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Abstract: New theoretical background of Parlett-Kahan’s ”twice is enough” algorithm for
computing accurate vectors in Gram-Schmidt orthogonalization is given. An unorthodox
type of error analysis is applied by considering lost digits in cancellation. The resulting
proof is simple and that makes it possible to calculate the number of accurate digits after
all reorthogonalization steps. Self improving nature of projection matrices is found giving a
possible explanation for the stability of some ABS methods. The numerical tests demonstrate
the validity and applicability of the theoretical results for the CGS, MGS and rank revealing
QR algorithms.
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1 Introduction

A new theoretical background of Parlett-Kahan’s ”twice is enough” algorithm for
computing accurate vectors in Gram-Schmidt orthogonalization is given in this pa-
per. To this aim Rutishauser’s control parameter [20] – here called η – is used to
decide if

i) some digits are lost, or

ii) the new vector to be processed is linearly dependent of the current base numeri-
cally, that is, up to machine precision.

Originally, the ”twice is enough” algorithm was given for a one-vector projection,
however, it works also for parallel multi-vector projections as in classical Gram-
Schmidt (CGS). A useful by-product of our analysis is that an estimate for the num-
ber of accurate digits can be given in the course of the computation. That can be
especially helpful when one has to decide linear dependence e.g. in pseudoinverse
calculations.

When orthogonalizing numerically, one may have to face the problem, that the re-
sulting vectors are not orthogonal to each other up to machine precision. The reason
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can be attributed to rounding errors, however, cancellation errors are behind the
phenomenon. In fact, the process of orthogonalizing two vectors is subject to can-
cellation errors if the vectors have nearly the same length and direction, in other
words, their difference is small.

Wilkinson in his books [23], [22] already considered the problem of losing orthog-
onality and he identified the main cause as the presence of cancellation. In [22], pp.
382-387, he considered reorthogonalization in conjunction with the Arnoldi pro-
cess. His numerical example showed that one reorthogonalization step was enough
to get orthogonality up to machine precision.

Rice [19] and Hoffmann [17] did extensive numerical experimentations to find, how
many reorthogonalization steps are needed. Hoffmann formulated the conjecture
that one reorthogonalization step is enough for both – classical (CGS) and modified
(MGS) Gram-Schmidt algorithms. On the other hand, Rice found that sometimes
multiple reorthogonalizations were needed. For early theoretical investigations, see
Daniel at al. [14] and Abdelmalek [2].

Parlett and Kahan [18] considered orthogonalization to one vector and gave their
”twice is enough” algorithm. Having supposed that the starting vectors were accu-
rate, they supplied an error analysis showing that two orthogonalization steps are
practically enough to get a new accurate orthogonal vector.

The Parlett-Kahan (PK) algorithm is based on the following orthogonalization step.
Let z be the vector to be orthogonalized to y. Then let

p =

(
I− yyT

‖y‖2

)
z = orth(y,z) (1)

denote the exact orthogonalization of z, where the 2-norm or Euclidean norm is used
from now on. In reality, we have only a numerical approximation to p, say x′. Let
the error e

′ ≡ x
′ − p satisfy

∥∥∥e
′
∥∥∥ = ε ‖z‖, where ε is a small number, practically

close to the machine precision unit εM and let κ be any fixed value in the range
[1/(0.83− ε),0.83/ε] then the ”twice is enough” algorithm of Parlett and Kahan is
given by

The PK algorithm

Calculate x
′
= orth(y,z), where orth is given in (1).

Case 1: If
∥∥∥x
′
∥∥∥≥ ‖z‖/κ accept x = x

′
and e = e

′
.otherwise compute

x
′′
= orth(y,x

′
)

with error

e
′′ ≡ x

′′ −

(
I− y∗ yT

‖y‖2

)
x
′

satisfying
∥∥∥e
′′
∥∥∥= ε

∥∥∥x
′
∥∥∥ and go to Case 2
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Case 2: If
∥∥∥x
′′
∥∥∥≥ ∥∥∥x

′
∥∥∥/κ accept x = x

′′
and e = e”− p.

