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Abstract: Cluster computing frameworks are important in the “Big Data” world. The 

famous common framework is the MapReduce that was introduced by Google. This 

framework is used by many of companies. However, this technique doesn't effectively solve 

all analytical problems. Some cases need another framework and these frameworks can 

work in the cluster. In this case, the cluster needs a manager that manages the framework. 

Therefore, the performance analysis of cluster management systems will be important. In 

this paper, we compare the performance of two most well-known cluster management 

systems (Yarn, Mesos) with stress cases. We analyze the resource usage techniques of the 

management systems. 
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1 Introduction 

For years, Big Data was confined to a group of elite technicians working for 

companies like Google and Yahoo, but the databases and the tools used to manage 

the data at that scale have been constantly evolving. At that time, Big Data was 

only a synonym to the leading tool, the Apache Hadoop [1], a MapReduce [2] 

implementation that was used as a data-processing platform for many years, 

exclusively. As Big Data continued to evolve, researchers found that MapReduce 

– though is still powerful for a large number of applications – was not as effective 

at solving many problems. Technicians were working on new cluster computing 

frameworks, and it became clear that no framework would be optimal for all 

applications. Researchers have been developing a wide array of data-centric 

computing frameworks and the need for a major computing platform emerged, 

powering both the growing number of data-intensive scientific applications and 

large internet services. It has become essential to run multiple frameworks on the 

same cluster, so data scientists can pick the best for each application. 
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As new analytic engines began to cover the ever growing space of problems, 

sharing a cluster between these frameworks started to get complicated. At the 

enterprise level, along with the need of batch processing, the need of real-time 

event processing, human interactive SQL queries, machine learning and graphic 

analytics emerged. 

In a cluster, data are distributed and stored on the same nodes that run 

computations shared by frameworks. When the cluster is shared, statically, by 

frameworks, unnecessary data replication will appear, along with utilization 

issues. When a framework, for example a web-service farm, would be able to 

scale down at late hours, the MapReduce framework would perform better if it 

were able to use the resources released by the web-service farm. Sharing improves 

cluster utilization, through statistical multiplexing and avoids per-framework data 

replication and leads to data consolidation. 

A cluster management system acts as a cluster-wide operating system by sharing 

commodity clusters between multiple and diverse cluster computing frameworks. 

Because reading data remotely, is expensive on a distributed file system, it is 

necessary to schedule computations near their data. At each node, applications 

take turns running computations, executing long or short tasks, spawned by 

different frameworks. Locality in large clusters is crucial for performance, 

because network bisection bandwidth becomes a bottleneck. [2] A cluster 

management system should provide a tool or interface, to design and implement 

specialized, distributed frameworks targeted at special problem domains. While 

multiple frameworks are operating cluster-wide, the operating system should take 

care of difficult problems, like cluster health, fault monitoring, resource arbitration 

and isolation. 

Energy efficiency also becomes a critical matter for data centers powering large 

numbers of clusters [6] [7], since energy costs are ever increasing and hardware 

costs are decreasing. Minimizing the total amount of resources consumed will 

directly reduce the total energy consumption of a job. 

Scalability, resource- and energy-efficiency are key metrics for a cluster 

management system, their performance matters for data-center operators, as well 

as for end users. [3] [4] [5] 

Driven by the need of a cluster-wide operating system to share data among 

frameworks, two solutions appeared from the ground of The Apache Software 

Foundation that circulated widely in the Big Data community, to provide a 

resource management substrate for analytic engines and their applications. One 

such solution was designed and presented at U.C. Berkeley, called Apache Mesos 

and another one, originated from the Hadoop architecture, named YARN (Yet 

Another Resource Negotiator). 

In this work we will show and demonstrate the differences of these two, open-

source cluster-wide operating systems, by presenting an infrastructure, resource 
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management, scheduling overview and performance evaluations, on different 

scenarios together with load and stress testing. Both of these systems are used 

widely in production systems and by introducing different resource-management 

models, it is beneficial to analyze their performance. Using the performance 

evaluations we will demonstrate the advantages and disadvantages, of different 

configurations, use cases on both YARN and Mesos, with different analytical 

frameworks having diverse needs and routines on execution. 

