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Abstract: Large spacecrafts undertaking long-life mission greatly suffer from the nonlinear
fuel slosh when altering the orbit or maneuvering, which leads to the downgrade on the per-
formance and even stability of the body attitude control by unintentionally generating the
huge disturbance thrust. In order to specifically address this solid-liquid coupling problem
for a kind of spacecrafts when altering orbit, a nonlinear control method based on Ten-
sor Product (TP) Model transformation is proposed to make a quick response control of the
translational velocity vector and the attitude of the spacecraft. Based on the derived poly-
topic system fromTP model transformation, the controller design can guarantee the robust
against the uncertainties and disturbances for all system sets within the bounds. The pro-
posed solution also offers an approximation tradeoff so that both the complexity of the TP
model and the controller design can be dramatically minimized. The simulationresults for
spacecrafts with practical specification verify that the design method can make the spacecraft
asymptotically stable and demonstrate the effectiveness of the proposed controller.

Keywords: Nonlinear control;TP model transformation; fuel slosh; high-order singular
value decomposition.

1 Introduction
With the booming technology, the large spacecraft is undertaking more and more
complicated applications with various kinds of higher requirements, which can be
characterized by more on-orbit tasks and longer on-orbit time. In order to prolong
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the lifetime of spacecraft and improve its stability, a large amount of liquid fuel
must be carried. Hence, it will cause the fuel sloshing when the spacecraft alters the
orbit or maneuvers with a partially full fuel tank. As a consequence, a disturbance
torque on the spacecraft is generated by the fuel slosh. Thissolid-liquid coupling
system presents the nonlinear and parameter time-varying characteristics. With the
continuous consumption of fuel, the torque caused by slosh and the centroid offset
could no longer be ignored for on-orbit tasks because the resultant huge jet thrust
has an enormous impact on the stability of the attitude control, especially when the
spacecraft alters its orbit. There are several typical failure experiences, which were
caused by the fuel slosh [1].

To analyze and overcome this problem, the modeling is first ofsignificance. The re-
search on the fuel slosh model has two branches. The first one is based on the three-
dimension models of various types [2, 3, 4, 5], and the second is focused on planar
models [6, 7, 8, 9, 10, 11, 12, 13]. As for both of these models, the common purpose
is to take place of the liquid by some masses. Thus, the dynamics can be described
in an easier way. In terms of masses stated above, it can be further categorized into
another two branches. For example, the slosh liquid is equivalent to a single pendu-
lum in [2, 3, 5, 6, 8], and the other is using the mass-spring in [7, 9, 10, 11, 12, 13].
The accuracy of both analytical approaches was experimentally evaluated to esti-
mate model parameters [15]. Currently, the problem regarding attitude maneuvers
was addressed using different methods, for example, dynamic inversion and input
shaping control method [2], various feedback control based on PID, linear quadratic
regulator (LQR) and linear quadratic Gaussian (LQG) method[6, 7, 8, 10, 15].
Besides, a mechanical model was built based on Computational Fluid Dynamics
(CFD) tools to estimate the propellant sloshing effect [11]. And a reduced-order
observer was used in the full-state feedback in [12] for the estimation of the slosh
states. The time-varying parameters were also considered in [13]. [16] presented a
computational methodology based on Legendre’s polynomials to predict the slosh
and acoustic motion in nearly incompressible fluids in both rigid and flexible struc-
tures with free surface. []However, most of these method mentioned above just
designed the parameters by rule of thumb so that it was difficult to provide the
best options. Besides, the computational efficiency is still a prominent issue due to
the real-time numerical solving for some methods. Althoughsome improvements
have been made for the complicated application, some methods still cannot afford
computational burdens for the spacecraft application because the spacecraft is sig-
nificantly constrained by the on-board computational resources. Therefore, it is still
desirable to develop a high efficient method in computational resources.