Case 3: If
∥∥∥x
′′
∥∥∥< ∥∥∥x

′
∥∥∥/κ accept x = 0 and e =−p.

Theorem 1. The vector x computed by the algorithm ensures that ‖e‖ ≤ (1 +
1/κ)ε ‖z‖ and

∣∣yT x
∣∣≤ κεM ‖y‖‖x‖ .

For proof, see [18].

Remark 1. Observe that if x
′

is machine zero then Case 2 will accept a zero vector.
The equality sign should be moved to Case 3.

One-vector projections are used in the MGS algorithm [4], [5], hence orthogonaliz-
ing twice solves the accuracy problem for MGS that is a sequential algorithm.

For the well parallelizing CGS the question if the ”twice is enough” algorithm works
well, was answered positively by Giraud et al [9], [10]. It is still worth mentioning
that for computing the reduced norm of the orthogonalized vector, Smoktunowicz
et al [21] suggest to compute

√
c2−a2 by replacing the terms under the root sign

with (c− a)(c+ a). They also supply an error analysis for justification. We shall
compare this method with the standard computation and also, with another method
by using trigonometric functions.

For a recent application of reorthogonalization in the Golub-Kahan-Lanczos bidi-
agonalization, see the paper by Barlow, [3].

The schedule of this paper is the following: We present our considerations in the
next Section: conditions for reorthogonalization and a new short general proof.

The other sections are concerned with the comparison and testing of the new re-
orthogonalization algorithms.

It is also assumed that rounding errors and cancellation errors are such that there are
some accurate digits in the computation.

2 Conditions for reorthogonalization

The ”twice is enough” algorithm will be reformulated here from the point of view of
cancellations. The theorem is stated for orthogonalizing with respect to a subspace
in one step, such that the generalization given by [10] is also covered. The improve-
ment of orthogonality is stated and we give a new short proof. Our analysis assumes
that there are some accurate figures in the computation. The section is ended by
accurate digits estimation and numerical experimentation.

2.1 The cancellation phenomenon

Cancellation happens if two numbers are nearly the same and they are subtracted
from each other. For example, assume a 6-digit decimal arithmetic and compute:
126.426− 126.411 = 0.015. It is seen, the first four digits are lost, and the result,
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if normalized, has the form: 0.150000 · 10−1.Now the question is, how can we in-
terpret the accuracy of the result. If there were 10 digits and the further 4 digits –
which are not seen here – are the same, then the result is accurate to 6 decimals.
If the missing four digits were not the same, then we have accuracy only for two
figures. As seen, the number of accurate digits may range here from 2 to 6.

Wilkinson in his book [23] adopts the optimistic picture that accuracy is not lost, and
that makes it possible to introduce the error postulate for floating point operations:

fl(a◦b) = (a◦b)(1+ ε), |ε| ≤ εM,

where ◦ is any of the four arithmetic operations and εM is the machine precision
unit. Higham [16] (Sec. 1.7) gives an example of computing (1− cosx)/x2 for
x = 1.2 ·10−5 when there are 10 significant figures. The result is clearly in error and
another formula is suggested to avoid subtraction. But such tricks are not always
applicable.

Considering the relative precision, he states that ”subtractive cancellation brings
earlier errors into prominence”. Without the postulate above, the error analysis of
numerical algorithms can not be done or it can be overwhelmingly difficult. As
a rule of thumb, the postulate is accepted and programmers are advised to avoid
cancellation as much as possible.

In the following we shall consider cancellation as is and we shall be looking for the
number of accurate figures.

Let the scalars α,β be nonzero and nearly the same. When subtracting, the cancel-
lation can be characterized by the ratio

η =
|α−β |

max(|α| , |β |)
. (2)

If η > 0.5 we may say that there is no cancellation of binary digits, while in the
case of η < 10−ρ – where ρ is the number of accurate digits – we say that the two
numbers are the same to computational accuracy. Although 15 decimal digits are
assumed in double precision computation, we should take into account that usually
the last 2-3 digits are uncertain due to rounding errors. Therefore a practical choice
for ρ is ρ = 12. We may loose digits by cancellation if the condition

10−ρ ≤ η < ηmax (3)

holds, where ηmax = 1/2 may be chosen. The worst case is assumed always, there-
fore the number of lost decimals is estimated by − log10 η . This value is 4.06... in
the above example.

