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Abstract: The Bacterial Evolutionary Algorithm (BEA) is an evolutionary method, 
originally meant to optimize the parameters of fuzzy systems. The authors have already 
proposed three modified versions of the original algorithm in a previous paper to make it 
usable in engineering applications with time-consuming object functions as well. Section 1 
summarizes the earlier results. It presents the operators of the original BEA and the 
suggested parallel version. In Section 2, the optimal parameter settings and the analytical 
estimation of wall clock time in parallel computations are investigated. In Section 3, the 
paper deals with genetic diversity in different BEA versions. The effect of the modified gene 
transfer operators on genetic diversity is measured. The conclusion is that the proposed 
methods have quite good efficiency in all cases, and we can reach the ideal case if we have 
full control over the parameters. 
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1 Introduction 

The Bacterial Evolutionary Algorithm (BEA) [13] [12] is a relatively new member 
of the populous family of evolutionary algorithms [2]. It is a descendant of the 
Genetic Algorithm (GA) [6] and the Pseudo-Bacterial Genetic Algorithm (PBGA) 
[14]. The BEA was proposed by Norberto Eiji Nawa and Takeshi Furuhashi in the 
late ‘90s. 

The BEA inherited many properties of the GA: it is also a global search algorithm, 
which is useful if a near optimal, approximate solution of a problem is acceptable. 
The algorithm is able to solve complex optimization problems even if they have 
non-linear, non-continuous, multimodal, high-dimensional properties. In contrast 
to gradient based methods, the BEA does not demand the use or the existence of 
the derivatives of the objective functions. Furthermore, the operators of the BEA 
achieve some functions, e.g. elitism, that can be implemented in the canonical GA 
only with additional code. This nature of the BEA helps to keep the program more 
compact and reliable as well. 

The BEA and the GA are of course heuristic type optimization methods, thus there 
is no guarantee of finding the location of the global extreme value. Despite this, 
these algorithms perform well in real-life optimization problems, and theoretically 
the probability of finding the global optima can be made arbitrarily large (see 
[15]). 

The BEA was originally developed to optimize fuzzy systems’ parameters, but it 
could be a proper tool to solve complex design and engineering optimization 
problems related to computational fluid dynamics (CFD) or finite element models 
(FEM). However, such models need huge computational power, because every 
object function evaluation in the optimization process contains a full CFD or FEM 
calculation, which can take 0.1 to 5 hours of CPU-time. In a typical industrial 
application, the number of design variables is 10 to 30 and the whole optimization 
needs thousands of object function evaluations [10]. Thus the necessary CPU-time 
is in the order of 1 week to some months, and therefore parallelization is 
necessary. Sometimes the problem itself can be parallelized, but it is more 
adequate if the optimization process is executed in a parallel way. Unfortunately, 
the BEA is inherently sequential so this method in its original version is 
practically inapplicable in this area. 

1.1 Shortcomings of the Bacterial Evolutionary Algorithm 

[13] contains an exhaustive review of the BEA, and thus we will give only a short 
introduction here. 
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Similarly to the GA, the BEA also uses a record of possible solutions. These 
solutions are often called bacteria as well. The bacteria together form the 
population. 

There are two main operators of the BEA: bacterial mutation and gene transfer. 
The repeated utilization of these operators results in a series of generations. When 
some kind of termination condition is fulfilled, the best bacterium of the last 
population is accepted as the result of the optimization. 

Bacterial mutation (Fig. 1) optimizes the bacteria individually. That is why all the 
bacteria can be mutated at the same time. The mutation functions in the following 
way. Every bacterium has K clones. Initially the clones are copies of the original 
bacterium. In each step of the mutation, exactly one gene at a specified position is 
modified randomly in every clone. If a better gene value (allele) has been found, it 
is copied into the other clones. At the end of mutation, if the objective value of the 
best clone is better than the value of the original bacterium, the bacterium is 
replaced with this clone. 

Consequently, the objective function has to be evaluated K times in one step, and 
such a step is repeated g (the number of genes) times during the operation. As was 
already shown in [9], the mutation operator evaluates the objective function 
Em = PKg times (P is the population size). Because several genes cannot be 
evaluated in parallel, the theoretical maximum speedup of the evaluation of the 
bacteria is Sm = Em/g = PK, and it can be achieved with C = PK processors. (It is 
assumed that the evaluation time of all the bacteria is the same and it is 
independent of the alleles.) 

