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Abstract: This paper presents a study on predicting academically at-risk engineering 

students at the early stage of their education. For this purpose, some soft computing tools 

namely support vectors machines and artificial neural networks have been employed. The 

study population included all students enrolled in Pamukkale University, Faculty of 

Engineering at 2008-2009 and 2009-2010 academic years as freshmen. The data are 

retrieved from various institutions and questionnaires conducted on the students. Each 

input data point is of 38-dimension, which includes demographic and academic 

information about the students, while the output based on the first-year GPA of the students 

falls into either at-risk or not. The results of the study have shown that either support vector 

machine or artificial neural network methods can be used to predict first-year performance 

of a student in a priori manner. Thus, a proper course load and graduation schedule can be 

transcribed for the student to manage their graduation in a way that potential dropout risks 

are reduced. Moreover, an input sensitivity analysis has been conducted to determine the 

importance of each input used in the study. 

Keywords: at-risk students; least-square support vector classification; radial basis 

functions neural network; support vector classification 

1 Introduction 

There have been many new universities established in Turkey in recent years. As a 

result, the number of students studying at Turkish universities is increasing, which 

allows students with diverse backgrounds attend the same classes. Many students 

are failing in their studies, as a result of having different learning levels. 

Engineering students, especially those without a sufficient background in math 

and science, are more likely to fail in courses [1] [2]. 

Some of the students cannot manage to graduate within the expected period, 

which leads to economical losses for both the family and the public. These losses 
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can be greatly reduced by taking necessary social and academic predictive 

measurements, if academically at-risk students can be identified in advance. 

There are many studies on predicting the success of university students and the 

factors influencing their success. Some of this research has focused on the reasons 

for early withdrawal. For instance, Tinto [3] has observed that 73% of the 

withdrawals occur within the first two years. In addition, McGrath and Braunstein 

[4] have found that low grade point average (GPA) at the first year is the major 

factor causing the early withdrawal. Some scientific research revealed that one of 

the major factors assisting to predict the success of students is their first-year 

GPAs and that there is a direct correlation between the first-year GPAs and 

graduating successfully in time [4] [5]. 

Apart from these findings, it has been found that half of the engineering students 

in the United States withdraw within the first two years [6]. In Australia, it has 

been reported that only 20% of the students in Queensland University of 

Technology have managed to graduate within four years [7]. In addition, more 

than 25% of the students in Australia consider withdrawing seriously within the 

early years of their study [8]. Researchers have revealed that there is a strong 

relationship between the first year academic success and the continuation of a 

university education [5]. Therefore, it is of great importance to predict the first 

year success of students. 

There have been numerous researchers investigating the factors that have 

influence the success of students. These studies can be divided into three groups, 

namely, 

(i) Academic background of students [5] [9] [10] [11] 

(ii) Social, economic, and educational levels of students’ families [9] [12]  

(iii) Physiological and individual properties of students [13] [14] [15] [16].  

In the literature, there have been many research papers attempting to predict the 

GPAs of students by using data mining and Soft Computing (SC). For instance, in 

the study by Affendey et al. [17], the influencing factors contributing to the 

academic performance of the students have been ranked using the Bayesian 

Approach, Radial Basis Function Neural Networks (RBFNN). On the other hand, 

Vandamme et al. [18] have divided the students into three groups and then 

predicted the academic success of the students by using different methods such as 

discriminant analysis, neural networks, random forests, and decision trees. In 

another application, Oladokun et al. [19] have developed an artificial neural 

network model to predict the performance of the students who are entering 

universities through the National University Admission Examination in Nigeria. 

The model was able to correctly predict the performance of more than 70% of 

prospective students. Also, Huang [20] has used multiple regression and SC 

methods to obtain a validated set of mathematical models in order to predict 

academic performances of students in Engineering Dynamics Courses. 
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In this study, SC methodologies have been employed to predict the first-year 

engineering students who fall into an at-risk group. The at-risk is defined as the 

students who have a GPA less than 2.00 (out of 4.00). Therefore, it is important to 

predict first-year GPA’s of the newly enrolled students. It has been known that 

academic performances of students can be improved through academic and other 

consultancy assistance by predicting their performances as early and accurate as 

possible [21] [22] [23]. 