2 Design and Concepts 

A cluster management system consists of two main components. A master entity, 

that manages resources, schedules framework’s resource requirements and slave 

entities, which run on nodes to manage tasks and report to the master. These two 

components build up the platform. A scheduler is a singular or distributed 

component in the platform that schedules jobs (or applications) on the cluster 

expressed and written by end-users using a specific framework library. A cluster 

management system can be considered as a distributed operating system: it 

provides resources for frameworks and schedules their distributed applications. 

Frameworks are more or less, independent entities, with their own scheduler and 

resource requirements, but there are dissimilarities among design philosophies on 

different systems. A live framework is expected to register itself with the cluster’s 

master, by implementing a resource-negotiating API defined by the master. Apart 

from the global, cluster wide resource management, scheduling, other 

expectations, such as fault tolerance, job-level scheduling or logging are the 

framework’s duty to provide. 

The masters are made to be fault-tolerant on both Mesos and YARN by 

ZooKeeper [8]. In a cluster deployed with Mesos, a framework must be set up on 

a given node and it must register itself with the master to be able to negotiate for 

resources and run tasks on the nodes. YARN requires a client to submit the 

framework, as an application to the resource manager. The resource manager will 

eventually start the framework on a node, making it live, to be able to request 

resources and run tasks on the nodes. 

2.1 Resource Management 

As previously described, the master entity arbitrates all available cluster resources 

by working together with the per-node slaves and the frameworks or applications. 

The resource manager component of the master entity does not concern itself with 

framework or application state management. It schedules the overall resource 

profile for frameworks and it treats the cluster as a resource pool. 
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There are two methods for gathering resources from the cluster. Mesos pushes, 

offers resources to frameworks, those implement a Scheduler, while 

applications, which implement the YarnAppMasterListener interface are 

expected to pull, request resources. Mesos offers resources to the Scheduler 

and it chooses to accept, or not, in contrast to the model used by YARN, where the 

AppMaster must request resources from the ResourceManager and it 

chooses to give resources or not. 

Resource allocations in YARN are late binding, that is, the application or 

framework is obligated to use the resources provided by the container, but it does 

not have to apply them to a logical task on request. The framework or application 

can decide which task to run with its own, internal, second-level scheduler. In 

Mesos, task descriptions must be sent upon accepting a resource. 

On Mesos and YARN the existing grammar of resource requests does not support 

specification of complex relationships between containers regarding co-location. 

Second-level schedulers must implement such relationships. Also, since Mesos 

offers resources to the framework it will hinder locality preferences, while YARN 

lets the framework request any node in the cluster, not only from a sub-cluster 

offered by the resource manager. To tailor and limit resource consumption of 

different frameworks, a pluggable allocation module in the master entity of Mesos 

can determine how many resources to offer each framework. 

2.2 Scheduling 

Given the limited resources in the cluster, when jobs cannot all be executed or 

resource requests cannot all be served, scheduling their executions becomes an 

important question, allocating resources to frameworks becomes crucial to the 

performance. A centerpiece of any cluster management system is the scheduler. 

Scheduler architecture design impacts elasticity, scalability and performance in 

many dimensions and data-localities within distributed operating systems. 

2.2.1 Statically Partitioned 

Statically partitioned schedulers lead to fragmentation and suboptimal utilization. 

It is not a viable architecture to achieve high throughput and performance, which 

is an elemental requirement amongst cluster management systems. 

2.2.2 Monolithic 

A monolithic scheduler uses a central algorithm for all jobs and it is not parallel, 

implements policies and specialized implementations, in one code base. In the 

high-performance computing world, this is a common approach, where each job 

must be scheduled by the same algorithm. The era of Hadoop on Demand (HoD), 

was a monolithic scheduler implementation. The problem with a monolithic 

architecture is that it puts too much strain on the scheduler from a certain cluster 
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size and it becomes increasingly difficult to apply new policy goals, such as, 

failure-tolerance and scaling. 

2.2.3 Two-Level 

An approach used by many systems is to have a central scheduler, a coordinator 

that decides how many resources each sub-cluster will have. This two-level 

scheduling is used by Mesos, YARN, Corona [9] and HoD. An offer-based two-

level scheduling mechanism provided by Mesos, works best when the tasks 

release resources frequently, meaning that job sizes are also small compared to the 

total available resources. Since the Mesos master does not have access to a global 

view of the cluster state, only the resources it has been offered, it cannot support 

preemption. This restricted visibility of cluster resources might lead to losing 

work when optimistic concurrency assumptions are not correct. Mesos uses 

resource hoarding to group (gang) schedule frameworks and this can lead to a 

deadlock in the system. Also, the parallelism introduced by two-level schedulers is 

limited, due to a pessimistic concurrency control. 

