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Abstract: Over the last decade a lot of common properties were found in complex networks 

in several fields such as sociology, biology and computer engineering. Recently, the 

multifractal network generator method has been developed, and it seems to be a promising 

way to generate networks with prescribed statistical properties. For educational purposes, 

however, it would be adequate to create an easy-to-use redevelopment framework. 

Therefore, a software package had been developed in Python language that can generate a 

network with a given degree distribution or a given average degree using the multifractal 

generator method. This package is a part of the cxnet framework, which itself is suitable for 

educational applications. The present paper discusses the reasons why this framework was 

developed in Python. Those parts of the program that need longer running times were 

identified and rewritten in C++. Running times of the generations were measured, 

changing several parameters, and the new version turned out to be an order of magnitude 

faster. 
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1 Introduction 

Networks have a collection of entities, called nodes. These nodes can be 

connected or not, so the networks can be described as a graph in every moment. 

Complex networks are very large networks with a usually different structure from 

that of the random network. One of the aims of the science of complex networks is 

to study the general properties of real networks. 

There are a lot of networks in the fields of engineering and informatics (the World 

Wide Web, the Internet), biology and medicine (network of protein interactions, 

the food chain) and sociology (acquaintances). Over the last decade, many 

networks and network models have been studied [1, 8]. 

To study the general properties of networks, one usually needs a method to create 

networks with prescribed properties. To create such networks, one can use 

optimization, which means that we change some parameters to approach the 
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properties we want to achieve. A promising optimizing method is the multifractal 

network generator [9]. This was improved to create less isolated nodes [10]; 

however at the size of real networks, the original method is reasonable. Using the 

multifractal network generator, a broad range of networks with arbitrary properties 

can be generated. The entropy of such generated networks is bigger than that of 

the other usually-used models, such as the Erdős-Rényi model, the small world 

model and Barabási-Albert model [4]. With this method, we can set more than one 

target property, for example a power-law function as the degree distribution and a 

clustering coefficient decreasing inversely proportional to the degrees of the 

nodes. These two properties can be found in many real-world networks and in the 

resulting networks of the hierarchical model [11]. Our goal is to develop an 

educational framework that is suitable for generating and analyzing networks, and 

then students would be able to develop standalone functions to extend the 

possibilities of the framework. The framework has been implemented in Python 

language, but some parts were written in C++ language as well. In this paper we 

describe the method and compare the running times of the two versions: the one 

written in pure Python and the other, where the calculation of the degree 

distribution is written in C++. 

2 The Multifractal Network Generation Method 

The method of generating networks with the usage of multifractals is described in 

detail in the article of Palla et al. [9]. 

In multifractal network generation, the generating measure is a central concept. 

The generating measure is a probability measure defined on the [   [  [   [ unit 

square. A network can be generated from the generating measure in two steps. The 

first step is to create a link probability measure with the iteration of the generating 

measure. In the second step the program creates links between the nodes using the 

link probability measure. During generation, however, the program does not need 

to generate any networks; it calculates the estimated properties of the network 

from the generating measure. 

2.1 Generating Measure and Link Probability Measure 

Both the   and   axes of the unit squares are divided into   not necessarily equal 

intervals to define a generating measure. In our version, the   and   axes have the 

same division points. With this division we created    rectangles on the unit 

square. Probabilities     are assigned to each of the rectangles in a symmetric 

fashion, 

              ∑    
   
         (1) 
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The probability assigned to the rectangle at the origin is denoted by the     and 

the one at the opposite corner is         . 

The K
th

 iteration of the generating measure means a unit square divided into 

rectangles with assigned probabilities, as in the generating measure, but with 

      rectangles. The first iteration (   ) by definition gives the generating 

measure itself. 

For the case of    , we obtain the division points from the division points of 

the (K-1)
st
 iteration by dividing each of its intervals into   subintervals, where the 

length of subintervals are proportional to the length of intervals of the original 

generating measure. 