Support Vector Classification (SVC) approaches are based on the Structural Risk 

Minimization and Statistical Learning Theory and handle the classification 

problem by converting it into either a quadratic programming problem in the 

conventional SVC case or a set of linear equations in the Least-Squares SVC case, 

respectively. The idea behind the use of SVC approaches in the prediction of the 

academic performances of the first-year university students is the fact that SVC 

models are simple to obtain and that they have higher generalization potential. The 

rest of this paper is organized as follows: In Section 2 the prediction problem is 

defined in detail, Section 3 describes the SC methods used herein, Section 4 

outlines the Input-Sensitivity Analysis, Section 5 explains the obtained results and 

finally, the paper ends with the conclusions. 

2 Problem Definition 

This research was conducted among the students who have enrolled in the Faculty 

of Engineering at Pamukkale University, a public university in Denizli, which is 

located in the southwest part of Turkey. To determine the academically at-risk 

students, we have used Machine Learning methods based on the data containing 

information about the students who enrolled in Pamukkale University Faculty of 

Engineering departments in academic years 2008-2009 and 2009-2010. The data 

are retrieved from Pamukkale University Students’ Registry (PUSR) and Turkish 

Students Selection and Placements Centre (SSPC), which is responsible for the 

execution of University Entrance Exam (UEE). 

Data about the academic background of students comprise the following: type of 

high school graduated, high school GPA, individual scores obtained from each or 

combined subject at the UEE, and numbers of correct and wrong answers given in 

each or combined subject at the UEE. Demographic data include gender, age, and 

the department of students, their parents’ educational and socio-economic levels, 

their hometown distance to Pamukkale University, and their willingness of 

working part-time at the university. A total of 38 different types of data were 

considered for the 1050 Faculty of Engineering students, who enrolled in 

academic years 2008-2009 and 2009-2010 and are tabulated in Table 1 given here 

in the appendix. 
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Table 1 

Data Retrieved from Pusr and SSPC 

1. Gender 

2. Year of birth 

3. Department 

4. Day/evening studies 

5. Type of high school 

6. High school graduation year 

7. High school GPA 

8. Distance of hometown to university 

9. Mother alive/dead 

10. Father alive/dead 

11. Mother and father living together 

12. Total number of siblings 

13. Number of siblings studying at university 

14. Father’s education 

15. Socio-economical level of the family* 

16. Mother’s education 

17. Willing to work at the university 

18. Attended to English preparatory school in university 

19. High school graduation rank 

20. Verbal score of the high school 

21. Quantitative score of the high school 

22. Equally weighted score of the high school 

23. Number of correct answers in Math-1 test of the UEE 

24. Number of correct answers in Science-1 test of the UEE 

25. Number of correct answers in Math-2 test of the UEE 

26. Number of correct answers in Science-2 test of the UEE 

27. Number of false answers in Math-1 test of the UEE 

28. Number of false answers in Science-1 test of the UEE 

29. Number of false answers in Math-2 test of the UEE 

30. Number of false answers in Science-2 test of the UEE 

31. Quantitative-1 score of the UEE 

32. Verbal-1 score of the UEE 

33. Equally weighted-1 score of the UEE 

34. Quantitative-2 score of the UEE 

35. Equally weighted-2 score of the UEE 

36. Physics test score of the UEE 

37. Number of correct answers to complex numbers, logarithms, and trigonometry 

questions in the Math-2 test of the UEE 

38. Number of correct answers to limit, derivatives, and integral questions in the Math-

2 test of the UEE 

39. University first year GPA 
* Socio-economic levels of the families have been calculated as a combination of ten different data 

about students and their families collected by PUSR at the registration. 