In a typical calculation, P ≈ 30-100, K ≈ 20-50, thus Cmax ≈ 600-5000. In most 
cases this number is much bigger than the number of processors in today’s 
systems, and thus bacterial mutation is suitable to run on most of the 
multiprocessor systems without modifications. 

The second operator of the BEA is the so-called gene transfer (Fig. 2). It operates 
with the ordered list of bacteria. The bacteria with better objective values get into 
the superior half, the others into the inferior half. The operator repeats T times the 
following: it chooses one bacterium from the superior half and one from the 
inferior half. After that it selects one portion of the genes of the superior bacterium 
and copies it into the inferior bacterium. This modification of the inferior 
bacterium involves the re-evaluation of its objective function, and the re-sorting of 
the bacteria. Depending on the objective value of the modified bacterium it may 
get into the superior half. 

Since the modified bacterium can belong to any of the two halves, it is obvious 
that the consecutive gene transfers are not independent. Because of this behaviour 
parallel gene transfers cannot be realized, and therefore modification of the gene 
transfer operator is needed for parallelization. 
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Figure 1 

Schematic view of the bacterial mutation operator 

 
Figure 2 

Schematic view of the gene transfer operator 



Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 

 – 69 – 

1.2 Overview of the Suggested Modified Gene Transfer 
Operators 

Three modified gene transfer operators were suggested in [9]. All of them are the 
derivatives of the original version with slight modifications. 

“Original gene transfer with auxiliary population” (BEA Aux., Fig. 3) also keeps a 
record of superior and inferior bacteria based on the objective values. Even the 
selection of the superior and inferior bacterium is the same as before. This version 
of gene transfer keeps the inferior bacterium untouched; the modified bacterium 
goes into an “auxiliary population”. The operator first fills the whole auxiliary 
population with A modified bacteria, and only then starts to evaluate the objective 
values of them simultaneously. After the evaluation the best P of P+A bacteria 
form the population, and the other, worse bacteria are dropped. This procedure has 
to be repeated until the desired number of total gene transfers (T) is reached. 

The second suggested gene transfer was called “gene transfer inspired by 
Microbial Genetic Algorithm” (pMGA, Fig. 4). The Microbial Genetic Algorithm 
(MGA) [8] is a simplistic GA. The MGA gave the idea of a new gene transfer 
because its selection and crossover can be regarded as a gene transfer. pMGA 
creates random and disjoint pairs of bacteria. The better bacterium (the so called 
“winner”) of such a pair transfers some portion of its genetic material to the worse 
bacterium (loser). Because the pairs are disjoint, the gene transfer and the 
evaluation of the modified bacteria are independent from other pairs. This 
property allows parallel execution. Unfortunately, the size of the population limits 
the number of parallel gene transfers to P/2. If more gene transfers are required, 
the operation has to be repeated. 

The MGA inspired other researchers as well to modify and use some of its simple 
genetic operators in the Bacterial Memetic Algorithm [7] [11] [14]. The MGA 
inspired gene transfer operation performs well on several important problems, e.g. 
the travelling salesman problem [4]. It was pointed out that it is easy to implement 
the parallel version of this gene transfer operator. 

The third suggested version of gene transfer, “gene transfer inspired by MGA with 
auxiliary population,” (see [9]) is a mixture of the previous two, in order to 
eliminate the P/2 barrier of the pMGA. The pMGA Aux. uses an auxiliary 
population (like the BEA Aux.) and places the modified bacteria into it, instead of 
the instant overwriting of the loser bacteria. 

Note that the usage of the modified gene transfers suggested above influences the 
optimization process. For example, in the case of the original gene transfer, the 
inferior bacterium is always overwritten, no matter how good or bad it is; but with 
an auxiliary population it can survive if the auxiliary population contains mostly 
worse individuals. This is somehow similar to elitism, and thus it increases the 
average fitness of the next population but keeps the genetic diversity lower. 
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Figure 3 

Schematic view of the original gene transfer with auxiliary population (BEA Aux.) 