The tensor-product (TP) model transformation is an alternative way to solve the
optimized nonlinear control problem in view of the nonlinear model transforma-
tion [17, 18, 19, 20, 21], which is a numerical method and based on the high-
order singular value decomposition (HOSVD) [23, 24, 25]. Due to its universal
approximation property, the TP model transformation is widely applied upon the
original time varying nonlinear system. The resultant model is expressed in the
convex combination form of the linear time invariant (LTI) systems. With the
acquisition of the TP model, the subsequent linear controller design can be thus
transformed to a convex optimization problem so that it can be numerically solved
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based on a set of linear matrix inequalities (LMI). Since both the transformation
and optimization can be carried out off-line in advance, theTP model transfor-
mation method is therefore effective in alleviating the on-line computation [26].
On the other hand, the number of vertices and approximation error of TP model
transformation can be effectively adjusted by varying the number of retained sin-
gular values. Therefore, it can achieve a trade-off betweenapproximation accu-
racy and complexity [27], which has been already used in many nonlinear con-
trols [28, 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Hence, it is efficient
and easy to be implemented.

In this paper, the altering orbit and maneuvering in planar are taken into considera-
tion at the same time with the huge torque in zero gravity environment. A state feed-
back controller based on Tensor-product (TP) model transformation is proposed for
the control of the translational velocity vector and the attitude of the spacecraft. By
means of the TP model transformation, the nonlinear slosh system model is trans-
formed into thepolytopicsystem, which can be treated as a linear convex-bounded
uncertain system. Therefore, the nonlinear slosh control problem is accordingly
converted into linear matrix inequality (LMI) problem based on the quadratic Lya-
punov stability theory. The advantage of our solution is that the converted LMI
problem can be effectively solved by convex optimization methods. In addition,
the proposed controller design method is robust against theuncertainties and dis-
turbances since the controller keeps valid for all the system sets within the convex-
bounded system obtained by the TP model transformation.

The remaining part is organized as follows. In Section II, the mass-spring model is
described and simplified by the elimination of a mass from [15]. The detailed TP
model transformation for the nonlinear slosh system are formulated in section III.
Section IV further gives the state feedback controller design and the solution via
LMI. In Section V, the simulation example is presented to verify the effectiveness
of the proposed control. Finally, Section VI concludes the paper.

2 The Solid-liquid Model of Fuel Slosh for Spacecrafts
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Figure 1
The slosh mass-spring model for a spacecraft

The maneuvering control problem is under study for the spacecraft with single fuel
tank in a zero gravity environment during its altering orbit. By considering the
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movement of the spacecraft on a plane, the spacecraft can be physically described
as a mass-spring model to formulate the dynamics, which is indicated in Fig.1.

In the axisymmetric model of Fig.1, two coordinates ofOxz, OXZare established as
the bodyframe and orbit coordinate system, respectively, andθ denotes the attitude
angle between these two frames.vx,vz are the axial and transverse components of
the velocity of the center of the fuel tank. The tank with fuelis modeled by the
mass-spring, which has two components, i.e., the fixed and slosh parts. The fixed
part has the mass ofm0, whose moment of inertia isI0, and the sloshed part is with
the mass ofm1 joined to the tank by two springs, whose elastic coefficientsarek/2.
A restoring force−ks acts on the massm1 whenever the relative position to the
z-axis s 6= 0. The locationsh0 > 0,h > 0 are referenced to the center of the tank.
A thrust F is produced by a gimballed thrust engine as shown in Fig.1, whereδ
denotes the gimbal deflection angle and is considered as one of the control inputs.
A pitching momentM is also available for the control purpose. There are some other
constants in the problem statement such as the rigid spacecraft massm, the moment
of inertia I , the distanceb betweenz-axis of the body coordinate and the spacecraft
center of mass located along the longitudinal axis, the distanced from the gimbal
pivot to the spacecraft center of mass, and the damping coefficientc of the spring.

Based on the formulation in [10], the equations of motion can be obtained as

(m+mf )(v̇x+ θ̇vz)+mbθ̇ 2+m1(sθ̈ +2ṡθ̇) = F cosδ (1)

(m+mf )(v̇z− θ̇vx)+mbθ̈ +m1(s̈−sθ̇) = F sinδ (2)

Î θ̈ +m1[s(v̇x+ θ̇vz)−hs̈+2sṡθ̇ ]+mb(v̇z− θ̇vx) = M+F(b+d)sinδ (3)

m1(s̈+ v̇z− θ̇vx−hθ̈ −sθ̇ 2)+ks+cṡ= 0 (4)

where

Î = I + I0+mb2+m0h2
0+m1(h

2+s2),mf = m0+m1.