It should be noted that some of the data are in binary form (e.g., gender), some of 

them are integers (e.g., total number of siblings), and the remaining are real 

numbers (e.g., high school GPA). No matter what the forms of the answers are, 

they all have been normalized into the interval [0, 1] in this study. Therefore, 1050 
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normalized data points of 39 dimensions have been used to obtain proper 

prediction models. The first 38 rows of Table 1 are taken as inputs for the 

prediction models, while the output falls into either at-risk or not, based on the 

first-year GPA of the students taken from row 39 of Table 1. 

3 Soft Computing Methods (SC) 

For all of the SC tools employed in this study, it is assumed that the data set D  is 

collected for obtaining optimal model and has the form given below: 

Nk
kkk y 
 1};{xD  (1) 

where n
k Rx  is n-dimensional k

th
 input vector, }1,1{ ky  is the 

corresponding binary output, and N is the total number of data, which is N = 1050 

for this work. It is desired to find a model that represents the relationship between 

the input and output data points. Each SC tool used to obtain a proper model has 

its own modeling parameters, and different modeling parameters result in different 

models. Therefore, it is inevitable to search for the optimal modeling parameters 

in the parameter space. For this purpose, D is randomly divided into three parts: 

600 for training, 200 for validation, and 250 for testing. Then, in order to find the 

best model for each SC tool, a grid search approach is adopted. In this approach, 

the modeling parameter space is divided by grids, and for each node 

(corresponding to specific parameter values) on the grid, a model is obtained using 

the training data set, and then, the model, which produces the least validation error 

based on the validation data set is chosen as the optimal model. Finally, optimal 

models for the SC tools are compared with each other by using the test data. 

3.1 Support Vector Classification 

The primal form of a SVC model is given by Equation (2), which is linear in a 

higher dimensional feature space F. 

)(,ˆ
iiy xΦw  (2) 

where w is a vector in the feature space F, (.)Φ  is a mapping from the input 

space to the feature space, and . stands for the inner product operation in F. The 

SVC algorithms regard the classification problem as an optimization problem in 

dual space in which the model is given by Equation (3). 
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where Tr
N is the number of training data, j  is the coefficient corresponding to 

the training data jx , and ),( jiK xx  is a Gaussian kernel function given by, 
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The kernel function handles the inner product in the feature space, and thus, the 

explicit form of )(xΦ  does not need to be known. In the model given by Equation 

(3), a training point jx  corresponding to a non-zero j  value is referred to as the 

support vector. The primal form of the classification problem is as follows: 


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subject to the constraints, 

iiiy 1)(, xΦw , TrNi ,,1  (6a) 

0i , TrNi ,,1  (6b) 

where i ’s are slack variables, .  is the Euclidean norm, and C is a regularization 

parameter. By adding the constraints to the primal form of the classification 

problem, the Lagrangian can be obtained as 

  
 
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where i ’s and i ’s are Lagrange multipliers. First-order conditions of the 

primal optimization problem are obtained by taking partial derivatives of PL  with 

respect to the design variables and then setting them to zero as follows: 



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 TrN
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,,1,00  






 (9) 

Now, the dual form of the optimization problem becomes a Quadratic 

Programming (QP) problem as: 
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subject to the constraints, 

0
1




TrN

i

ii y and ,0 Ci  TrNi ,,1  (11) 

Solution of the QP problem given by equations (10) and (11), yields the optimum 

values of i ’s [24]. Furthermore, when only the support vectors are considered, 

the model becomes as follows: 







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j

jijji
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Kyy
#

1

),(ˆ xx  (12) 

where #SV stands for the number of support vectors in the model. The SVC model 

given by Equation (12) is sparse in the sense that the whole training data are 

represented by only support vectors. The parameters of SVC are the regularization 

parameter C and the kernel parameter  . 

3.2 Least-Square Support Vector Classification 

Least-squares support vector classification (LSSVC) is a variety of SVC, which 

has almost the same level of capability in classification and regression as SVC 

[25] [26]. LSSVC finds optimal value of the cost function given in Equation (13) 

subject to equality constraints instead of inequality ones in the SVC case. 