YARN, is effectively, a monolithic architecture, since the application masters 

usually don’t provide scheduling, but only job-management services, like the 

Spark [10] master entity. An ApplicationMaster can in fact implement a 

second level of scheduling and assign its containers to whichever task is part of its 

execution plan. The MRAppMaster is a great example of the dynamic two-level 

scheduler as it matches allocated containers against the set of pending map tasks 

by data locality. 

2.2.4 Comparison 

Design comparisons, simulations present the tradeoffs between the different 

scheduler architecture approaches [11]. Increasing the per-job scheduling 

overhead (the time needed to schedule a job) will increase the scheduler business 

in the monolithic, single-path baseline case, linearly. The job wait time will 

increase at a similar rate, until the scheduler is fully saturated. On a multi-path 

implementation, average job wait time and scheduler activity decreases, but batch 

jobs can still get stuck in a queue behind service jobs, which are slow to schedule. 

Scheduling batch workloads will result in a busier scheduler when using a two-

level (Mesos) architecture instead of a monolithic architecture, as a consequence 

of the interaction between the Mesos offer model and the second-level scheduler 

in the framework. Because Mesos achieves fairness by offering all available 

cluster resources to schedulers, a long second-level decision time means that 

nearly all the resources are locked too long a time, making them inaccessible to 

other schedulers. Mesos predicts by making quick scheduling decisions and 

having small jobs within a large resource pool, which can cause aforementioned 

mentioned problems in a different scenario. 
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4 Experimental Evaluations 

In this section we will demonstrate the two cluster management systems in 

operation, regarding scheduling and execution performance in different scenarios 

using two popular frameworks, the Hadoop MapReduce implementation and 

Spark. We test single job execution concerning startup overhead and scheduling 

efficiency, throughput along with node performances. 

These evaluations were run on 5 computers, each equipped with an Intel Core i5 

CPU and 4GB RAM. One computer was set up as a dedicated master, resource 

manager for both YARN and Mesos, history server and proxy server for YARN, 

but also as a name node and secondary name node for HDFS. The other 4 nodes 

were set up as data nodes and slaves to run jobs. In the case of Mesos, the 

frameworks (for example Hadoop JobTracker, Hama BSPMaster) were 

deployed and activated on the master node. 

In these experiments the following cluster and framework versions were used: 

Hadoop YARN version 2.5.2 [12], Mesos 0.21.0 [13], with the Hadoop on Mesos 

library version 0.0.8 [14] and Spark 1.3.0 [15]. We observed no measurable 

performance differences between MRv1 and MRv2, apart from the overhead 

originated from launching TaskTrackers. 

In each cluster, a total 32 virtual CPUs and 32768 MB of virtual memory were 

available while running these tests. Both YARN and Mesos were only able to 

isolate CPU and memory as resources. Disk usage or network bandwidth were 

managed by the underlying operating system (Ubuntu 14.04). The tests ran 5 

times and the results were aggregated to calculate averages. We considered the 

resource use as use of CPU and memory. 

While each cluster management system provides a REST API to query for the 

system, framework, job, task data as well as metrics, the Mesos API seemed to be 

a more detailed and precise regarding system parameters. While each job runs as a 

separate application in YARN, from a cluster point of view, finer grained snapshot 

becomes visible. Mesos does not know and neither concerns of the job granularity, 

it really does not know how many map-reduce jobs were ran by the connected 

JobTracker framework entity. 

The deployment of YARN with the different frameworks mentioned above 

worked more like an out-of-box application, compared to Mesos, where 

permission problems were met several times while running map-reduce jobs along 

with the frequent node failures in case of handling too much executors at once. 

4.1 Single Batch Job Performance 

To examine the performance on accepting, scheduling and preparing a certain 

task, we’ve ran a long, batch-like job on each platform, an IO and memory heavy 

map-reduce program on a 40 GB dataset that is stored in HDFS with a replication 
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factor of 2. The cluster utilization was at 0% each time the program gets 

submitted. Since Mesos uses Hadoop MapReduce API and architecture of version 

1 and YARN uses the next-generation version 2 API, differences are expected in 

map-reduce job execution schemes and performance. 