The pij(K) probabilities of the K
th

 iteration can be calculated as 

   ( )  ∏       
 
    (2) 

where 

    
            

      (3) 

The notation (i mod d) means that the remainder of the integer division     and 

    denotes the floor (integer part) of  . Analogous equation to (3) gives jq as well. 

 
 (a) (b) 

Figure 1 

A generating measure (a) with the division points 0.2 and 0.5, and the link probability measure resulted 

by two iterations (b) 

2.2 Generating the Network 

The generation of networks proceeds in two steps. The first step is the iteration of 

the generating measure to get the link probability measure. The second one is the 

generation of the network from the link probability measure obtained after the 

iterations. The latter goes as follows. 

First the number of iterations ( ) and the number of nodes ( ) in the network 

need to choose. If one axis of the generating measure is divided into   intervals 

with the division points, there will be    intervals in one axis of the link 

probability measure. We assign to each node with index   (  [   ] integer) a    
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random value from a uniform distribution on the [0,1[ interval. We determine the 

   index of the interval where    is located (   [      ]). 

For all pairs of the nodes we determine whether to connect the nodes or not. If the 

    and     random number belonging to the two nodes falls into the intervals     

and    , respectively, we connect the two nodes with the probability         
( ), 

where the values of    ( ) are the probabilities after the K
th

 iteration of the 

generating measure defined in equation (3). 

2.3 Adjusting the Generating Measure 

The creation of the generating measure can be shown as an annealing process 

where the energy of the generating measure closes to the minimum as the 

temperature decreases. 

To create a generating measure that gives a network with a given target property, 

we need to define an energy function (a non-negative function) that measures the 

goodness of the generating measure. The smaller energy, the closer the network 

created from the generating measure to the one with the target property. 

After giving the   numbers of intervals on one axis and the   number of iteration, 

our program starts with equal probabilities and equal interval lengths on the axes. 

In each step it either relocates a division point or changes the probabilities. Then it 

calculates the energy belonging to the generating measure. If this    energy is 

smaller than that belonging to the network of the existing generating measure E, 

than it changes the generating measure to the new one and stores the energy. If 

      , then the new generating measure will be accepted with the probability 

 ( )      ( 
    

 
), (4) 

and rejected with    ( ) probability. The arbitrary parameter   plays the role 

of temperature (in units of the energy). 

Decreasing the temperature slowly, the generating process has the possibility to 

escape from local minima. The smaller the temperature, the more changes will be 

rejected, and the network converges to that with the target property. 

2.4 Calculating the Degree Distribution 

One of the targets of the generation can be the degree distribution. The degree 

distribution p(k) is a function of degree k giving the probability of a node having 

the degree k. The expected values of a generating measure can be calculated as 

 ( )  ∑   ( )  
  

   , (5) 

where 

  ( )  
    

 

  
        (6) 
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       ∑        (7) 

     is the expected degree of a node in the i
th

 interval, and            is 

the length of the i
th

 interval. 

We can define the energy of a link probability measure as 






 


max

min
))(),(max(

)()(k

kk kpkp

kpkp
E  (8) 

where   ( )
 
is the degree distribution of the actual link probability measure, and 

 ( ) is the target degree distribution. 

3 Results 

3.1 The mfng Program 

There is an existing implementation of the multifractal network generator written 

in C++ without the option of setting target properties [9]. Its source code is 

unfortunately not available. Our earlier works are about the cxnet framework (a 

Python package) we developed to investigate complex networks and bring them 

into higher education [6-7]. The mfng generator does not need the cxnet 

framework, but the analysis of the result needs it. During generation, the program 

does not create networks. It calculates the expected values of the degree 

distribution from equation (4) (see below). The analyser module of the mfng 

software package provides three main features: 

1) It can generate networks from the generating measure constructed by the 

mfng generator. 

2) It can calculate the degree distributions of these networks. 

3) It can plot the degree distributions of these networks as well as the degree 

distribution calculated from equation (4). It can use several binning 

methods to create clearer plots. Figure 3 (a) is an example plot created 

using the analyser module. 