As a consequence, the number of accurate digits after subtraction is

γ = ρ + log10 η (4)

and the error of the difference |α−β | is 10−γ |α−β |. Similarly, the error of η can
be given by 10−γ η .

We shall see in the sequel that ρ – the number of accurate digits without cancellation
– can be estimated after a reorthogonalization step.
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2.2 Cancellation in Gram-Schmidt orthogonalization

Here we consider one step of Gram-Schmidt orthogonalization.

Introduce Q = (q1,q2, . . . ,qk−1) ∈ ℜn×(k−1) and a ∈ ℜn be known and accurate.
Vector a is orthogonalized to the subspace spanned by the orthonormal columns of
matrix Q in one Gram-Schmidt step

θkqk = (I−QQT )a, (5)

where q j-s are normalized that is, θk =
∥∥(I−QQT )a

∥∥
2 holds and the subscript for

the 2-norm will be omitted in the sequel.

Comparing the subtraction here with the case of cancellation from the previous sub-
section, θk of (5) refers to |α−β | and we identify max(|α| , |β |) as the norm of ‖a‖
because we may expect

∥∥QT a
∥∥ not larger than ‖a‖. Hence we are led to the formula

of

η =
θk

‖a‖
, (6)

a computable value for which (3) can be checked.

If η ≥ ηmax then qk is accepted, else if η < 10−ρ the vectors a,q1,q2, . . . ,qk−1 are
considered linearly dependent – at least computationally – such that another vector
a should be chosen.

Otherwise, if (3) is fulfilled then redo orthogonalization for qk:

θ̂kq̂k = (I−QQT )qk. (7)

The next theorem states that at most two orthogonalization steps are enough to get
a new orthogonal vector to computational accuracy. The phenomenon was already
observed by Wilkinson [22] and later formulated as a conjecture by Hoffmann [17].
Parlett in his book [18], with a reference to Kahan gave a proof for k = 2, (orthogo-
nalization to one vector). Later Giraud et al [9], [10] gave proof for any k. We show
here that the proof is much simpler using the above picture.

Theorem 2. If there are accurate digits in the computation, then one may expect the
fulfillment of condition ηmax ≤ η after the second orthogonalization step at most.
The largest choice of such ηmax is 1/

√
2 to fulfill the condition. Hence the result-

ing vector q̂k can be considered orthogonal to q1,q2, . . . ,qk−1 up to computational
accuracy if ηmax is not less than 0.5.

Proof. Before giving the proof, recall that poor orthogonality after the first step is
attributed to cancellation. The second orthogonalization step – if needed – may be
interpreted as orthogonalizing the emerging error vector with respect to the columns
of Q. Taking the square of the norm in (5), we get

θ
2
k = aT (I−QQT )a = ‖a‖2 (1−

∥∥QT ã
∥∥2
), (8)
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where the normed vector ã= a/‖a‖ is used. Denote the angle between R(Q) (range
of Q) and a by ](R(Q),a), then we get the formula

η = sin](R(Q),a) (9)

that can be obtained by considering the rectangular triangle with hypotenuse ‖ã‖=
1, and legs

∥∥QT ã
∥∥ and η =

√
1−‖QT ã‖2, this latter is the distance of ã from R(Q),

see Figure 1. For more detailed informations on subspace angles, see [8]. A short
proof for the smallest angle between a vector and a subspace can be found in [17].