While running the map-reduce job on Mesos, it completes in 1130 seconds with 

374 maps and 1 reduce task and with total 358 data-local map tasks, that is 24 

more maps ran, than in YARN. Figure 1 shows that the first TaskTrackers of 

Hadoop version 1 to reach the staging status on an executor launched by Mesos 

required 8 seconds from the time the job submitted. Staging status refers to the 

state when the slot (container) is allocated and the setup of the executor has been 

started. To be able to set up TaskTrackers, the Hadoop v1 architecture needs 

to be distributed as a TAR throughout the slaves, stored on HDFS. After the 

executors get started, the Hadoop distribution gets downloaded from HDFS, so a 

working Hadoop must present on each slave with the capability to invoke the 

hadoop command and to communicate with the HDFS. If the Hadoop 

distribution in question, is not replicated at each node, the transfer time (of 

roughly 250 MB) heavily impacts the ramp-up time of the TaskTrackers. 

In a scenario, where network bandwidth is a bottleneck, transferring Hadoop 

framework executors can keep many tasks on staging status for a long time. 

Figure 1 shows that, with replication factor 4 it took 42 seconds to get the first 

few TaskTrackers to get to running state. Other mappers were also considered 

slow to start up. The reducer was created and launched in the 95
th

 second, while 

map phase was at 7.6% completion. Reaching the maximum utilization, 1 virtual 

core and 1024 MB of memory was not used. Mesos set up a total of 11 

TaskTrackers on the small cluster. 

 

Figure 1 

Number of staging and running tasks in case of long and short batch (map-reduce) jobs on Mesos 

 It became clear that TaskTrackers, executors are a huge deal to set up on first 

time and could mean a slow response from frameworks as elasticity is being 

harnessed. Burst-like jobs from different frameworks could mean too much work 

spent on setting up and launching executors. 
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A much smaller, micro map-reduce job on an 8 MB dataset was run for the same 

purpose. Mesos created two TaskTrackers on different nodes for 1 map and 1 

reduce task, with 1 data-local map task. It took 29 seconds for the job to complete, 

while in contrast to the long batch job, the first task reached staging state on the 4
th

 

second and started to run on the 15 second mark. With smaller jobs, tasks get 

staged and run much faster. 

 

Figure 2 

Number of containers allocated and reserved in case of long and short batch (map-reduce) job on 

YARN 

YARN outperformed Mesos on both long and short term. As shown in Figure 2, 

YARN completed the short job in 21 seconds on average and the MRAppMaster 

was placed on container 0 in a second. Breaking with the Hadoop v1 design really 

pays off, as mappers and reducers are placed very fast on the designated nodes 

without the TaskTrackers to deploy. We found minimal differences in speed 

comparing the map-reduce implementation of Hadoop v1 and v2. As seen in 

Figure 2, YARN reserved containers to prevent starvation from smaller 

applications. This behavior appeared to be common on long tasks, but the 

MRAppMaster never reserved more than 4 containers, even on longer jobs, but 

one for each node. 

YARN completed the long map-reduce job with 1 application master, 1 reduce 

and 360 map containers in total. The advantage of this granularity pays off, when 

new applications enter the scheduling phase and DRF wishes to free resources for 

them. Killing a few map tasks to be able to allocate cluster resources for new 

applications would not result in a major drawback for the map-reduce program 

running on YARN, since 360 mappers are reserved and used up linearly in the 

execution timeframe. On a long map-reduce job in case of Mesos, while 

TaskTrackers would allocate slots for a long time, an allocation module 

would kill a few of them, to place new frameworks’ tasks on the cluster. Map-

reduce is resilient to task failures, since work lost could be repeated, but on a long 

term this can hurt utilization and hinder completion time in a much greater aspect. 

Map-reduce on YARN, provides much better elasticity, along with, a faster 

execution. 
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Another issue to point out with Mesos, is that during the execution of the map-

reduce long job it consumed relatively more resources on the execution timeframe 

than the MR implementation on YARN. As Figure 2 shows after the 940
th

 second, 

only one reducer was running on one container aggregating results from mappers, 

but in case of Mesos, until the very end of the job’s last phase, all 

TaskTrackers were still running and the JobTracker freed them after the 

job was completed. As higher resource consumption directly affects money spent 

in a cloud environment, choosing Mesos might result in a higher bill than 

expected. 

