1.06 (in case of short map-

reduce) and 1.33 (in case of long map-reduce) times faster than Mesos, but Mesos

runs a micro-Spark job 1.28 times faster than YARN. It must be taken to account

that YARN has to deploy the submitted application each time, while the

framework’s master runs separately on Mesos.

Multiple scenarios showed that the “concurrent application limit” is crucial for

performance after a certain threshold on YARN. Using preemption, YARN

performed about 1.7 times better than Mesos with the fine-grained setup, but

Mesos handles large amounts of tasks better as a first level scheduler. Mesos is

more reliable and more suited for running large amounts of fine-grained tasks.

With the same setup, YARN provides a 1.05 times faster execution and 4.54%

less CPU consumption. It is evident that the container reservations, used by

YARN’s fair scheduler, can utilize and provide containers to applications faster

than the resource offer approach introduced by Mesos. Other scenarios showed

that overall utilization on a YARN cluster is better, along with a 1.10 times faster

execution.

References

[1] WHITE, Tom. Hadoop: The definitive guide. O'Reilly Media, Inc., 2012

[2] DEAN, Jeffrey; GHEMAWAT, Sanjay. MapReduce: simplified data

processing on large clusters. Communications of the ACM, 2008, 51.1:

107-113

[3] LIANG, Fan, et al. Performance benefits of DataMPI: a case study with

BigDataBench. In: Big Data Benchmarks, Performance Optimization, and

Emerging Hardware. Springer International Publishing, 2014, pp. 111-123

[4] JIA, Zhen, et al. Characterizing and subsetting big data workloads. arXiv

preprint arXiv:1409.0792, 2014

[5] TAN, Jian; MENG, Xiaoqiao; ZHANG, Li. Performance analysis of

coupling scheduler for mapreduce/hadoop. In: INFOCOM, 2012

Proceedings IEEE. IEEE, 2012, pp. 2586-2590

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 95 –

[6] CHEN, Yanpei, et al. Energy efficiency for large-scale mapreduce

workloads with significant interactive analysis. In: Proceedings of the 7
th

ACM european conference on Computer Systems. ACM, 2012, pp. 43-56

[7] KUMAR, K. Ashwin; DESHPANDE, Amol; KHULLER, Samir. Data

placement and replica selection for improving co-location in distributed

environments. arXiv preprint arXiv:1302.4168, 2013

[8] HUNT, Patrick, et al. ZooKeeper: Wait-free Coordination for Internet-scale

Systems. In: USENIX Annual Technical Conference. 2010, p. 9

[9] "Corona" 2013 [Online] Available: https://github.com/facebookarchive

/hadoop-20/tree/master/src/contrib/corona

[10] ZAHARIA, Matei, et al. Spark: cluster computing with working sets. In:

Proceedings of the 2
nd

 USENIX conference on Hot topics in cloud

computing. 2010, p. 10-10

[11] SCHWARZKOPF, Malte, et al. Omega: flexible, scalable schedulers for

large compute clusters. In: Proceedings of the 8
th

 ACM European

Conference on Computer Systems. ACM, 2013, pp. 351-364

[12] "Apache Hadoop 2.5.2," 2014 [Online] Available:

http://hadoop.apache.org/docs/r2.5.2/

[13] "Apache Mesos" 2014 [Online] Available: https://github.com/apache/mesos

[14] "Hadoop on Mesos" 2014 [Online] Available:

https://github.com/mesos/hadoop

[15] "Spark" 2014 [Online] Available: https://github.com/apache/spark