Now assume η ∈ [10−ρ ,ηmax) holds such that reorthogonalization is needed. Then
we have to show that after reorthogonalization ηmax ≤ ηr will succeed for the new
ηr. Indeed, by replacing a with qk in (5), we get for (9)

ηr = sin](R(Q),qk). (10)

This angle is π/2 accurately the sine of which is 1. Now it is simpler to estimate
cos](R(Q),qk) instead of (10), where the computation is subject to errors. The
cosine rule will be used for the almost rectangular triangle and the result is

Figure 1
The projection triangle

cos](R(Q),qk) =
η2 +

∥∥QT ã
∥∥2−1

2η ‖QT ã‖
. (11)

If there were no errors in the calculation, then the numerator would be zero as it can
be checked from (8). Actually we have

cos](R(Q),qk) =
η2−η2

2η ‖QT ã‖
=

η−η

2‖QT ã‖
, (12)

where numerator and denominator were divided by η . It was shown earlier that
the error of η is 10−γ η and we can assume that ã is nearly the same as QQT ã in
case of cancellation. Therefore

∥∥QT ã
∥∥ is near to 1. We approximate the error of

cos](R(Q),qk) by taking twice the error of η in the numerator and replace
∥∥QT ã

∥∥
by 1 in the denominator:

cos](R(Q),qk)≈
2η10−γ

2
≤ 10−γ

ηmax ≤ ηmax, (13)
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as the largest possible value of η is ηmax and the smallest value of γ is 0 (all accurate
digits are lost). We are looking for an ηmax for which the second inequality of

sin](R(Q),q2)'
√

1−η2
max > ηmax

also holds. We have equality on the right if ηmax = 1/
√

2≈ 0.707. It is easily seen
that if 10−γ η with a positive γ is applied under the square root instead of ηmax then
the inequality on the right is fulfilled even better. That ηmax should not be chosen
below 0.5 was discussed in the first subsection here.

Compare it with 1/κ that corresponds to our ηmax in the PK algorithm. There the
possible largest choice is 1/κ = 0.83− ε . That is near to the here found ηmax =
0.707. But κ = 100 is also suggested for less computational works. In that case
one agrees to loose roughly two decimal digits of precision and computation to
machine accuracy is abandoned. By choosing 10−k/

√
2 = ηmax, one allows loosing

k decimal digits.

On the other hand, the smallest possible choice in the PK algorithm for 1/κ is
εM/0.83. It seems too small with respect to our criterion of acceptance.

2.3 Estimating the accuracy of computation

If we repeat orthogonalization then the new ηr can give a method to estimate ρ , the
number of accurate digits.

For exact computation ηr = 1 should hold. We adopt the picture that when reorthog-
onalization is done, the error vector caused by cancellation is orthogonalized at the
second step. The norm of the error vector of qk can be estimated by 10−γ η after the
first step. We have in the second step:

η
2
r = 1−

∥∥QT qk
∥∥2

= 1−
(
10−γ

η
)2

because the accurate part of qk gives zero contribution. Consequently, see also (4)

log10
∥∥QT qk

∥∥=−γ + log10 η =−ρ− log10 η + log10 η

that is,

ρ =− log10
∥∥QT qk

∥∥ . (14)

Observe that ρ depends on the step number k, therefore it should be calculated step
by step such that

ρk =− log10
∥∥QT qk

∥∥ . (15)

Comparing with the PK algorithm, there ηr < ηmax = 1/κ is used for stating zero
for the projected vector. Now assume ρ = 0.4. The interpretation is that even half
decimal digit accuracy can not be assumed after the first projection and that indicates
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serious cancellation. Then ηr ≈ 0.92 holds and using ηmax = 0.707, the condition
in Case 3 is not fulfilled. For this ηmax the equivalent condition for Case 3 is:

ρ ≤ 0.1505, (16)

where the inclusion of equality was suggested in Remark 1. For smaller values
of ηmax, the upper bound here will be slightly diminishing, but it always remains
positive. As seen, the PK algorithms allows the loss of almost all decimal digits for
identifying a numerically zero vector.

If rounding errors are not negligible then observe that cancellation makes sense only
if it is larger than rounding errors. An estimate for rounding error of a scalar product
can be found in [12] :∣∣δ (yT x)

∣∣≤ 1.01nεM ‖y‖‖x‖ , (17)

where n is the length of vectors. For a rounding error analysis of the Gram-Schmidt
process, see [2], [4], [5] and [11]. It is seen that for very large n the rounding errors
may be so big that there are only few accurate digits, or in pathological cases, γ < 0
characterizes the situation.