Running a micro Spark job on each system resulted in an average 4 second 

difference, in favor of Mesos. It worth mentioning, that the current Spark 

implementation does not support cluster deployment mode in for Mesos. Running 

a Spark job on YARN requires a Spark ApplicationMaster to be created on 

container 0, which impacts the startup time of the actual job. Spark jobs can run in 

client mode with YARN, but this setup did not yield a better result. The same job 

on Mesos was run by a Spark client on the master node, thus it was able to 

negotiate resources and launch containers without the time to deploy itself. Spark 

jobs on Mesos can run by using a predefined executor with the 

spark.executor.uri configuration parameter or by deploying packages 

manually to each node with the appropriate configuration. 

It is evident, that the deploy-the-application approach introduced by YARN is 

more convenient from the client’s point of view than the connect-the-framework 

concept. A client does not have to keep its instance of framework running and can 

disconnect from the cluster after the application got submitted. On the other hand, 

deploying a framework manually to a node could lead to uncontrolled resource 

consumption as the framework is not managed and isolated by the resource 

manager. Using Spark in client mode means that multiple Spark-framework 

instances will appear and act as tenants for the DRF scheduler, while one 

JobTracker runs multiple map-reduce programs. This approach will eventually 

make the tasks of the allocator module harder, when it tries to enforce 

organizational policies. 

 
Figure 3 

Number of containers allocated (YARN) and number of tasks staging and running (Mesos) in case of 

running the short Spark job 
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As seen in Figure 3, YARN completed the Spark job in 18 seconds using 3 

containers (including the Spark master on container 0), while Mesos in 14 seconds 

using 4 containers. The running container 0, on YARN, required roughly 5 

seconds to request, prepare and run the Spark executors, on the allocated 

containers. The executors were running for 11 seconds and the application master 

went offline after 2 seconds. The execution of Spark job on 4 containers resulted 

in a timeframe of 7 seconds. 

Table 1 

Summary of single job performances on YARN and Mesos 

Case Runtime Maximum number of containers used 

YARN, short map-reduce job 21 s 2 (including application master) 

Mesos, short map-reduce job 28 s 2 

YARN, long map-reduce job 1061 s 31 (including application master) 

Mesos, long map-reduce job 1129 s 11 

YARN, short Spark job 18 s 3 (including application master) 

Mesos, short Spark job 14 s 4 

4.2 Mixed Job and Framework Performance (Scenario 1) 

To test the scheduling performance of Mesos and YARN, we’ve created a client 

that submits map-reduce and Spark jobs periodically. In this scenario, a micro 

map-reduce and a CPU Spark job was submitted every 10 seconds, and a long 

batch map-reduce job every 100 seconds. A total of 22 jobs were submitted. 

Using YARN as a platform, with the fair scheduler and unlimited application 

preferences, we were able to encumber the system to a point, where the context 

switching and administration overhead turned each running application into a 

zombie as NodeManagers were overwhelmed. As seen in Figure 4, after 

completing 22 applications, the last 20 never reached a complete state, but 

actually did not make any progress in hours. The scenario became complicated for 

YARN, when the long-job entered the cluster and a huge portion of resources 

were allocated to it, rendering micro-job executions slower, causing them to pile 

up. It became evident that concurrent application limits are crucial for 

performance, after a certain threshold on YARN as context switching and 

parallelism overhead went out of control. For this system and with this scenario, it 

happened with 15 applications. As memory-intensive applications were still 

running and requesting a resource vector with memory greater than (1 CPU, 1 

GB), in average, 12 virtual cores were never used. The reserved values on the 

dimension of memory were introduced by the long running map-reduce job. The 

characteristic leap of the allocated plot line refers to the time when the first long 

job appeared and started to acquire all available resources. 
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Figure 4 

Evaluation of scenario 1 on YARN using fair scheduler with unlimited applications configuration in 

terms of number of applications and memory usage 

Using YARN’s capacity scheduler with a limit of 4 concurrent applications, this 

scenario was completed in 2168 seconds and as seen in Figure 5, compared to fair 

scheduler with an application limit of 10, was slower. Fair scheduler completed 

applications in 2132 seconds, while also performed with a better response-time as 

smaller jobs were able to run earlier. For larger job sizes, capacity scheduler 

provided a better response-time with a lower application limit. In the case of 

capacity scheduler no reservations were made for new containers. By not 

reserving containers, it seems a few containers were unused and scheduled on-the-

fly after they became available. 