Because the thrusterF is quite large during altering orbit, it is reasonable to ignore
the fuel slosh dynamics alongx-axis such as the second order terms in (1). Be-
sides, it is further assumed that the axial acceleration term v̇x+ θ̇vz is insignificantly
changed since theθ andδ vary within a small range compared with the impact from
the thrusterF alongx-axis [10]. Consequently, the equation of (1) becomes,

v̇x+ θ̇vz =
F

m+mf

Let

[

u1

u2

]

= D−1

[

F sinδ −m1(s̈−sθ̇)
M+F(b+d)sinδ −m1[s( F

m+mf
)−hs̈+2sṡθ̇ ]

]

where

D =

[

m+mf mb
mb Î

]

– 66 –



Acta Polytechnica Hungarica Vol. 15, No. 3, 2018

By the transformation from(δ ,M) to two new control inputs(u1,u2), the system(1)-
(4) can be rewritten as,

v̇z = θ̇vx(t)+u1 (5)

θ̈ = u2 (6)

s̈=−ω2s−2ξ ω ṡ+sθ̇ 2−u1+hu2 (7)

whereω2 = k
m1

,2ξ ω = c
m1

, ω andξ denote the undamped natural frequencies and

damping ratios, respectively. Define the state variablexxx=
[

θ θ̇ s ṡ vz
]T

and
the whole system can be formulated by

xxx= fff (xxx, t)+bbb(xxx, t)uuu, (8)

where

fff (xxx, t) =













θ
0
ṡ

−ω2s−2ξ ω ṡ+sθ̇ 2

θ̇vx(t)













, and (9)

bbb(xxx, t) =













0 0
0 1
0 0
−1 h
1 0













With the model built above, the control objective is thus to design a nonlinear
controller to accomplish a given planar maneuver. The equilibrium statexxxeq =
[

θ eq 0 0 0 veq
z
]

andveq
x . Without loss of generality,veq

z = 0,θ eq= 0, so the
equilibrium point isxxx= xxxeq= 000,vx = veq

x .

3 TP Model Transformation for the Nonlinear Slosh
System of Spacecrafts

This section transforms the nonlinear slosh system of spacecrafts into thepolytopic
system by using TP model transformation, based on which the nonlinear slosh con-
trol problem can be converted into linear matrix inequality(LMI) problem.

Consider the dynamical system modeled in state-space form

ẋxx(t) = AAA(p(t))xxx(t)+BBB(p(t))uuu(t) (10)

whereuuu(t) ∈ R
l andxxx(t) ∈ R

m are the input and state vectors, respectively. The
system matrix isS(p(t)) =

[

AAA(p(t)) BBB(p(t))
]

∈ R
m×(m+l), wherep(t) ∈ R

N is
time varying in theN-dimension bounded spaceΩ ∈ R

N. Further, the parameter
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p(t) may include some or all elements ofxxx(t). Assume that there is a fixed polytope
satisfying

S(p(t)) ∈ {S1,S2, . . . ,SI}= {
I

∑
i=1

αiSi ,αi ≥ 0,
I

∑
i=1

αi = 1} (11)

where the systemsS1,S2, . . . ,SI are the vertex systems ofS(p(t)). When the values
αi are considered as the basis functionswi(p(t)),

S(p(t))≈
I

∑
i=1

wi(p(t))Si .

With the approximation ofS(p(t)) above, the dynamical system (10) takes the form

ẋxx(t) =
I

∑
i=1

wi(p(t))(AAAixxx(t)+BBBiuuu(t)) (12)

When the basis functions are decomposed for all dimensions toget a high order
approximate decomposition, the TP model takes the form as

S(p(t))≈
I1

∑
i1=1

I2

∑
i2=1

· · ·
IN

∑
iN=1

N

∏
n=1

wn,in(pn(t))Si1,i2,... iN =
(

S⊠
N
n=1wwwn(pn(t))

)

(13)

where the valuespn(t) are the elements ofp(t) and normalized as below

{

∀n, pn(t) :
In

∑
in=1

wn,in(pn(t)) = 1,∀i,n, pn(t) : wn,i(pn(t))≥ 0
}

.