Earlier the mfng generator and analyser was a sub-module of the cxnet package. 

To make the installation of the mfng easier it has become a standalone package. 

The documentation of cxnet with the installation of the mfng package and a 

tutorial can be reached from the page [12]. The mfng program can be reached from 

its repository [13] using the git version control system, or can be downloaded as 

zip or gzipped tar archive from there. 
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The mfng module includes the ProbMeasure class, the Generator class and some 

property classes. An instance of the ProbMeasure class contains the probabilities 

and the division points. It includes a function to iterate the measure, returning with 

a new ProbMeasure instance. This function makes it possible to create the link 

probability measure from the generating measure using the numpy module. The 

mfng program generates the generating measure for the networks with the given 

properties. There are two steps with the same temperature  . In one step, the 

generator changes the probabilities; in the second step it changes the division 

points. The Generator class stores the main parameters of the generation and the 

property we want to achieve. The main parameters of the generation are the initial 

and final temperature, the number of steps, the number of intervals in the 

generating measure and the   number of iteration. 

3.2 Changing the Division Points and the Probabilities 

In two alternating steps, the program first changes the probabilities and then 

changes one of the division points. Changing the probabilities is performed in 

three steps. First, the program chooses one of the elements of the probability 

matrix randomly. In the second step, it multiplies the probability with a random 

value from a uniform distribution on the [0.9, 1.1[ interval, so the probability will 

not change more than 10%. For the element not in the main diagonal, the 

symmetric element needs to be multiplied as well. In the third step, the probability 

matrix is normalized. 

To change the division points, the program adds zero and one to the list of the 

division points, so the division points will be d0, d1, d2, …, dm-1 , dm, where d0=0 

and dm=1. 

Then the program chooses randomly one of the inner division points with the 

index i [1,m-1] and chooses a   random value from the uniform distribution on 

the [0,1[ interval. The program relocates the chosen division point to      ( ), 

where 

  ( )  

{
 
 

 
  

(  
 

 
)
 

(  
 

 
)
         

 

 

 
(  

 

 
)
 

( 
 

 
)
             

 (9) 

Here,            , and             and     is an arbitrary exponent. 

If the   ( ) function gives 0, the division point stays in the original place. With 

the increasing   exponent parameter, the   ( ) function is more likely to be close 

to zero, so the new division point is more likely to stay in the proximity of the 

original division point (Figure 2). 
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Figure 2 

An example for the   ( ) function used for relocating a division point. This example uses one inner 

division point (   ) with the actual value 0.3, so the parameters are     and      . The function 

was plotted with these parameters and with the exponents          . The value of the function will 

be in the interval [      [  [        [. 

3.3 Generating a Network with Given Degree Distribution 

Our program calculates the degree distribution as in equation (5), and in our 

measurements, it used the energy function in the equation (8). 

The two property classes, DegreeDistribution and DegreeDistributionC, can 

calculate the degree distribution of a generating measure and can return with the 

energy of that distribution. In the first one, the calculation of the degree 

distribution has been written in Python using the numpy package. The second one 

uses C++ functions for that calculation. Each version uses the same Python 

function to calculate the energy from the degree distribution. 
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 (a) (b) 

Figure 3 

Results of a generation. The target was a power-law function degree distribution with the exponent   . 

In subfigure (a) the target degree distribution was drawn with a blue dotted line, the initial degree 

distribution calculated from the generating measure with a red dotted line, and the degree distribution 

calculated from the last accepted generating measure with a green dashed line. The degree distributions 

of networks generated from the initial and from the last accepted one are drawn with dots. In the 

subfigure (b) the energy as the function of the step number can be seen. 

3.4 The Advantages of Python Programming Language 

There are several reasons to use the Python language for the main program. 

Python itself is a dynamically-typed, object-oriented language with some useful 

complex data types (list, dictionary, set). These data types and the dynamically-

typed property make possible a very flexible argument handling of functions with 

default argument values and keyword arguments. We frequently use two Python 

shells (ipython and IDLE) to run Python commands interactively. IDLE is part of 

most installations, but ipython has several useful extra abilities, like the interactive 

plotting of the functions with the pylab package. 