 

Figure 5 

Evaluation of scenario 1 on YARN using capacity scheduler with maximum of 4 concurrent 

applications in terms of number of applications and memory usage 

The FIFO scheduler with unlimited applications completed this scenario, on 

average 2153 seconds. This scheduling scheme can hurt smaller jobs and can 

cause starvation when a single, long job gets all resources as seen in Figure 6. 
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Figure 6 

Evaluation of scenario 1 on YARN using FIFO scheduler with unlimited applications configuration in 

terms of number of applications and memory usage 

 

Figure 7 

Evaluation of scenario 1 on YARN a maximumir scheduler with maximum of 10 concurrent 

applications in terms of number of applications and memory usage 

Comparing the DRF implementation of Mesos to YARN’s, YARN was able to 

perform much better and achieved a high utilization by allocating 100% of the 

available cluster resources for a long period of time, as shown on Figure 7. With 

the use of reserved amounts by the scheduler, containers were allocated and ran 

much faster achieving a higher utilization, than the capacity scheduler. Mesos, on 

the other hand, was not able to utilize all cluster resources. For a long time, the 

resource manager reported 4 CPUs and 6.1 GB memory idle, but the fine-grained, 

rapid tasks of Spark were utilizing the 4 CPUs as seen in Figure 8. Spark was set 

up in fine-grained mode in the first place, which means a separate Mesos task was 

launched for each Spark task. This allows frameworks to share cluster resources in 

a very fine granularity, but it comes with an additional overhead for managing 

task lifespans in a rapid rate. Focusing on the number of cores in the fine- and 

coarse-grained setup this behavior seems clear, as the fast task allocation pattern 

appears on the plot in the fine-grained case. A noticeable difference shows in the 

memory allocation pattern of different task-resolutions as (Spark) tasks with a 

lifespan measured in milliseconds allocated containers with <1 CPU, 128 MB> 

resource vectors instead of <1 CPU, 512 MB> or <1 CPU, 768 MB> as in the 

coarse-grained mode. In certain circumstances, it might be a good practice to 
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place and force very fast tasks of different fine-grained setup frameworks next to 

memory-intensive jobs to improve utilization and fairness with Dominant 

Resource Fairness. 

The map-reduce jobs were managed by a single JobTracker and Spark jobs 

were submitted by multiple Spark clients. By increasing the number of Spark 

clients, the utilization improved. Figure 8 shows the utilization best achieved 

while 6 Spark frameworks were active. 

 

Figure 8 

Evaluation of scenario 1 on Mesos using coarse- and fine-grained setup with fair scheduler and 

unlimited tasks configuration in terms of number of applications, virtual core and memory usage 

In this scenario, multiple issues were found with Mesos. On some runs, an average 

of 24 TaskTrackers were lost and some of them were stuck in staging status, 

never reached running state. Also, one or two slaves were tended to disconnect 

from the master and froze in the first minutes of this scenario. The recorded and 

aggregated results were used, when Mesos did not lose a task. 

The following table shows a summary of the results experienced from scenario 1. 
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Table 2 

Summary of runtimes and average utilization experienced in scenario 1 

Case Runtime Average 

utilization 

(CPU) 

Average 

utilization 

(memory) 

YARN, fair scheduler, unlimited infinite 100% 100% 

YARN, capacity scheduler, 4 2168 s 82.35% 89.87% 

YARN, FIFO scheduler, unlimited 2153 s 83.27% 92.71% 

YARN, fair scheduler, 10 2132 s 86.27% 92.90% 

Mesos fine, fair scheduler, unlimited 3604 s 83.96% 78.46% 

Mesos coarse, fair scheduler, 

unlimited 

2256 s 90.81% 89.25% 

The Spark implementation in fine-grained mode using Mesos spanned close to 

20000 tasks in this scenario, it has put a strain worth mentioning on the master to 

schedule resources. While YARN performed about 1.7 times better than Mesos 

(with fine setup) with a relaxed (unlimited applications or tasks) DRF setting, due 

to the lightweight nature of Mesos it handled fine-grained tasks better as a first 

level scheduler. It has become clear that Mesos is more reliable and more suited 

for running large amounts of frameworks and tasks-per-framework with very fine-

grained tasks. 