Therefore, the system (10) can be transformed into

ẋxx(t)≈
(

S⊠
N
n=1wwwn(pn(t))

)









xxx(t)
uuu(t)









Accordingly, the remaining objective comes to how to solve the tensorS and the
vectorwwwn(pn(t)). Before the detailed demonstration of TP model transformation,
various types of TP model will be discussed at first in the following subsection.

3.1 The Consideration of TP Model Types

The TP model for a given system is highly dependent on the construction of the
weighting matrices regardless of the permutation of the vertices and the weighting
functions. If satisfying the sum normalization (SN) and non-negative (NN) condi-
tions, which ensure the convexity and are the necessities tothe LMI-based methods,
the TP model can be classified into the Normal (NO) type, closeto the NO (CNO)
type, the Inverted and Relaxed Normal (IRNO) type, and so on [22].
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The feasibility of the LMIs solution is verified to be very sensitive to the structure
of the TP model. It is obvious that the NO type is the most idealcandidate since it
is as exact as the tight convex hull of the sampled system. However, it is impractical
to obtain a strict NO result in the case of the limited number of the vertices. To ad-
dress this issue, it is desirable to obtain a TP model in CNO type. However, the CNO
variant of the TP model is again not unique and different CNO variants suffer from
various degrees of conservativeness. Furthermore, in the case of INO-RNO type,
it is guaranteed that the resultant vertex systems contributing in the convex combi-
nation have equal distance to the system matrixS(p(t)) in spaceΩΩΩ. Actually, the
optimization for various types and their proper selection are still under discussion
specific to different applications.

This paper focuses on the application of TP model transformation into the practi-
cal aerospace control system, which features in the nonlinear characteristics. The
optimization for one certain TP model types is not the main focus. Therefore, the
INO-RNO type is applied in this paper to carry out the TP modeltransformation
due to its feasibility.

3.2 The Implementation of TP Model Transformation

By using the INO-RNO type TP model representation [22, 42], the polytopic ap-
proximation can be calculated in the following steps. Assume the parameterp(t)
varies within the bounded spaceΩΩΩ = [a1 b1]× [a2 b2]×·· ·× [aN bN]⊂ R

N.

Step 1) Sampling the given functions over a hyper rectangular grid.

Define grid lines overΩ on each vectors to get an N dimensional hyper rectangular
grid. A simplest way is to set the lines evenly spaced,gn,mn = an +

bn−an
Mn−1 (mn −

1),mn = 1,2, . . . ,Mn. Then, calculate the system matrixS(p(t)) using the values
sampled over the grid pointsSD

m1,m2,...,mn
= S(pm1,m2,...,mn) ∈ R

m×(m+l). where
pm1,m2,...,mn = (g1,m1,g2,m2, . . . ,gN,mN), and∀n : mn = 1,2, . . . ,Mn. Next, using the
tensorS D ∈R

M1×M2×···×MN×m×(m+l) to store the sampled value,(S D)m1,m2,...,mn =
SD

m1,m2,...,mn
.

Step 2) Computing the vertex systems matrices.

The HOSVD is executed to decomposeS as

S
D = S⊠

N
n=1Un. (14)

After the decomposition, the tensorsS ∈ R
I1×I2×···×IN ,Un ∈ R

Mn×In and
In = rankn(S

D) ≤ Mn, because of the ignorance of zero singular values. All the
vertex systemsSm1,m2,...,mn can be obtained by using the processing according to the
equation (13).

Step 3) Basis system normalization.

NormalizeUn to Un for satisfying the following conditions, which is described by

∑(Un) = 1Jn,

un, jn,kn ≥ 0,
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where 1Jn is Jn dimensional column vector with all entries being 1.

Step 4) Basis function.

The values of the basis functions sampled over the grid points can be obtained by
comparing the equations of (13) and (14)

wn,in(gn,mn) = (Un)mn,in (15)

So far, the TP model transformation is completed.wn,in(gn,mn) is used to approx-
imate thewn,in(pn(t)) over each subsection so that the bilinear approximation of
S(p(t))is achieved.

