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Abstract: This study suggests employing a deep learning model trained on on-site wind 
speed measurements to enhance predictions for future wind speeds. The model uses a gated 
recurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and is 
trained using actual measured wind velocity data collected at both 10-minute and hourly 
intervals. The approach relies on using same-season data for predicting wind velocity, 
necessitating regular updates to the model with recent measurements to ensure accurate 
predictions in a timely manner. 
The results from the prediction model, particularly at a 10-minute interval, demonstrate a 
significant alignment with the actual data during validation. Comparative analysis of the 
employed model over a two-year span, with a 24-year distinction, indicates its efficiency 
across different time periods and seasonal conditions, contingent upon frequent updates 
with recent on-site wind velocity data. 
Given the reliance of sequential deep learning models on extensive data for enhanced 
accuracy, this study emphasizes the importance of employing high-performance computing 
(HPC). As a recommendation, the study proposes equipping the wind farm or wind farm 
cluster with an HPC machine powered by the wind farm itself, thereby transforming it into 
a sustainable green energy resource for the HPC application. The recommended approach 
in this work is enforcing the smart power grid to respond to the power demand that is 
connected to predictable wind farm production. 
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1 Introduction 

1.1 Wind Energy Resource 

The paramount global challenge is climate change, and each nation bears the 
responsibility and capacity to invest in renewable energy as a means to mitigate 
the emission of greenhouse gases [1, 2]. 

In recent years, the remarkable expansion of wind energy has emerged as a 
noteworthy development in the worldwide energy scenario [3]. Wind energy 
currently stands as the swiftest-growing form of renewable energy, boasting a 
cumulative installed capacity of 763 GW in 2020—a substantial increase from the 
modest 24 GW recorded in 2000 [4, 5]. This extraordinary growth can be 
attributed to technological advancements, cost reductions, and favorable policies 
that encourage the shift from fossil fuels to renewable sources. 

In recent times, advancements in artificial intelligence (AI) have enhanced the 
prediction and management of power generation in wind energy [6]. Wind power 
presents numerous advantages, positioning it as a compelling alternative to 
conventional energy sources. Unlike fossil fuels, wind energy is renewable and 
environmentally friendly, as it does not emit harmful greenhouse gases or 
pollutants. The modular and scalable nature of wind turbines makes them suitable 
for a diverse range of applications, spanning from large-scale utility projects to 
small-scale residential systems. Additionally, wind energy stands out as a 
dependable and cost-effective electricity source, with the leveled cost of wind 
energy experiencing a significant decline over the past decade [3]. 

Forecasts suggest that the global capacity for wind energy will achieve 2,110 GW 
by the year 2030, constituting roughly 20% of the world's electricity generation 
[7]. This upward trajectory is propelled by various factors, including the rising 
demand for clean energy, supportive policies, and technological advancements 
that contribute to the enhanced efficiency and cost-effectiveness of wind turbines 
[7]. 

1.2 Wind Turbine 

Wind energy production involves converting kinetic energy from moving wind 
into electrical power. There are two main types of wind turbines: horizontal axis 
wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) [1].  
The efficiency of the HAWTs is much larger than that of VAWTs; however, both 
of these types have advantages and disadvantages [8, 9]. The power potential of a 
wind turbine is proportional to the cubic power of the wind velocity [10]. Wind 
speed has a turbulence behavior and diverse fluctuations [11]. Moreover, the 
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power potential of the wind turbine is proportional to the density of air. As a 
result, cold air has a higher wind power potential than warm air [10]. These 
nonlinear and random features of the wind makes its forecasting a crucial issue for 
wind power producers.  

Power production from wind farms depends on the wind velocity. Furthermore, it 
is crucial issue that the producer be aware of the kind of farm production to 
respond to the demand for electricity on the power grid. Moreover, the smart grid 
technology is a function of the smart components that supply the power grid.  
In fact, if the wind farm has the capability to predict the wind speed in the short 
and long-term, it has forecasting for electricity production [3, 6]. This leads to 
smart wind farm production and enforcement of the smart power grid [12]. Figure 
1 displays how wind power production prediction could assist the power supplier 
in managing the response to the power grid demand. 