Another side effect of the modified operators can also be realized. The original 
gene transfer evaluates the objective function T times. This means that the 
modified allele has at most T-1 chances to infiltrate into other bacteria during the 
same gene transfer. But in the case of using an auxiliary population, the number of 
chances to infiltrate drops to at most (T/A)-1. The situation is similar in the case of 
the pMGA: a better allele can be inherited at most (T/(P/2))-1 times. 

At this point, some important questions arise, e.g.: Do modified gene transfers 
sacrifice genetic diversity on the altar of parallel execution? What are the scaling 
properties of the different gene transfer versions? These questions can be 
answered easily after exhaustive empirical tests. 
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Figure 4 

Schematic view of the gene transfer inspired by MGA (pMGA) 

1.3 Preceding Results 

The first investigation of parallel versions of the BEA and the MGA can be found 
in [9]. Here a custom optimization program with a master-slave model was used. 
The slave computers calculated the value of the objective function, while all other 
tasks fell upon the master computer, including the execution of the genetic 
operators. 

Five test functions (De Jong’s 1st and 3rd, Step, Rastrigin, Keane [3] [11] [16]) 
were used. These functions are well known in literature, and their qualitative 
properties and global extremes are also known. They are of different types, e.g. 
Step is non-continuous, Rastrigin is smooth but has many local minima, etc., and 
therefore they represent different kind of problem types from real life. The big 
difference between these functions and practical problems is the execution time: in 
an engineering application, where parallel execution is important, an objective 
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function evaluation takes many seconds, and therefore communication time is 
negligible; but in a modern hardware test function evaluation takes only a small 
fraction of a second. In order to simulate real life problems, a small artificial delay 
(approx. 0.005 sec.) was built into the test functions. The overhead of 
communication became negligible with this trick. 

Based on the test calculations it can be concluded that the three modified gene 
transfer operators are applicable in real life problems. On the contrary, the 
acceleration of the optimization using the original gene transfer is the consequence 
of bacterial mutation only. It is not recommended to use the original version if 
more than one CPU is available, but in some cases the modified operators proved 
to be faster even with one CPU. 

All the modified versions have good scaling properties. In [9] the authors used at 
most 16 processors. In this range the pMGA was slightly the fastest one, but the 
difference was very small. In this paper the range of investigation is extended to a 
higher number of CPUs. The ideal setting of number of gene transfers and the 
genetic diversity in different methods is also examined. 

2 Analysis of the Suggested Operators 

2.1 Right Settings of the Optimization Program 

2.1.1 Maximizing CPU Utilization in Gene Transfer 

In [9] the authors drew their conclusions using the results of their custom 
optimization program. The settings of this program were carefully chosen before 
the start of the executions. These settings were optimal in the sense that the 
program produced the same result with the least evaluation of the objective 
function. However, in a system containing a lot of CPUs the number of object 
function evaluations may be not proportional to wall clock time if we have a lot of 
idle CPUs due to bad parameters. In this section a simple model for CPU 
utilization is presented. 

Let's assume that the evaluation time of an object function: 

 is constant and one unit long, 

 takes much more CPU time than bacterial (genetic) operators and master-slave 
communication. 

Using these assumptions we can divide the calculation process into 
“computational rounds”: if we have C CPUs, the master can send at most C object 



Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 

 – 73 – 

function evaluations to them simultaneously, then it collects the results and sends 
another object functions again. CPU utilization is ideal if in every computational 
round exactly C object function evaluation is to be sent to the slaves. 

Let N denote the maximum number of new bacteria that can be evaluated 
simultaneously during gene transfer. Without an auxiliary population, it is the half 
of the population size: ⎣ ⎦2/PNwoa = ; with an auxiliary population, it is the size of 
the auxiliary population: ANwa = . ( ⎣ ⎦.  is the rounding down function often 
referred to as “floor”.) 

If N is not a multiple of C, there will be idle CPUs during the evaluation of these 
individuals. This means that ⎡ ⎤CN /  computational rounds are needed to evaluate 
N individuals. ( ⎡ ⎤.  is the rounding up function often referred to as “ceil”.) 