4 Slosh Controller Design
Based on the TP model transformation for the nonlinear sloshsystem, this section
presents the corresponding controller design.

Lemma 1. If a common matrixP> 0 exists for all vertex systems with the condition

AAAT
r P+PAAAr < 0, r = 1,2, . . . ,R. (16)

Then, the equilibrium of TP model is globally and asymptotically stable.

Theorem 1. Consider the nonlinear system(8) and its polytopic approximation
(12), if there exist matrix XXX > 0 and matrices MMMrrr , r = 1,2, . . . ,R solving the follow-
ing linear matrix inequalities:

−XXXAAAT
r −AAArXXX+MMMT

r BBBT
r +BBBrMMMr > 0, r = 1,2, . . . ,R (17)

−XXXAAAT
r −AAArXXX−XXXAAAT

s −AAAsXXX+MMMT
s BBBT

r +BBBrMMMs+MMMT
r BBBT

s +BBBsMMMr ≥ 0,1≤ r < s≤ R

(18)

then the continuous system is globally and asymptotically stable at the equilibrium
by using the control input:

uuu(t) =−

(

R

∑
r=1

wr(p(t))FFF r

)

xxx(t), (19)

where FFF r = MMMrXXX−1.

Proof:

By considering (19), (12) can be rewritten as

ẋxx(t) =
R

∑
r=1

R

∑
s=1

wr(p(t))ws(p(t))(AAAr −BBBrFFFs)xxx(t). (20)

With the assistance of defining a new matrixGGGr,s=AAAr −BBBrFFFs, in order to satisfy the
condition ofLemma 1, there must haveGGGT

r,sP+PGGGr,s< 0, r,s= 1,2, . . . ,R. However,
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this is a sufficient but not necessary condition. By the dedicated consideration of the
control and calculation time, (20) can be divided into two components

ẋxx(t) =
R

∑
r=1

wr(p(t))wr(p(t))GGGr,rxxx(t)+
R

∑
r=1

R

∑
s=r+1

wr(p(t))ws(p(t))(GGGr,s+GGGs,r)xxx(t).

The continuous system is globally and asymptotically stable in the large at the equi-
librium if both parts satisfyLemma 1. That is

GGGT
r,rP+PGGGr,r < 0, (21)

and

(GGGr,s+GGGs,r)
TP+P(GGGr,s+GGGs,r)< 0, (22)

wherer = 1,2, . . . ,Randr < s≤ R.

Hence,FFF r needs to be further determined to satisfy the condition ofLemma 1re-
garding a common positive-definite matrixP.

Define two new variablesXXX = P−1 > 0 andMMMr = FFF rXXX, and then multiply the in-
equalities of (21) and (22) on the left-hand side byXXX, we can get

−XXXAAAT
r −AAArXXX+MMMT

r BBBT
r +BBBrMMMr > 0, (23)

−XXXAAAT
r −AAArXXX−XXXAAAT

s −AAAsXXX+MMMT
s BBBT

r +BBBrMMMs+MMMT
r BBBT

s +BBBsMMMr ≥ 0. (24)

By means of the transformation fromequations(21)-(22) to equations(23)-(24), the
design is turned into an LMI problem,any other details could be found in [43]. The
conditions are jointly convex inXXX andMMMrrr . Therefore, the positive-defined matrixXXX
andMMMrrr needs to be found in order to satisfy the conditions. Numerically, the com-
putation of this problem can be efficiently solved by many available mathematical
tools.

Remark.The main objective of this proposed control is to extend the practical appli-
cation of TP model transformation into fuel slosh problem ofspacecraft. Therefore,
the simple model in [10] was applied. Although its polytopic model can be derived
easily, the corresponding TP model transformation has moregeneral application in
practice. The design demonstrates the application of TP model transformation. It is
also effective for the model more complex, e.g., multi-massspring, which gives a
higher accurate model information.