Therefore, it is desired to minimize the following: 





TrN

i

iξ
C

1

22

22

1
w  (13) 

subject to 

  Triii Niby ,...,1,1)(,  xΦw  (14) 

Because the optimization problem is built on linear equations, computational 

burden of LSSVC is less than that of SVC. On the other hand, SVC is sparser than 

LSSVC in the sense that the former contains less number of support vectors in the 

model than the latter. However, both approaches exhibit similar classification 

performances. Yet, we have employed both approaches in this study for the sake 

of comparison. Equation (15) is obtained when Eqs. (13-14) are presented in dual 

optimization form with Lagrange multipliers. 
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where n
i R are the Lagrange multipliers. The first-order conditions for 

optimality are as follows: 
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With the elimination of w and i , a set of linear equations are obtained as given 

by Equation (17), the solution of which contains Lagrange multipliers and the bias 

term. 
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where the matrix is a )1()1(  TrTr NN  square matrix, 
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and C is a scalar parameter. Similar to SVC, the output value of LSSVC is 

computed by Equation (12) after Lagrange multipliers and bias values are found. 

In contrast to SVC, Lagrange multipliers in LSSVC might be positive or negative. 

It should be noted that the number of support vectors in the model is the same as 

the number of training data. The inner product )(),( ji xΦxΦ  is handled by the 

Gaussian kernel function as in the SVC case. 
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3.3 Radial Basis Function Neural Networks 

Radial basis function neural networks (RBFNN) are special artificial neural 

network structures in which the hidden units are activated with respect to the 

distance between the input vector and a predefined centre vector. RBFNN can 

provide a nonlinear model for the target dataset with its simple and yet fast 

learning network structure [27], and therefore, it is a sensible alternative to use 

complex polynomials for function approximation. 

In a RBFNN, there is only one hidden layer that uses neurons with radial basis 

function (RBF) activation functions. RBFs implement localised representations of 

functions, and they are real valued functions whose outputs depend on the distance 

of the input from the stored centre vector of each hidden unit [28]. Thus, it has its 

peak value at the centre and decreases in each direction along the centre. Different 

functions, such as multi-quadratics, inverse multi-quadratics, and bi-harmonics, 

could be used as RBF. A typical selection is a Gaussian function for which the 

output of the i
th

 hidden unit is written as 

)2exp( 22
#

1

iik

HU

i

iwy vx  


, HUi #,,1  (19) 

where n
iv R  is n-dimensional centre vector of the RBF of the i

th
 hidden neuron, 

i  is the width of RBF of the i
th

 hidden neuron, #HU is the number of hidden 

units, and iw is the weight of the i
th

 hidden unit. An RBFNN is completely 

determined by choosing the dimension of input-output data; number of RBFs; and 

values of iv , i  and iw . The function approximation or classification 

performance of RBFNN is obtained by defining all these parameters. The 

dimension of input-output data is problem dependent and defined clearly at the 

beginning. Choice of the number of RBFs plays a critical role and depends on the 

problem under investigation. For simplicity in calculations, i  values are all 

taken equal to . In this study, #HU and  are grid searched to choose the best 

values for validation data. In the training phase, hidden unit neurons are added 

using an orthogonal least squares algorithm to reduce the output error of network 

until the sum-squared error goal is reached [29]. 

4 Input-Sensitivity Analysis 

By input-sensitivity analysis, it can be determined to what extent the output of the 

SVC model is sensitive to each input of the model. In this respect, the partial 

derivative of the output )(ˆ xy  with respect to each input is needed. Let us 

remember that the input-output relationship of the SVC model is 
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where jx ’s are the support vectors, n
Rx is n-dimensional input vector and 