Another case is when idle CPUs appear if the total number of transfers (T) is not 
the multiple of N.  In this case the ⎡ ⎤CN /  computational rounds mentioned above 
must be executed ⎣ ⎦NT /  times, but ⎣ ⎦NNTT /−  evaluations remain, which 
implies ⎣ ⎦( )⎡ ⎤CNNTT //−  extra computational rounds. 

Thus the utilisation of the slave CPUs during gene transfer can be specified with 
the following formula: 

⎣ ⎦ C
C

NNTTC
C
N

N
T

TU TC

⎥⎥
⎤

⎢⎢
⎡ −

+⎥⎥
⎤

⎢⎢
⎡
⎥⎦
⎥

⎢⎣
⎢

=
/,   (1) 

For example, in [9] in the case of the optimization of the Rastrigin function the 
authors used P = 40, T = 400, A = 20, C = 16. In this case the CPU utilisation is 
only UC,T = 62.5%, whether an auxiliary population was used or not. 

It is easy to achieve 100% utilisation, if we know the number of processors in 
advance: let N be a multiple of C and T a multiple of N, thus we get UC,T = 1.0. 

2.1.2 The Optimal Number of Gene Transfers 

Changing the gene transfer algorithm may change the optimal number of using 
this operator. A series of test calculations was performed to study this effect. For 
the sake of compactness, only the results of the optimization of the Rastrigin 
function are reviewed in this section. The main parameters of the test were:  K = 1, 
C = 64, P = 128, A = 64. (UC,T = 100%) Wall clock time of reaching 0.01 object 
function value was measured and averaged over 20 independent calculations. (1 to 
4% relative standard deviation was observed.) 

For the sake of compactness, only the results of the optimization of the Rastrigin 
function are reviewed in Table 1. The phenomenon is the same in the case of other 
test functions. 
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Table 1 
The effect of various T/P ratios on optimization time 

T/P BEA BEA Aux. pMGA pMGA Aux. 
4 130.982 13.588 15.699 13.255 
6 146.793 11.736 13.619 11.786 
8 169.898 10.723 12.634 11.371 
12 190.434 10.688 12.117 10.829 
16 242.417 11.177 11.837 11.156 
24 322.155 11.970 12.899 12.956 
32 429.840 13.300 14.649 13.696 

Table 1 shows that for original BEA a small T/P ratio is optimal. The reason is 
simple: gene transfers in the BEA scale poorly for 64 CPUs, and for small number 
of transfers, the mutation operator dominates. (However, the wall clock time value 
is much higher than the one in parallel versions.) 

For parallel versions the T/P ratio has an optimal range. One can conclude that the 
best T/P ratio for the parallel gene transfer operators is between 8 and 16 and there 
is only a small difference within this range. The tests showed similar results for 
other test problems and CPU numbers. 

2.2 Test Methodology 

Considering the observations mentioned above, one can choose good parameters 
for T, A, based on the C number of CPUs. There is however another problem: to 
measure the efficiency of different methods a lot of independent calculations must 
be performed for all the test problems. It takes a lot of time if we use real life 
object functions with many seconds of CPU-time consumption. 

One possible solution is to use easily formulated test functions with very small 
calculation time, but apply a small amount of artificial delay, which makes the 
object function evaluation longer than the communication time. This method was 
used successfully in [9] for at most 16 CPUs, but it is not a good method for a 
much higher number of processors. Test calculations with 64 CPUs and 0.05s 
artificial delay showed more than 100% extra time originating from the 
communication bottlenecks. (Note that the communication between master and 
slaves consists of smaller than 1kB data blocks, but at the end of a computational 
round, when all the slaves want to send the data back to the master, a significant 
bottleneck arises.) 

Increasing the artificial delay may help and it could bring the test calculations 
closer to real life, but results in very long test calculation time. To overcome these 
difficulties, another approach is used in this paper: 

 No artificial delay is used. 
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 Load balancing is realised in calculations. 

 All object function evaluations are logged with their sequential number, and 
value. 

Load balancing is a key part of the measurements. Instead of sending the next job 
to the first idle slave, the master sends the jobs to the slaves in a predefined order 
to ensure as similar CPU loads as possible. Otherwise if there are several slaves 
(e.g. 64 or more) in the system and the evaluation time of the objective function is 
short compared to the communication time between master and slave, the first 
slaves would be fully loaded while the rest of the slaves remain idle. In this way 
the artificial delay included in the objective functions is not needed anymore. 