5 Verification with Numerical Simulation
The physical parameters of the spacecraft with fuel slosh used in this part are given
in Table1.
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Table 1
Physical Parameters

Parameter Value Parameter Value
m 300kg F 1200N
m0 50kg b 0.6m
m1 20kg d 0.4m
h0 0.1m h 0.15m
k 72N/m c 8N ·m
I 500kg·m2 I0 7.5N ·m2

And fff (xxx, t) in (8) can be rewritten asfff (xxx, t) = AAA(xxx, t)xxx, where

AAA(xxx,vx(t)) =













0 1 0 0 0
0 s −θ̇ 0 0
0 0 0 1 0
0 sθ̇ −ω2 −2ξ ω 0
0 vx(t) 0 0 0













.

So the system (8) becomes

ẋxx(t) = AAA(xxx,vx(t))xxx(t)+BBBxxx(t). (25)

Compared to the equationof (10), it is a special case with the constant matrixBBB.
A simplified system matrix is chosen so as to reduce the computational burden by
S(p(t)) = AAA(xxx,vx(t)), wherep(t) = x2,x3,vx(t).

As theAAA(xxx,vx(t)) is a state-dependent matrix, this form won’t be accompaniedby
an unique solution and there are many matrices matching the equation of (25). How-
ever, the selection ofAAA(xxx, t) will affect the controlled results and the computation
complexity. Here, the value ofAAA(xxx, t) depends on three states, i.e.,θ̇ , sandvx(t).

As described in Section III, the first step is undertaken to sample the states above
over a hyper rectangular grid. Here, give a rectangular gridin experience via many
simulations.

si =−1+0.15i, i = 1,2, . . . ,13.

vvvx, j = 10+20j, j = 1,2, . . . ,20.

θ̇θθ k =−2.2+0.2k, k= 1,2, . . . ,22.

It turns out that the ranks of all the three dimensions are 2. Thus, by removing all the
zero singular values in the step 2 of the TP model transformation, 8 vertex systems
are remained,

AAA1 =













0 1 0 0 0
0 −1 2.2 0 0
0 0 0 1 0
0 2.2 −1.8 −0.2 0
0 10 0 0 0













, AAA2 =













0 1 0 0 0
0 −1 2.2 0 0
0 0 0 1 0
0 2.2 −1.8 −0.2 0
0 390 0 0 0













,
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AAA3 =













0 1 0 0 0
0 0.95 −2.2 0 0
0 0 0 1 0
0 2.09 −1.8 −0.2 0
0 390 0 0 0













, AAA4 =













0 1 0 0 0
0 0.95 −2.2 0 0
0 0 0 1 0
0 2.09 −1.8 −0.2 0
0 10 0 0 0













,

AAA5 =













0 1 0 0 0
0 −1 −2.2 0 0
0 0 0 1 0
0 −2.2 −1.8 −0.2 0
0 10 0 0 0













, AAA6 =













0 1 0 0 0
0 −1 −2.2 0 0
0 0 0 1 0
0 −2.2 −1.8 −0.2 0
0 390 0 0 0













,

AAA7 =













0 1 0 0 0
0 0.95 2.2 0 0
0 0 0 1 0
0 −2.09 −1.8 −0.2 0
0 390 0 0 0













, AAA8 =













0 1 0 0 0
0 0.95 2.2 0 0
0 0 0 1 0
0 −2.09 −1.8 −0.2 0
0 10 0 0 0













,

BBB1−8 = BBB.

The coefficient functionswr in equation (19) can be obtained by step 4 with 3 com-
ponents (wr =wswvxwθ̇ ) as follows.AndFFF r =MMMrXXX−1 can be accordingly computed
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Figure 2
Three components ofwr .
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by equations (23)-(24).

FFF1 =

[

0.0394 22.7069 −0.7180 0.3030 0.2137
0.1244 2.5719 4.4376 2.0346 −1.1604

]

,

FFF2 =

[

0.0324 −4.9377 −2.9289 −0.6519 1.4266
0.1129 0.7964 −3.9113 −0.4062 1.2638

]

,

FFF3 =

[

0.1002 406.0724 4.2298 14.7410 1.7203
0.2299 10.7266 15.7007 34.8356 2.1560

]

,

FFF4 =

[

0.0933 378.4343 2.0207 13.7864 2.9328
0.2184 8.9377 7.3511 32.3958 4.5811

]