Fig. 2 shows a picture to illustrate the behaviour of ρ . Vector a is orthogonalized to
p with optional reorthogonalizing, where the distance of a and p is varying as 10−k,
such that k is between 1 and 14. In fact, a− p was chosen to be perpendicular to
p. It is seen that orthogonality holds for 16 figures in all cases and the number of
accurate digits are diminishing as the two vectors are getting closer. Using a double
precision arithmetic, normally one expects that the values in (15) are around 14-15.
Smaller values may be considered as indicator for the events of serious cancellation.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

Variation of ρ with nearness of orthogonalized vector

− log10 p
T q

− log10 ρ

− log10 ‖p− a‖

Figure 2
Orthogonalizing nearby vectors
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2.4 Numerical experiments

Fig. 3 shows variation of precision in the function of ηmax. The matrix is an 80×
80 random matrix having entries from (−1,1) and the computation has been done
under Matlab R2014b. The curve with + signs shows QR how well approximates
matrix A. The values

− log10

max
∣∣∣(A−QR)i j

∣∣∣
max

∣∣Ai j
∣∣ (18)

are shown in the function of ηmax. Similarly, the values

− log10 max
∣∣∣(I−QT Q

)
i j

∣∣∣ (19)

show the number of accurate digits for Q in the worst case. It is seen, we are below
machine accuracy for ηmax ≤ 0.4. But there is an improvement to machine accuracy
when ηmax reaches the value 0.6 which is in good agreement with the theory. That
QR serves a good approximate to A even if the orthogonal system is less accurate
was already stated in [5].
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Figure 3
Sum of squares are computed in both cases

For computing θk of (5), we have some possibilities.

1) Sum of squares.

Here vector θkqk is computed by (5) and the norm of the vector is taken by comput-
ing sum of squares as in 2-norm calculations. The first and second orthogonalization
was cumputed by this approach in Fig. 3.
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2) Difference of squares.

This way of computation uses

θk =

√
‖a‖2−‖QT a‖2 = ‖a‖2

√
1−‖QT ã‖2

analysed by Smoktunowicz et al [21], where the product form is taken for the dif-
ference of squares. The results of this second approach can be seen in Fig. 4 for
the same matrix, where computation was done with difference of squares method in
the first and second orthogonalization. Quite astonishingly the accuracy is poorer
for small values of σ =

∥∥QT ã
∥∥, – that is the case for reorthogonalizations – and it

occurs more frequently with increasing ηmax. The difference of squares method is
not always better, in fact, more and more digits of σ are lost in the computation of
(1−σ)(1+σ) because of the relatively large value of 1. To check this statement,
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Figure 4
Difference of squares are computed in both cases

we show the results in Fig. 5, where the first approach is applied in the case of
reorthogonalization.

3) Trigonometric functions.

A third approach is the use of trigonometric functions. We can use the formulas

β = arccos(
∥∥QT z

∥∥), η = sinβ ,

where z = ã in the first step and z = qk in the second step. But then we get to a
similar picture that could be seen in Fig. 4. And changing back to the first approach
in the second step will result in the same situation that is shown in Fig. 5.
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Figure 5
Difference at first, sum of squares in second case

The numerical experimentations have led us to the statement: numerical accuracy
will be better using the first approach – compute projected vector and take norm – if
QT z is very small. This time, when looking into numbers, an additional surprise is
that the numerical values of η are very close to 1 such that they may be even larger
than 1 – a situation that contradicts to being a value of the sine function. It stresses
the belief that rounding errors govern the situation here. Observe that the second
and third approach force η ≤ 1, therefore they can not handle the numerical case of
1 < η so well because division by η is needed for normalization.

2.5 Updating QR-decomposition in reorthogonalization

It still deserves some words how updating of matrix R can be done after the second
orthogonalization step. At the firt step the kth column was given by[

aT Q θk
]T

.

In the reorthogonalization step, one applies the projection to θkqk giving

θk(qk−QQT qk) = θkηrq̂k,

where ηr is the norm of (qk−QQT qk) such that the resulting vector q̂k is normed to
1. Now it is seen that the updated kth column of R is given by[

aT Q+qT
k Q θkηr

]T
. (20)
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It was observed in numerical experiments that updating the nondiagonal column
elements in matrix R ruins the quality of QR if there is a large loss of precision after
the first orthogonalization step. Because of that updating was allowed only for large
enough ρ of 15 in our rank finding program.