This kind of test calculation gives enough information to reconstruct how many 
computational rounds would be needed if the optimization was executed in a load-
balanced way on a C-processor machine. Assuming nearly identical time for 
object function evaluations, the number of computational rounds is proportional to 
wall-clock time. In the next subsection deduction of the number of computational 
rounds is presented. 

2.3 The Number of Computation Rounds 

The flow of a bacterial-type optimization begins with a random population 
generation and evaluation of the individuals. This means that P object function 
calls happen in the 0th generation. After this initialization new generations are 
produced by Em = PKg mutations and ET = T gene transfers. (See Sec 1.1 for 
notations.) Thus the EG number of objective function evaluation needed to create 
the next generation can be expressed as: 

TPKgEEE TmG +=+=   (2) 

In a test calculation we measure how many objective function evaluations are 
required to reach a specific target objective value. (Naturally, an average number 
of independent calculations is used.) Let us denote this number of evaluations with 
M. If this number is known, one can calculate how many generations and how 
many computational rounds are needed for the optimization, and thus get a good 
approximation of wall-clock time. 

The number of fully completed generations (except the 0th generation, which 
needs P evaluations) can be expressed as: 

⎥
⎦

⎥
⎢
⎣

⎢ −
=

G
f E

PMG   (3) 

For the last (possibly non-finished) generation El objective function evaluations 
remain. 
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Gfl EGPME −−= )(   (4) 

In the last generation the number of mutations and gene transfers may be less than 
Em and ET. If we perform the mutation first, the number of objective function 
evaluations used by mutation in the last generation will be: 

),min(, lmml EEE =   (5) 

and the number of objective function evaluations executed by gene transfers in the 
last generation is: 

( )mllTl EEE ,, ,0max −=   (6) 

Now it is easy to express the needed number of computational rounds. 

All the methods need R0 computational rounds to evaluate the 0th generation: 

⎡ ⎤CPR /0 =   (7) 

All the methods examined here use PK independent mutations, therefore 

),min(, PKCE pm =   (8) 

evaluations can be made in parallel (in one computational round). 

The original BEA needs Rf,BEA computational rounds for every fully evaluated 
generations (remember that gene transfers are sequential operations in the BEA.): 

⎡ ⎤ TpmBEAf EgEPKR += ,, /   (9) 

Thus the number of computational rounds required by optimization using the BEA 
can be expressed as: 

⎡ ⎤ TlpmmlBEAffBEA EEERGRR ,,,,0 / +++=   (10) 

Using similar considerations the number of computational rounds of parallel 
versions can be expressed also. 
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RpMGA Aux is the number of computational rounds needed by optimization using the 
pMGA Aux. The value of it is the same as the number of computational rounds 
used up by the BEA Aux, RBEA Aux. 
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Here we used the same notation as in Sec 2.1.1, namely N is the maximum number 
of new bacteria that can be evaluated simultaneously during gene transfer. For the 
BEA Aux. and the pMGA Aux. methods ANN wa == , for pMGA 

⎣ ⎦2/PNN woa == . 

2.4 Test Results 

Some test optimizations with different settings were performed to check the 
correctness of the above formulas, but there were no differences between the 
calculated and the measured number of computational rounds. 

Six standard problems were used for testing the behaviour of modified gene 
transfers: Rastrigin, Keane, Step, Ackley, DeJong's 1st and DeJong's 3rd functions. 
(See [3], [11], [16].) Some of these are unimodal (eg. De Jong's 1st), others are 
multimodal (eg. De Jong's 3rd). Some of them are continuous (eg. Rastrigin) while 
others are not (eg. Step). This means the results are valid for a wide range of 
problems. 

Even though the test functions have very different properties, and thus they 
represents a wide range of problems, the authors plan to execute more 
sophisticated tests with a much wider and more easily parameterizable set of test 
functions in the future. These test problem sets could be generated with the 
appropriate functions, see e.g. [1] [5]. 