,

FFF5 =

[

0.0389 23.5300 −0.7281 0.1577 0.1643
0.1234 4.4683 4.4233 1.7040 −1.2780

]

,

FFF6 =

[

0.0333 −4.0324 −2.8251 −0.4707 1.4099
0.1143 2.8825 −3.6701 0.0050 1.2209

]

,

FFF7 =

[

0.0997 406.9042 4.2245 14.5948 1.6669
0.2290 12.6282 15.6873 34.5060 2.0383

]

,

FFF8 =

[

0.0940 379.2346 2.1306 13.9589 2.9087
0.2196 11.0320 7.5916 32.7891 4.5341

]

.

By considering the influence of fuel burn into the parameters, the simulation time is
chosen as 100 s and the altering thrust is stopped at 80 s. During this time slot, it is
assumed that the fuel massm0 andm1 are constant. Time responses shown in Fig.3
to Fig. 5 correspond to the initial conditions ofθ0 = 0.55rad, θ̇0 = 0, s0 = 0.1m,
ṡ0 = 0, vz0 = 20m/s. It can be seen from Fig.3 and Fig.4, the transverse velocity
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Figure 3
Time response ofθ ,vz andvx.vz, the attitude angleθ , the slosh states converge to the relative equilibrium at zero
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Time response of slosh states.
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Figure 5
The inputs gimbal deflection angleδ and pitching momentM.

andvx increases as an uniformly accelerated motion. During the orbital transfer, the
controller can stabilize the spacecraft within a time as short as 15 seconds.

Furthermore, a nonlinear direct feedback controller is developed for the comparison
in performance such as the response time and overshot, the details of which were
summarized and can be referred in [8, 9, 10]. The corresponding direct feedback
controller is designed as follows.

u1 =−2000
[

5×10−5vz−0.002(s−hθ̇)
]

,

u2 =−
1

10−0.002h2

[

80θ +1000θ̇ +5×10−5vxvz+

0.002(hsω2+hṡξ +sṡθ̇ −hθ̇ 2s)
]

.

(26)

The objective of the slosh controller is to alleviate the impact from the fuel slosh dy-

– 75 –



Hengheng Gong et al. Tensor Product Model-Based Control for Spacecraft with Fuel Slosh Dynamics

Time(s)
0 10 20 30 40 50 60 70 80 90 100

v z(m
/s

)
-20

0

20

Time(s)
0 10 20 30 40 50 60 70 80 90 100

θ
(r

ad
)

-1

0

1

Time(s)
0 10 20 30 40 50 60 70 80 90 100

s(
m

)

-0.5

0

0.5

 FeedBack
TP

Figure 6
The comparison between the direct feedback and TP controller, where the red dashed curve is

corresponding to the direct feedback control and the blue solid one is for the TP control.

namics. Therefore, the response time (convergence) and overshot is of emphasis, the
former of which determines how fast the controller eliminates the slosh dynamics.
Besides, a slighter overshot (a relative deviation alongz-axis) reflects the gradual
mitigation by the controller although the fast response is always accompanied with
the smaller overshot. The performance is plotted and compared in Fig.6, which
show that the states (a relative deviation alongz-axis) gets convergent within 10
seconds and its corresponding overshot is also smaller thanthe direct feedback con-
trol. Therefore, the proposed TP model-based control can achieve a faster response
in convergence and slighter overshot so that the slosh dynamics can be effectively
alleviated.

Conclusions

The paper proposes a numerical TP model transformation for space vehicles with
fuel slosh. A state-dependent differential equation is firstly developed from the
mass-spring model in zero gravity environment, which is transformed into thepoly-
topic system and regarded as LMI problem. The advantage of our solution is that
the converted LMI problem can be thus effectively solved by convex optimization
methods. Based on the derivedconvex-bounded system, the controller design can
always guaranteethe robustness againstthe uncertainties and disturbances for all
system sets within the bounds. Besides, this controller design is thus insuscep-
tible to the time-varying parameters and coefficients seldom needs to be specially
designed. Furthermore, the proposed TP model transformation offers an approxima-
tion tradeoff so that both the complexity of the TP model and the controller design
can be dramatically minimized.
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