2.6 Orthogonal base algorithms

Minor modifications in the PK algorithm were suggested:

• Choose κ =
√

2 ·10i if the loss of i decimal digits are allowed.

• Move equality sign from Case 2 into Case 3.

We are in agreement with other authors that projection into an arbitrary subspace is
also allowed.

Another variant of orthogonal base algorithm (OBA) can also be given that reflects
the view of this paper. Now all three approaches may be applied for norm calculation
in the first phase but for reorthogonalization only the first approach is suggested in
accordance with the Numerical experimentation Subsection. Chose for ε a nearby
value to εM and ηmax = 0.707. Assume that k−1 orthogonal vectors are ready, then
the kth step can be given by

Algorithm 2. One step of OBA

Orthogonalize ak to the first k−1 columns of Q by (5)
Compute θk by (5) and then η by (6)

If η < ε then act for a linearly dependent vector
else

Compute the kth columns of Q and R
if η ≤ ηmax

Perform reorthogonalization by (7)
Update the kth columns of Q and R

end if
end else

end if

One can also lower upper bound for loosing digits as in the PK algorithm. Projec-
tions can be done as in (5) and with explicitly computed matrices.

Another variant may be to apply reorthogonalizing always. There are signs that such
an algorithm may show good performance, [7]. However, one should be cautious in
that case, see the remark after (20).

3 Some further applications of OBA

First we remark that reorthogonalization may be applied to improve an orthogonal
projection that is subject to numerical errors. If it is given in the form of QQT

that can be considered a Choleski decomposition of a positive semidefinite matrix,
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then the steps of OBA give a straightforward procedure to refine a vector qi in the
orthogonal system.

One can also give a quality improvement if the projection is given by a matrix P.
Now say, column i should be corrected. Then form the projection

P̂ = P− PeieT
i P

eT
i Pei

. (21)

It brings Pei into zero: P̂Pei = 0. Its direction may be corrected by

z = Pei− P̂Pei (22)

and then the improved projection can be re-gained by

P̂+
zzT

zT z
. (23)

Observe that all nonzero columns are eigenvectors of the projection matrix with
eigenvalue 1. The eigenvectors with eigenvalue zero can be found in the zero space
of the matrix. Taking the powers, the eigenvectors with zero eigenvalue will im-
prove, while the eigenvectors with eigenvalue 1 may be slightly deteriorated, if an
eigenvalue is not exactly 1. But we can change to I−P such that the image space
and zero space are interchanged. Then by taking the powers of I−P improves the
image space of P.

Also, observe that methods intensively using projections such as in ABS methods
[1] will consecutively improve the quality of zero space, hence they have a self-
improving nature. That explains, why some ABS methods can be unusually stable
even in case of pathological matrices.

3.1 Rank revealing QR algorithm with reorthogonalization

Rank revealing by QR (RRQR) decompositions were introduced by Chan [6] and
later investigated by many authors. Ch. 5 of [12] gives samples of such orthogonal
algorithms. See also [13] for a good account of RRQR decompositions. We do
not want to dwell much on such algorithms, our aim here is to show only some
applications of repeated orthogonalization.

For rank revealing one permutes the columns of A so that the column having the
maximal 2-norm comes first. An easy way of the algorithm is to reorder columns in
decreasing order of length at the beginning and then apply QR factorization. A more
demanding variant chooses the vector of maximal column norm in the ith step of the
remaining projected vectors. Specifically, denote by Qi the matrix of i orthonormal
columns, the corresponding projection matrix by Pi = I−QiQT

i , then choose column
PiAek for which ‖PiAek‖ is maximal among the so far not chosen vectors.