),( jK xx  is a Gaussian kernel function given by 
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Then, the input-output relationship becomes 
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Now, the partial derivatives can be written by 
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The derivative in Equation (23) can be calculated as 
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For a SVC model obtained by the data set Ni
iii y 
1};{x , it is possible to build a 

sensitivity vector for the k
th 

input as 
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Thus, the norm ks  of the sensitivity vector can be regarded as a numerical 

measure that indicates the sensitivity of the output to the k
th

 input for the SVC 

model obtained by the data set Ni
iii y 
1};{x . For large sensitivity of the output to 

the k
th

 input, we obtain relatively large ks  values and vice versa. That being 

0ks  means no sensitivity to the k
th

 input, e.g. no matter how much the k
th 

input is changed the output is not affected. By comparing the sensitivity vectors 

regarding to all inputs, it is possible to determine the relative sensitivities of the 

inputs. Moreover, some inputs having very small sensitivities can be discarded 

from the data set and then the SVC model can be re-obtained with the new data 

set. 

Similar to the case given for SVC case, using RBFNN input output equation given 

in (19), the partial derivative of output variable )(ˆ xy  with respect to each input 

vector kx  can be obtained as 
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The sensitivity analysis of input variables is made by using Equation (26). The last 

four inputs 35, 9, 32 and 34 can be pruned as they have relatively lower sensitivity 

than other inputs. In this study, as also highlighted in the literature [30], the 

sensitivity analysis is initially examined at first hand prior to the design of the 

classifier structures. But, as the pruning of the last 4 inputs does not change the 

results significantly, the pruning of the network structure is not conducted in order 

to see the whole effect of the questionnaire. 

5 Results and Discussions 

Each SC method used in this study has its own parameter set to be optimized. To 

find the optimal parameter set, a grid search approach is adopted, where the 

parameter space is divided into grids. A node in the grid corresponds to a 

parameter set. In the grid search, validation performances of the models for each 

nodes (parameter sets) are calculated, and then, the parameter set having the least 

validation error is determined as the optimal parameter set. Table 2 tabulates the 

optimal parameter sets found by grid search for each method employed in the 

study. The optimal parameter sets are given in the second column. The optimal 

parameter sets, training, validation and test performance for each method, can be 

seen in columns 3-5 in Table 2. 
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Table 2 

Optimal Parameters and Obtained Results 

Method Parameters 
Train 

% 

Validation 

% 

Test 

% 

SVC 1.0C , 6.0  98.66 73.50 68.80 

LSSVC 6.1C , 121  91.50 78.50 75.60 

RBFNN 67# HU , 3.1  77.17 78.00 77.60 

As can be seen in the table, all methods exhibit satisfactory validation and test 

performances almost over 70%. However, the LSSVC and RBFNN yield better 

results than SVC. It can also be seen that the validation and test results for LSSVC 

and RBFNN methods are close to each other. The reason for the SVC approach to 

give relatively weak performance can be attributed to the fact that the SVC model 

may go into over-fitting. This can be observed if the performances of the methods 

in Table 2 are examined. The less training error the method produces, the more 

over-fitting and the worse generalization it does. 

As a result of sensitivity analysis performed for the three methods, 

normalized ks results have been presented with a bar graph in Figure 1. Also, the 

actual ks values and inputs according to sensitivity ranks are presented in Table 3. 

It is assumed that any input k which has a normalized ks value less than 0.33 can 

be regarded as having a low impact on the student’s academic success in the first 

semester. These inputs are year of birth, high school graduation year, mother 

alive/dead, number of siblings studying at university, number of correct answers 

in math-1 test of the UEE, number of false answers in science-1 test of the UEE, 

number of false answers in science-2 test of the UEE, quantitative-1 score of the 

UEE, verbal-1 score of the UEE, equally weighted-1 score of the UEE, 

quantitative-2 score of the UEE and equally weighted-2 score of the UEE, and 

indicated with ‘*’ in Figure 1. Based on this sensitivity analysis, it is observed that 

some inputs have less impact on the output than others and these inputs can be 

discarded in further applications. 
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Table 3 