The Python language has a huge standard library that can be reached in the 

standard installations on many operating systems, including Windows, Linux and 

MacOSX. We used the shelf package to store the generated results as well as the 

energies, the divisions and the probabilities of each step in a binary form. 

Another advantage is the many useful free and high quality packages not included 

in the standard library. One of them is the numpy package that has its own data 

structures like array and matrix. An array is a sequence of elements of the same 

type. Numpy has mathematical functions like logarithm that can calculate the 

logarithm of each element of the array or matrix in one step. This calculation is 

quite fast, because the functions of numpy are written in the C programming 

language. The calculations can be slow if the calculations have too many steps at 

the Python level. For example, if we have more additions, subtractions, 

multiplications, divisions and functions calls, the Python must check whether the 

factors, the terms or arguments are arrays or not. These steps slow down the 

calculations. 
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The other useful package is the pylab package, which provides mathematical and 

plotting functions very similar to that of in MATLAB. This package is based on 

the numpy and matplotlib packages. The pylab, numpy and matplotlib packages 

are not part of the standard library. 

To analyse the properties of the network belonging to the generating measure, the 

program uses the igraph complex network analyser package. 

A big part of the code is covered with unit tests, which allows us to check easily 

the functioning our program in several environments (Python versions and 

operating systems), as the unittest package is also part of the standard library. 

To identify the most CPU intensive parts of the program the cProfile module of 

the standard library can be used. 

3.5 Numpy Version of the Program 

The first version of the program used the numpy package of the Python 

programming language. With this package we can use arrays (row vectors), which 

can be manipulated more efficiently than Python lists. We used the cProfiler 

module to determine the parts of the program that needs too much time. We found 

that the iteration and the calculation of the estimated degree distribution belonging 

to the link probability measure were two such parts. 

We ran the generation with 2000 steps and 2000 nodes. The time of the generation 

was 5392 seconds. The calculation of the degree distribution from the link 

probability needed 3625 seconds (67%), and the calculation of the link probability 

measure took 1748 seconds (32%). The calculation of the energy from the actual 

degree distribution and the other parts of the program took less than 1% of the 

running time. 

3.6 The C++ Version of the Program 

According to the running time measurements, the iteration of the generating 

measure and the calculation of the degree distribution were rewritten. The C++ 

program gets the generating measure from Python and writes the degree 

distribution to the standard output, where the Python collects information. In the 

future we plan to implement a more appropriate coupling between the C++ and 

the Python part of the program. We will wrap the C++ code with SWIG or 

CPython [2] to call the C++ functions easier. 

3.7 The Comparison of the Running Times 

We carried out a sequence of generations to compare the running time of the pure 

Python version using the numpy module and the version using C++ code. The 

program ran on a Debian Linux server installed as a VMware virtual machine. 
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The target degree distribution of the generations was a power-law degree 

distribution with the exponent   . There were three parameters that changed: the 

number of steps, the number of iterations and the number of nodes in the network. 

More details about the network generator program can be found in the Appendix. 

The resultant running times are in Table 1 and are plotted on Figures 4 and 5. 

Table 1 

The running times of the two versions and ratio of the numpy version and the C++ version. The full 

running times are in minutes, but the running times of one step are in milliseconds. 

 

 

Figure 4 

Running time of the C++ version of the generator as a function of number of nodes with a scale-free 

degree distribution as the target property. The number of iteration (K), number of nodes and number of 

steps have been varied. 

