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Abstract: In an earlier paper A. Horváth and A. Prékopa [3] applied the Boole-Bonferroni 
lower and upper bounds to determine the expected time to failure of systems. The main goal 
of this paper is to show that the so called hypermultitree bounds developed by J. Bukszár 
[1] also can be applied for investigation of the expected time to failure systems. 
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1 Introduction 
The reliability systems investigated in this paper belong to the field of serial and 
parallel interconnected systems. Serial system operates if and only if its all 
components operate. Parallel system operates if and only if at least one 
components of it operates. 

Let us suppose that the components operate or do not operate independently from 
each other. Let ip  be the operational probability of component i , then the 
operational probability of serial and parallel systems can be given by the 
following formulas: 

npppr "21=  (1) 

( )( ) ( )npppr −−−−= 1111 21 "  (2) 

In the practice one should investigate components with the random operating 
times, too. The investigation is simpler if they are independent random variables. 
Let iX  designate the lifespan of component i  and ( )tFi  its distribution function: 

( ) ( ) .,,1, nitXPtF ii …=≤=  (3) 

Then with the notations 

( ) ,,,1,1 nitFp ii …=−=  (4) 

formulas (1) and (2) give the operational probability of the system at time t . 
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In practice besides determining the probability of reliable working state of the 
system at a certain time, we want to determine other data as well. One of the most 
important characteristics of this type is the expected value of elapsed time until 
failure. In the case of serial systems, the elapsed time till the failure of the system 
equals: 

( )nXXXX ,,,min 21 …=  (5) 

and in the case of parallel systems it equals: 

( )nXXXY ,,,max 21 …= . (6) 

As it was pointed out in the paper [3], the expected value of these random 
variables can be determined in the following way. 

If a nonnegative random variable Z  has probability distribution function ( ),zG  
then it is well known that 

( ) ( )[ ] .1
0

dzzGZE ∫
∞

−=  (7) 

Using this formula, the expected value of the elapsed time until failure for serial 
systems can be calculated as 

( )[ ] ,1
0

dttF∫
∞

−  (8) 
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In the case of parallel systems the same value can be calculated as 

( )[ ] ,1
0

dttG∫
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−  (10) 

where 
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The situation is more complicated when the random variables nXXX ,,, 21 …  
are stochastically dependent. Paper [3] pointed out that in this case one can use the 
so called Boole-Bonferroni bounds (see for example book [2] by A. Prékopa) to 
give good lower and upper bounds on the expected value of the elapsed time until 
failure of systems. In the next section we shortly define the hypermultitree 
probability bounds introduced by J. Bukszár [1] and in the last section we will 
show how can be applied these bounds in this context. We remark, that the 
hypermultitree probability bounds need less calculations and usually are more 
accurate than the Boole-Bonferroni bounds, so their application in this context 
may become extremely useful. 

2 The Hypermultitree Probability Bounds 

In the paper [1] J. Bukszár introduced the concept of ( )mh, -hypermultitrees and 
based on this concept he developed good lower and upper bounds on the 
probability of union (resp. intersection) of events. As a possible application he 
estimated the value of the multivariate normal probability distribution function by 
his newly introduced probability bounds. The definition of the 

( ) ( )mhV mhh ,,,,, 12 +=Δ εε … -hypermultitree is given in Definition 3 of 

paper [1]. In the definition  V  is the set of vertices and ihε ’s are sets of 

hyperedges containing ih +  vertices. Definition 4 of paper [1] introduces the 
concept of the weight of ( )mh, -hypermultitrees in the following way. Let 

nAAA ,,, 21 …  be arbitrary events and suppose we can calculate the probability 

of their intersections up to 1++ mh  number of events involved in the 
intersection. Then the weight of the ( )mh, -hypermultitree 

( )12 ,,, +=Δ mhhV εε …  is given by the formula 
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J. Bukszár proved the following inequalities in paper [1] (see Theorem 1): 

If nAAA ,,, 21 …  are arbitrary events, and ( )12 ,,, +=Δ mhhV εε …  is an 

arbitrary ( )mh, -hypermultitree then the following inequalities hold: 

(i) if h  is even, then 
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(ii) if h  is odd, then 
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From these formulae one can see that the probability bounds given by the ( )mh, -
hypermultitrees are closer to the exact probability value when their weight is 
larger. The problem of finding the best possible hypermultitree is NP hard, 
however J. Bukszár in Section 3 of his paper [1] developed very efficient 
algorithms for finding hypermultitrees with heavy weight. In the next section we 
will use only the special cases 0=h  and 1=h  as it was proposed by J. 
Bukszár. 

3 Application of the Hypermultitree Probability 
Bounds for Investigation of Failure Systems 

In the case of serial systems we can apply the formulae (13) and (14) in a 
straightforward way for the events { } ,,,1, nitXA ii …=≤=  as we have 

( ) ( ) ( )( ) ( )nn AAPtXXPtXPtF ++=≤=≤= "… 11 ,,min . (16) 
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To do this first we introduce the notations: 
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Now for 0=h  we get the upper bound: 
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and for 1=h  we get the lower bound: 
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In the case of parallel systems we have 

( ) ( ) ( )( ) ( ) ,,,max1 11 nn AAPtXXPtYPtG ++=>=>=− "… . (21) 

so we have to introduce further notations: 
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Now for 0=h  we get the lower bound: 
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and for 1=h  we get the upper bound: 
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To get the expected value of the elapsed time until failure of the systems one can 
apply the general integration formula (7) as it was done before. 

Conclusions 

In this paper the ( )mh, -hypermultitree bounds introduced by J. Bukszár were 
applied to determine lower and upper bounds on the expexted time to the failure 
of serial and parallel systems. As these bounds proved to be more efficient than 
the Boole-Bonferroni inequalities are, they are hoped to be useful tools in 
investigation of failure systems. 
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