Sensitivity Analysis Results 

 SVC LSSVC RBFNN 

Sensitivity Rank Input k ks  Input k ks  Input k ks  

1 38 61.1627 25 53.87 1 134.0328 

2 20 49.1408 26 46.748 17 121.1353 

3 26 47.2159 36 43.451 4 114.5789 

4 22 43.6456 37 34.691 11 101.6467 

5 25 40.8373 24 32.603 10 100.3562 

6 21 38.4838 19 30.843 38 98.3192 

7 7 37.5234 1 27.208 18 94.1968 

8 19 36.6386 38 26.353 26 87.8470 

9 37 35.7801 20 25.487 14 81.8787 

10 36 29.7689 3 20.379 3 81.6844 

11 8 25.3821 7 20.233 20 79.4239 

12 24 23.4596 22 19.637 7 74.7644 

13 29 23.0989 21 14.656 8 72.6266 

14 1 21.672 28 14.495 19 71.6740 

15 27 20.2662 15 14.104 16 68.9167 

16 6 17.6121 23 12.798 36 66.8006 

17 34 17.4067 5 12.228 12 66.4493 

18 3 16.3039 4 11.784 5 65.0252 

19 14 15.1906 2 11.573 22 62.9082 

20 31 13.9646 33 11.39 25 62.2902 

21 28 13.2361 8 10.419 15 59.9410 

22 33 12.0748 29 10.278 21 56.4296 

23 15 10.8849 14 9.7945 24 55.4738 

24 2 10.279 31 7.0194 37 54.6353 

25 4 10.1053 32 6.5261 13 49.9793 

26 30 9.9314 6 6.0264 23 47.3972 

27 12 7.3607 10 5.3529 27 43.3737 

28 23 5.7258 27 5.2585 30 42.4624 

29 35 5.7243 34 4.7037 28 37.8810 

30 16 4.2286 11 4.4312 31 37.4403 

31 11 4.2085 30 3.6643 33 36.6683 

32 17 3.4682 35 3.4183 29 35.8899 

33 5 2.8061 17 2.7849 9 34.9133 

34 10 2.8017 12 2.7604 2 29.9388 

35 18 2.5429 16 1.7147 6 27.5962 

36 32 2.4576 18 1.3411 35 26.2895 

37 9 1.5825 9 0.97898 32 22.6935 

38 13 1.5804 13 0.95468 34 20.8956 
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Figure 1 

Input-Sensitivity Analysis Report 
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Conclusions 

In this paper, a study on predicting academically at-risk engineering students 

newly enrolled to a university has been presented. For this purpose, some SC 

tools, namely, Support Vectors Machines and Artificial Neural Networks have 

been used, because of their high generalization capabilities. The data containing 

information 1050 students are retrieved from PUSR and SSPC, which are 

responsible for the execution of UEE. In the study, it has been assumed that the 

first-year success of an engineering student is mainly dependent on the 

performance in the centralized UEE, high school performance, and socio-

economic and educational level of the family. Therefore, the data used in the study 

have been prepared accordingly. The results revealed that all the soft computing 

tools we have used yielded satisfactory prediction performances for both test and 

validation data. To be specific, both LSSVC and RBFNN provide more than 75% 

validation and test performance, whereas SVC provides 73.50% for validation and 

68.80% for testing. The reason for the SVC method to give relatively weak 

performance can be explained by the fact that it makes more over-fitting than 

others as can be seen in Table 2. 

Moreover, based on the obtained models a sensitivity analysis has been conducted, 

which has revealed that some inputs in the study can be ignored since the output is 

less sensitive to them than others. The results of this analysis can be used in 

similar applications in future. 

Based on these SC approaches, a computer application may be developed to 

provide an academic counseling service for freshman engineering students, by 

means of which student advisors can predict the students’ GPA scores at the end 

of the first semester by entering the required data into the application and can 

warn them when necessary. It is planned at the Engineering Faculty of Pamukkale 

University to apply such computer software to the freshman students who will 

enroll to the faculty in 2013-2014 academic year. 

In conclusion, either support vector machine-based methods or RBFNN’s can be 

used to predict first-year performance of a student based on a priori knowledge 

and data. Thus, a proper course load per semester and graduation schedule can be 

developed for a student to manage their graduation in a way that potential drop-off 

risks are reduced. 
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