 
Figure 1 

A schematic representation of how wind power production prediction could assist the power supplier 
in managing the response to the power grid demand 

1.3 Deep Learning and Wind Farm 

The deep learning model, based on the sequential models, displayed the successful 
capability to predict the nonlinear phenomenon [13]. In order to optimize the 
accuracy of the DL model for the wind velocity, using the appropriate period and 
size of the data is essential. Additionally, depending on the wind park location, the 
wind speed has a different pattern for monthly, seasonal, bi-annual, and annual 
datasets. Based on the author's experiences in Nordic countries like Iceland, the 
wind speed in the winter is extremely higher than in the summer. Because of this 
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difference, the previous study demonstrated a DL model for summer that should 
not be used for winter prediction [6]. Thus, it is essential to have an online and 
updated DL model for a wind park. This leads to updating the DL model with 
measured data from many years ago to a few minutes before. 

1.4 Literature Review 

In recent years, the DL model for wind velocity forecasting was developed with 
different DL layers architecture [6, 14]. The majority of the available studies 
focused on short-term prediction [6, 15]. The dataset used to train the DL model 
consists of 5-10 minutes and 1-2 hours [6]. The measured data in the previous 
studies from onshore wind farms [6, 16]. The literature displays 1-6 hour 
prediction with different DL models. However, there is no universal model to be 
used globally, and they are specified for a particular site location where trained 
data has been measured [6, 17]. 

Looking at the above-mentioned aspects of the proposed DL model for wind 
speed prediction leads to a novel approach and perspective proposal. Since the 
wind farm's location, air temperature, month, season, and year of the measured 
data impact the prediction [3, 6], it dictates an essential local DL model design for 
each specified wind farm, and the model training must be updated per hour or 
daily. 

The present study proposes a DL model for wind velocity prediction that is 
updated with training data depending on effective factors such as hour, daily, cold, 
and warm air and season. The result of the study is a remarkable capability that 
can cause long-term prediction in addition to short-term forecasting. Hence, this 
paper is organized as follows. The applied methodology is presented in Section 2. 
In Section 3, the result and discussion are presented and at the end the conclusion 
is presented. 

2 Methodology 

2.1 Measured Wind Velocity 

This study applies on-site measured wind velocity data from the Vedurstofan (the 
Metrological Office) of Iceland. The data involves a time step of 10 minutes for 
specific years and an hour time step for other years. Figure 2 displays December 
1995 to February 1996 and December of 1996 to February 1997. 
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Figure 2 

Presentation of the measured wind velocity for two different time periods in Iceland. (a) December 
1995 to February 1996, (b) December 1996 to February 1997 

These are the same period of time for two years. It can be seen that the wind 
velocity does not have a similar pattern to be able to use the previous year's data 
and simulate the next year. 

Moreover, two different time periods (seasons) can be seen in Figures 3 and 4. 
These presentations reveal how owning a distinct pattern is from September 1996 
to November 1996 to December 1996 to February 1997. In Figure 4, the same 
period of September 2021 to February 2022 is displayed. The illustration of these 
two figures uncovers that the wind speed has nonlinear and random features, and 
there is no known equation or pattern to use the previous wind velocity of the 
earlier time to simulate the next time. 

As pointed out in the introduction, in recent years, DL networks have been 
employed to predict a sequential nonlinear dataset, such as wind speed, which has 
turbulence behavior in the fluid dynamics area. However, the models depend on 
the specific site location and measured data. The present study suggests using 
online and recent data to train each wind park's DL model to overcome this defect. 
To make this application possible in the actual wind farm, it is essential to connect 
the measured data online to the DL model and update the training in a short time. 
Additionally, this study would emphasize the fact that using training data from the 
same period of time will be much more efficient. For example, the speed data 
from the summer train in the DL model may not be sufficient to predict the wind 
speed in the winter and needs to be merged with data from winter time. This 
concept is used in the current study. 
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Figure 3 

On-site measured wind velocity for two different seasons in Iceland, black color curve, September 
1996 to November 1996 and red color curve, December 1996 to February 1997 

 

 
Figure 4  

On-site measured wind velocity for two different seasons in Iceland, black color curve, September 
2021 to November 2021, and red color curve, December 2021 to February 2022 
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2.2 Deep Learning Models 

Among available DL models for sequential data, LSTM for sequential nonlinear 
and random datasets displayed successful application. Additionally, the 
Transformer as an up-to-date DL model from the attention mechanism provided 
appropriate prediction for the random sequential dataset. The current study 
employs a gated recurrent units (GRUs) model trained with on-site measured wind 
velocity and forecasts the wind speed for the following period of time. Based on 
the literature, GRU is a variant of LSTM and has a simpler architecture. It is 
reported that GRU has the same efficiency as LSTM with less data. 