4.3 Micro-Job Performance (Scenario 2) 

In scenario 2, we’ve prepared a script, which submitted 4 micro-applications or 

jobs if you will, 2 map-reduce and 2 Spark job in each 10
th

 second for 30 times. A 

total of 120 jobs reached the cluster. Our goal were to evaluate how fast short jobs 

can enter and leave the cluster on both systems and to see if there’s any chance of 

overwhelming the slaves by increasing parallelism overhead to an undesirable 

level. 

It has been shown in the demonstration of Mesos running a long batch job, 

TaskTrackers have a high startup overhead so our expectations were met 

about the difficulties these cases would produce. A standby TaskTracker might 

provide significant benefit regarding task start-ups, but it would also introduce 

data-locality problems, since a data might not be available where our TaskTracker 

has been deployed. Designing heuristics to keep TaskTrackers wisely on certain 

nodes, suggested by workload statistics, would not solve all of our problems on a 

long term. As seen on Figure 9 YARN performed very well, by not letting 

pending tasks to reach 3 as applications were able to finish in a fast rate and were 

not interrupted by and overcrowded cluster. Applications were completed linearly 

with time and on average roughly 10 were running concurrently. In case of Mesos, 

as seen on the curve of staging tasks, in the first 60 seconds every Spark job 

entered the system were able to run and complete without unnecessary staging.   
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In the first 100 seconds only TaskTrackers were staging for a longer period of 

time, which meant that because of their startup time, those rapid map-reduce jobs 

arriving in every 10 seconds were not reached running status fast enough. Due to 

the fact that map-reduce programs were spawning on TaskTrackers, 

unnecessary parallelism appeared on slaves and about 20 map-reduce jobs were 

running concurrently along with the Spark jobs on the cluster. 

 

Figure 9 

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair 

scheduler in terms of number of tasks and application 

On the memory footprint produced by tasks running on Mesos as shown in Figure 

10, the TaskTrackers crowding the cluster are visible on the 30
th

 to 110
th

 

second interval. After that point a few of them were broken down to be able to 

offer resources to Spark programs. YARN, in contrast, kept resource consumption 

constant as applications were not able to encumber the cluster. 

The container reservations used by YARN’s fair scheduler helps applications to 

receive and utilize containers faster than the resource offer approach introduced by 

Mesos. Mesos completed this scenario in 328 seconds, while YARN in 297 

seconds. Again, issues were found, but this time with the JobTracker (Hadoop 

v1): in some cases map-reduce jobs were stuck and never reached running state on 

TaskTrackers. 

 

Figure 10 

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair 

scheduler in terms of memory consumption 
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4.4 Micro-Job Interruptions (Scenario 3) 

To evaluate the problems related to granting fairness and job interruptions, we’ve 

prepared a scenario, where micro Spark programs were submitted on a long 

running map-reduce batch job. After the submission of the same long job, that was 

previously evaluated, for every 100 seconds a Spark CPU-heavy program was 

submitted, nine times longer overall. 

Interrupting the map-reduce job’s execution with micro Spark jobs on Mesos 

added, on average 9 seconds to the overall completion time, which became 1138 

seconds. Recall the results of the same long job performance of YARN and Mesos 

from Figure 1 and Figure 2. On YARN, the same scenario stretched the 

completion time of the map-reduce batch job, from 1061 to 1092 seconds. 

On Mesos, 1 CPU was available with 1 GB RAM and the Spark client was able to 

initiate a start on a free container, where it completed in 48 seconds on average. 

Since YARN were utilizing all cluster resources during the execution of the map-

reduce job most of the time, the Spark programs needed to wait on average 13.3 

seconds to be able to progress to running state from pending state. Theoretically, 

every 2.6 seconds, a mapper finish (from the length map phase and number of 

maps) and its resources <1 CPU, 1 GB> frees up. On average, 3 containers were 

reserved by the MRAppMaster and the Spark job needs 2 containers (including 

the application master) to be able to run. When the Spark job reached the pending 

state, on average, 5 containers needed to free up, to be able to reach running state, 

which is roughly 13 seconds. 