This method of network generation makes it impossible for the network to have 

multiple edges between a node pair or to have self-loops (edges with the same 

nodes at its two endpoints), so the maximal degree cannot be bigger than the 

number of nodes in the network. During generation, the maximal degree in 

equation (8) was set to smaller by one than the number of the nodes, so with an 

increase in the number of nodes in the generation, the number of the terms in the 

# nodes type full one step full one step full one step full one step full one step full one step

numpy 23,37 701,01 89,88 2696,40 503,47 15104,10 58,35 700,18 224,40 2692,80 1259,86 15118,32

C++ 1,68 50,52 4,44 133,20 13,59 407,64 4,28 51,42 11,10 133,20 33,52 402,19

ratio 13,9  20,2  37,1  13,6 20,2 37,6

numpy 53,62 1608,51 175,50 5265,00 759,10 22773,00 133,81 1605,73 439,85 5278,20 1905,34 22864,08

C++ 3,79 113,80 9,75 292,50 27,78 833,49 9,70 116,44 24,20 290,40 69,59 835,08

ratio 14,1 18,0 27,3  13,8 18,2 27,4

numpy 102,72 3081,60 319,47 9584,10 257,36 3088,28 801,56 9618,72

C++ 7,12 213,56 17,60 528,00 16,96 203,54 43,83 525,96

ratio 14,4 18,2 15,2 18,3

K=5 K=6

2000

5000

10000

2000 steps 5000 steps

K=4 K=5 K=6 K=4
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sum and the running time increases, too. With an increase in the number of 

iterations, the running time increases fast, because the number of probabilities in 

the link probability measure increases exponentially with the number of iteration. 

For larger values of the number of iterations, the running times of the mfng 

version became too large (bigger times than one day can be found in Table 1), but 

with the C++ version this time is acceptable. The running time of mfng version 

compared to that of the C++ version is 13–38 times longer in these generations, 

and this ratio increases with the increasing number of iterations. 

 

Figure 5 

The ratio of the running times of the numpy version and the C++ version. 

Conclusions 

With the multifractal network generator (MFNG) method one can generate a wide 

range of networks with prescribed statistical properties. The method uses a 

mapping between the generator measures (a measure defined on the unit square) 

and the networks. It simulates an annealing process to get the optimal parameters 

of the generator measure. If one knows the generator measure, the degree 

distribution and some other statistical properties of the network can be calculated. 

In our mfng program there are two realizations of the MFNG method. Our first 

realization of the MFNG method was written in Python using the numpy package. 

After rewriting some functions of the mfng program in C++ language, the running 

time of the program was reduced significantly, which allows for using a higher 

iteration number and more steps, so one can create generating measures that 

generate networks with properties closer to the target property. 
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Our program is part of the cxnet program framework intended to be used in 

education. As the C++ functions can be reached from Python, the easy-to-use 

Python framework would not necessarily be dropped. It makes it easier to use the 

framework in the education, especially if the students are familiar with the cxnet 

framework. 
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Appendix 

In the running time comparison the program started the generation with a Python 

program as follows: 

import mfng 
for steps in [10000, 20000]: 
    T0 = 0.2 
    generator = mfng.Generator(T0=T0, steps=steps, Tlimit=T0/10000, 
            m=3, K=4, 
            n=2000, 
            divexponent=7, 
            project="power_law", 
            ) 
    generator.append_property( 
            mfng.DistributionFunction( 
                "k**-2", 
                maxdeg=n-1, mindeg=1 
                ) 
            ) 
    generator.go() 

The meaning of the program is as follows. First the program imports the functions 

and classes of the mfng module. It carries out two generations creating a generator 

in both generations. The temperature will decrease from 0.2 to 2×10
-5

 in 10000 

and 20000 steps respectively. The generating measure in the generations would 

have 3×3 probabilities and it would be created for a network with n=2000 nodes. 

The changing of the division points will use the exponent 7 in equation (9). The 

result will be saved in the project_power_law directory. There is one target 

property with a distribution function proportional to the k
-2

 power-law function. 

The degree distributions in the generation will be compared to the target 

distribution from the degree 1 to 1999. 

This version uses the numpy version to generate the generator function. If we 

slightly modify this program—we would add DistributionFunctionC (with C in 

the end) property to the generator instead of DistributionFunction—the generator 

runs the C++ version. 
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