Table 2 shows the measured values of M for the Rastrigin function with the target 
objective value of 0.01, and the calculated number of computational rounds as 
well. The main settings of the optimization program were the following: g = 20, 
P = 128, A = 64. According to the considerations, the numerical experiment must 
be performed only for one specific C value, and the others can be calculated from 
this. (Because the authors have been able to use a 64-core machine, C = 64 was 
used in the calculations.) 
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Table 2 
Computational rounds needed with different number of CPUs 

C 1 (=M) 2 8 64 256 
RBEA 128048 74520 34374 22665 21829 
RBEAAux 122732 61366 15342 1918 1117 
RpMGA 141582 70791 17698 2213 1291 
RpMGAAux 124608 62304 15576 1947 1134 

The parallel efficiency of the calculations is also presented in Table 3. 
(Ep=(R1/RX)/C, where Rx is the number of computational rounds in x CPU-case.) 

Table 3 
Parallel efficiency of optimization with different number of CPUs (Rastrigin fn.) 

C 1 2 8 64 256 
Ep,BEA 1.000 0.859 0.466 0.088 0.023 
E p,BEAAux 1.000 1.000 1.000 1.000 0.429 
E p,pMGA 1.000 1.000 1.000 1.000 0.428 
E p,pMGAAux 1.000 1.000 1.000 1.000 0.429 

Tables 2 and 3 show that the parallel versions scale ideally until full utilization is 
achieved. In the last column N > A, and therefore this is not true, and all the 
methods will slow down, but the original BEA shows bad performance for a much 
smaller number of CPUs. These results are in good correspondence with the ones 
in [9]. 

The R values for the C = 1 case shows the difference of the methods in 1 CPU 
case. It is not obvious that parallel versions are comparable with the original BEA 
in this case. Table 2 shows that the pMGA is worse than the BEA, but all the 
methods with auxiliary populations are better than the original bacterial algorithm 
even on 1 core. Due to the good scaling properties, even the pMGA beats the BEA 
in all C > 1 cases. 

Testing with other functions show completely similar structure, and therefore only 
a small, significant part of the results are presented here. 

Table 4 shows the ratio of the computational rounds needed by the modified gene 
transfers and the original version. Using only one slave CPU, the pMGA usually 
needs slightly more computational rounds (ie. wall-clock time) than the original 
gene transfer. In every other case, except for the Keane-function, all of the 
modified gene transfers perform better even in the C = 1 case, but the difference is 
only 1-2% in this case. The two versions using auxiliary populations are the best. 
These gene transfer methods provide practically the same performance. 
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Table 4 
Ratios of computational rounds in case of 1 CPU (C=1) 

 Rastrigin Keane Step Ackley 
DeJong's 

1st 
DeJong's 

3rd 

BEA

BEAAux

R
R .  0.958 1.018 0.832 0.935 0.947 0.949 

BEA

pMGA

R
R

 1.106 1.169 1.045 1.126 0.997 1.090 

BEA

pMGAAux

R
R .  0.973 1.023 0.791 0.966 0.928 0.876 

Table 5 shows the same ratios as Table 4 for the C = 64 case. Because of the good 
scaling properties of BEA Aux., pMGA and pMGA Aux. methods, all the values 
are lower than 1, which means that they are significantly better than the original 
BEA. The two methods with auxiliary populations are approximately efficient in 
the same degree, and the pMGA is slightly worse than these two methods. 

It is clear that for a known C value, one can choose the other parameters for ideal 
scaling. But in practice sometimes the number of CPUs is not a fixed, predefined 
number. For example, some of the CPUs in the cluster are allocated for other jobs. 
It is important to examine the scaling properties of these methods for a “random” 
number of CPUs also. The (12) and (13) formulas can be used for such 
calculations. 

Table 6 shows the parallel efficiency values in case of non-optimal values of C. 
(Other parameters are the same as in the above optimization of Rastrigin function.) 