 
Figure 11 

Evaluation of scenario 3 on Mesos (unlimited tasks) and YARN (unlimited applications) using fair 

scheduler in terms of number of tasks, application and memory usage 
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As seen in Figure 11, the same Spark job on YARN needed more time to start, 

mainly because the application master is necessary to be placed on a free 

container, which set back and slowed subsequent pending mappers. Utilization of 

YARN still proved to be better than in the case of Mesos. 

Conclusions 

Cluster management systems are the backbone of any Big Data analytical toolsets 

that are used by an Enterprise, their performance is determined significantly, by 

their design and greatly affects energy consumption for a data center. Evolution of 

Hadoop had the greatest impact in the motivation, concept and birth of these 

systems. We focused on the main two-level, open-source schedulers available, 

YARN and Mesos. 

YARN is perfect for ad-hoc application deployment, as it ships the application to 

the requested node by carefully setting up the process in all cases. YARN has been 

made for an environment with higher security demands, as it protects the cluster 

from malicious clients and code in many cases. The differences in resource 

allocation methods showed that the push-method used by Mesos might hinder 

utilization and locality preferences in some cases, but proved to be faster than 

YARN’s, which provides agility by using late-binding in opposite fashion. 

Applications running on YARN have the benefit of making better second-level 

scheduling decisions, because they have a global view of the cluster, whereas a 

framework have sight of only a subset of the cluster on Mesos. In a consequence 

of the resource allocation method, YARN supports preemption to prevent 

starvation. Restricted visibility of cluster resources might lead to losing work and 

resource hoarding used by Mesos can lead to a deadlock within the system. Mesos 

predicts outcomes to make quick scheduling decisions. 

The functionality of YARN proved to be richer by providing convenient services 

for applications, but also supports more scheduling methods and algorithms. 

Capacity schedulers can work effectively when the workloads are well known. 

Fair scheduler introduces several problems with head-of-line jobs, but Delay 

scheduling addresses them and improves locality. HaSTE is a good alternative on 

YARN, when the goal is to minimize makespan in the cluster. 

Regarding system parameters, the API provided by Mesos is more detailed and 

precise, but YARN gives a finer grained snapshot as each job runs as a separate 

application. Mesos does not know the job granularity of a connected framework, 

which can cause several problems. Deployment of YARN is usually more 

convenient, due to the higher level and more comprehensive interfaces available. 

It works more like an out-of-box product. During the evaluations, several issues 

were found with Mesos regarding permissions and node failures. 

YARN has a wider and more diverse analytical toolset (frameworks) available 

than Mesos, but a practical decision between these platforms might include special 

requirements. The mainstream frameworks are mostly available on both systems. 
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As single job performance evaluations show, executors are difficult to set up the 

first time and can mean a slow response from frameworks like Hadoop 

MapReduce. YARN deploys mappers and reducers, much faster on the designated 

nodes and can provide better locality, also, this task-granularity provides better 

elasticity along with a faster execution. As TaskTrackers are expensive to deploy 

and they are long running, killing them to provide fairness is usually a significant 

drawback. Cached or standby TaskTrackers might provide significant 

improvements in task start-ups, but it would introduce other problems, for 

instance, a hindered data locality. Single job benchmarks also showed, that map-

reduce jobs on Mesos run longer and consume more resources, which directly 

affects money spent in a cloud environment. YARN is 1.06 (in case of short map-

reduce) and 1.33 (in case of long map-reduce) times faster than Mesos, but Mesos 

runs a micro-Spark job 1.28 times faster than YARN. It must be taken to account 

that YARN has to deploy the submitted application each time, while the 

framework’s master runs separately on Mesos. 

Multiple scenarios showed that the “concurrent application limit” is crucial for 

performance after a certain threshold on YARN. Using preemption, YARN 

performed about 1.7 times better than Mesos with the fine-grained setup, but 

Mesos handles large amounts of tasks better as a first level scheduler. Mesos is 

more reliable and more suited for running large amounts of fine-grained tasks. 

With the same setup, YARN provides a 1.05 times faster execution and 4.54% 

less CPU consumption. It is evident that the container reservations, used by 

YARN’s fair scheduler, can utilize and provide containers to applications faster 

than the resource offer approach introduced by Mesos. Other scenarios showed 

that overall utilization on a YARN cluster is better, along with a 1.10 times faster 

execution. 
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