Program GSrank was written for rank revealing. The following choices were ap-
plied: ηmax = 0.707 and ε = 4εM . ρout was computed by (14) and reorthogonaliza-
tion was done if η < ηmax and ρout < − log10(2εM) were satisfied and the current

– 19 –
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Figure 6
Errors of A - QR for Pascal matrices
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Figure 7
Goodness of orthogonal vectors for Pascal matrices
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The found ranks of Pascal matrices
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Figure 9
Rank results with normed rows
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Figure 10
Vandermonde matrices
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Figure 11
Corrected relative errors for Vandermonde matrices

– 22 –



Acta Polytechnica Hungarica Vol. 12, No. 8, 2015

vector was not considered linearly dependent. The update formula for the non-
diagonal column elements of R was allowed only if ρout ≥ − log10(ε) had been
satisfied. The projection Pi was calculated explicitly.

Such methods are working well for ordinary matrices. It is more interesting to show
results for pathological cases. One example is the Pascal matrix that is found in
Matlab’s collection and can be called by the statement pascal(n). Figures 6 and 7
show the goodness of the factorization for Pascal matrices.

The attentive reader may observe in Fig. 6 that the relative precision can be as large
as 16.4 decimal digits, though having a double precision arithmetic, that accuracy
is impossible. Formula (18) was applied here. First one might think that it could
be attributed to the chosen norm. However, a more probable explanation is the
following: The absolute largest matrix element is so large that the next largest one
is less by some orders of magnitude. Chances are good that the column having the
largest element comes first, or it is among the firstly chosen vectors. As the explicit
projection Pi is applied in all steps, then it follows that the direction of such vectors
are projected out many times and finally it may happen that the error of some largest
elements are machine zero. Then for a more reasonable relative error, only those
largest elements should be taken, for which the error is not machine zero. Naturally,
a smaller divisor applies in that case. An example for such kind of relative error
computation will be shown for Vandermonde matrices.

For Fig. 7, formula (19) was applied. As seen, machine accuracy may be assumed
for all Pascal matrices, the condition numbers of which are roughly proportional to
10n−1. The entries in Pascal matrices are exactly representable by machine numbers
up to the order of 23. It may be a question that the double precision form of higher
order matrices still have rank equal to their size. Such matrices were converted and
tested in quadruple precision arithhmetic. It was found that all of them have rank
equal to their size [7].

The rank results can be seen in Fig. 8 as compared to those of Matlab.

In this example the 35th row was copied into the 45th row in order to test sensitivity.
As seen, GSrank performs well, however, there are uncertainties in higher dimen-
sions. Matlab’s rank finder suffers if there are numbers very different in their order
of magnitude. If all rows are normed to 1, then rounding errors are introduced into
matrix data and that leads to another picture. Now Matlab performs better.

The other matrix tested is the Vandermonde matrix with base points 1,2, ...,n. The
results are similar to those of the Pascal matrix.

Fig. 10 shows even ”better” – but impossible – relative errors for the goodness of
QR-decomposition. The remarks previously given to Fig. 6 apply here once again.
According to that, a program was written for the relative error such that search
for absolute maximal matrix element was done only for entries having a nonzero
error. The corrected relative errors in Fig. 11 justify the supposed phenomenon.
Figures 12 and 13 show the goodness of the orthogonal base and rank results for
Vandermonde matrices.
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Figure 12
Quality of orthogonal systems for Vandermonde matrices
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Found ranks of Vandermonde matrices
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3.2 Programs to download

For checking and further tests, the following Matlab routines can be downloaded
from: http://numanal.inf.elte.hu/~hegedus/matlab.html

GSrank: QR decomposition with pivoting and rank finding

Pproj: Performs one projection step, called by GSrank

relarel: Corrected residual error for matrices

lsqsol: Least squares solution for Ax=b, where A is decomposed by GSrank.

4 Conclusions

A new theoretical background and modified versions of the ”twice is enough” al-
gorithm are given. Quite surprisingly, cancellation error considerations lead to a
simpler proof. The success may suggest a wider use of cancellation phenomena in
error investigations. Another surprise is the possibility of estimating the number of
accurate digits after the first projection with the help of second projection data (ρout
from (14)). The analysis gives an explanation of the extraordinary stability of ABS
methods in some cases. The test problems shown justify the given statements and
also reveal some unexpected numerical phenomena. Further, it is demonstrated that
orthogonalizing twice assures a good quality of rank revealing QR-decompositions.
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