Table 5 
Ratios of computational rounds in case of 64 CPUs 

 Rastrigin Keane Step Ackley 
DeJong's 

1st 
DeJong's 

3rd 

BEA

BEAAux

R
R .  0.085 0.083 0.141 0.056 0.062 0.146 

BEA

pMGA

R
R

 0.097 0.095 0.177 0.067 0.065 0.168 

BEA

pMGAAux

R
R .  0.086 0.083 0.134 0.058 0.061 0.135 
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Table 6 
Parallel efficiency of optimization with non-optimal number of CPUs 

C 15 30 45 60 75 
Ep,BEA 0.299 0.170 0.121 0.091 0.075 
Ep,BEAAux 0.932 0.828 0.900 0.678 0.855 
Ep,pMGA 0.931 0.826 0.898 0.674 0.853 
Ep,pMGAAux 0.932 0.828 0.899 0.676 0.855 

The original BEA scales poorly, the other ones scale in a very similar way, and the 
efficiency of parallel versions is never lower than 0.67 in these examples. One can 
construct a parameter set when the parallel versions scale significantly worse, but 
calculations showed that for plausible cases the efficiency is always above 0.5. 

Note that the formula used to calculate the number of computational rounds (11) is 
the same in the last three cases in our parameter settings, but the corresponding 
values of M are different in each line. That is why the number of computational 
rounds and efficiency values are different. 

Figure 5 also shows the same effect for a wider range of CPU numbers. The 
parallel methods give the same curves according to the paper, and therefore only 
one of them is plotted. It is clear that if we can control the parameters, ideal 
efficiency can be achieved, but even with an unexpected number of CPUs the 
efficiency is mostly above 0.8. 
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Figure 5 

Efficiency of the algorithm as the function of the number of CPUs 
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3 The Effect of the Modified Gene Transfers on 
Genetic Diversity 

3.1 Measuring Genetic Diversity 

The modified gene transfer operators (BEA Aux., pMGA, pMGA Aux.) 
significantly differ from the original variant in one aspect: the new bacteria 
created by gene transfer are able to share their genetic information with other 
members of the population to a smaller degree, i.e., not more than ⎡ ⎤NT /  times. 
This can decrease the genetic diversity, which can result in increasing the runtime 
of the program, and therefore it is important to measure the genetic diversity and 
prevent it from being too small. 

The difference between two bacteria were defined with the following formula: 

g
XX
xx

d

m

k kk

jkik

ij

2

1 min,max,
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=   (13) 

This “distance” was originally proposed by Goldberg to realise niching with [6]. 
Here xik is the kth chromosome of the ith bacterium, Xk,max and Xk,min are the possible 
maximum and minimum values of a chromosome. Using this formula, the genetic 
diversity of a population can be determined in the following way: 

∑
=−

=
P

i
bestid

P
D

1
,1

1   (14) 

The expressive meaning of this “genetic diversity” is straightforward: the value is 
between 0 and 1 and shows the average relative difference between chromosome 
values. 

Figure 6 shows the change of genetic diversity during the optimization of the 
Rastrigin function. The chart shows the average of 15 repeated measurements. The 
main settings were the following: C = 64, P = 64, K = 1, g = 20, T = 512, A = 64. 

It can be seen that all the methods show very similar genetic diversity functions. It 
is good news in the sense that the parallel methods are not worse than the original 
BEA. But all the methods show extremely low diversity at the end of the 
calculations, when the population consists of almost identical copies of an 
individual. When this happens, only the random search, due to the mutation 
operator, produces new values, which has very slow convergence. 
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Figure 6 

Average genetic diversity during optimization 

The same phenomenon was discovered in the case of other test functions as well. 
This means that all the bacterial type optimizations produce slow convergence 
near the optimum because of the low genetic diversity. This conclusion is not 
surprising: the methods examined above have no mechanism to protect them 
against the reproduction of identical or very similar individuals. 

Conclusions 

The authors examined the effect of the recommendations and some other 
phenomenon as well in [9]. 

It was concluded that the ratio of gene transfers and population size heavily affects 
the optimization time. The ratio should be between 8 and 16 in case of using the 
parallel gene transfer operators. It is a rule of thumb if exhaustive tuning of the 
settings of the optimization cannot be realized. 

Formulas have been given to estimate the change of wall clock time needed by 
optimization programs if the same optimization is executed with a different 
number of CPUs. It has been shown that the proposed parallel methods scale quite 
well even when the number of CPUs is not know in advance, while the original 
BEA's parallel efficiency is extremely low. 

Lastly, it was pointed out that the parallel gene transfer operators do not worsen 
the genetic diversity in a considerable measure. 

Based on this study the authors can recommend the parallel bacterial type methods 
with the optimal parameter setting described in this paper. 
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