The model has been assessed with two datasets, one from 1996 with a time step of 
10 minutes and the second dataset from 2021 with an hour time step. For each 
model, 60% of the data was used for training, and 40% of the rest of the data was 
employed for testing the model prediction. The present study shows that reducing 
the training data ratio to lower than 60% will reduce the model prediction 
accuracy. The mean absolute error and squared R (R2) are measured as metrics for 
the models. Figure 5, a diagram shows the required dataset for DL model training 
with HPC resources, and the target is a prediction of the wind speed. 

 

 
Figure 5 

The DL model is trained and tested with measured wind speed. Training data are 60% of the measured 
data, and 40% of the rest of the data are used to test the model prediction 



R. Hassanian et al. Optimizing Wind Energy Production: Leveraging Deep Learning Models 
  Informed with On-Site Data and Assessing Scalability through HPC 

 – 52 – 

2.3 High-Performance Computing in Wind Farm 

The sequential model of DL will lead to an accurate model with a larger amount 
of training data. The extensive training data and the DL architecture make it 
essential to use high-performance computing (HPC). As discussed earlier in this 
study, the suggestion is to use an online DL model training with up-to-date 
measured data at the wind farm site. 

Having access to HPC to train a DL model with extensive data that is related to 
scalability is a crucial issue. 

However, since the wind frame produces power, it will be an option for each wind 
farm to own its HPC system or install an HPC system for cluster wind farms that 
share the computing between them; this will make the HPC supported with green 
energy, which is a remarkable achievement since many of the HPC clusters using 
traditional and fossil fuel resources. 

3 Result and Discussion 

This section presents and discusses the result of the proposed approach, which is 
composed of the on-site measured data and GRU model. 

Figure 6 shows the GRU model result that used measured wind speed data with a 
period of September 1996 to November 1996 with time step 10 minutes. To train 
the GRU model, 60% of the data is used to train the GRU model, and 40% to 
validate the model prediction. The metric evaluation shows MAE 0.019 and R2 is 
0.97. this model used data with short time steps. 

Figure 7 illustrates the wind velocity prediction result of the GRU model that 
trained with actual wind speed from in-site measurement with a period of 
September 2021 to November 2022 with time step an hour. In this model, 60% of 
the data is used for training and 40% as validation. The prediction of the model 
has MAE 0.059 and R2 is 0.71. This model used data with longer time steps. 
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Figure 6 

Presentation of GRU model prediction that is trained with on-site measured wind velocity with time 
step 10 minutes with a period of September 1996 to November 1996, with 60% training ratio and 40% 

validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the 
prediction of the model. 

 

 
Figure 7 

Representation of GRU model prediction that is trained with on-site measured wind velocity with time 
step an hour with a period of September 2021 to November 2022, with 60% training ratio and 40% 
validation. Blue colors the actual measured data, red colors the training ratio, and yellow colors the 

prediction of the model. 
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The illustrated results in Figures 6 and 7 show a remarkable observation.  
The GRU model that trained with shorter time steps is much more accurate.  
In contrast, to the model trained with an hour time step, shorter time step data 
caused a 36% increase in the R2 and a 67% decrease in the MAE. Therefore, 
measuring in-site and speed with short time steps makes the prediction model 
more efficient and accurate. 

Additionally, the current study used one GRU model with a distinct period of time 
from 24 years ago (1996 and 2021). For each model, the training data was 
updated, and the model resulted in an appropriate wind speed prediction. These 
remarkable achievements show that the training update significantly affects the 
model's accuracy. It could be taken into account that the season of the data for 
wind speed training should match the target wind speed time. 

Conclusions 

The current study proposes an approach to using time series data of in-site 
measured wind speed to predict the wind velocity in the following period of time 
with the application of deep learning capability. A GRU model from the LSTM 
variant was designed and trained with a specific ratio of the measured data, and its 
prediction was validated by the actual data. 

The superiority of the present work suggests the use of updated data to predict 
wind velocity. Furthermore, the study used data from the same season (winter or 
summer) to train and predict the wind velocity. The study results uncovered that 
the shorter time step, 10 minutes, makes the model extremely accurate than the 
model trained with a longer time step, an hour (60 minutes). 

The present study recommends using a DL model as software in wind frames that 
are trained with updated measured wind speed via online connection and updated 
training to be able to have short and long-term predictions with desirable 
accuracy. This application makes it possible for the wind energy producer to have 
a period of wind velocity and wind energy production, and this capability leads to 
an efficient smart power grid to respond to the power demand. It is planned to 
evaluate the wind speed prediction via updated data with a Transformer as an 
attention mechanism and compare it to LSTM variants. 

Data Availability Statement: The data presented in this study are available on 
request from the corresponding author. 
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