
Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 133 –

Running Time Comparison of Two Realizations

of the Multifractal Network Generator Method

Árpád Horváth

Óbuda University, Alba Regia University Centre, Székesfehérvár, Hungary

horvath.arpad@arek.uni-obuda.hu

Abstract: Over the last decade a lot of common properties were found in complex networks

in several fields such as sociology, biology and computer engineering. Recently, the

multifractal network generator method has been developed, and it seems to be a promising

way to generate networks with prescribed statistical properties. For educational purposes,

however, it would be adequate to create an easy-to-use redevelopment framework.

Therefore, a software package had been developed in Python language that can generate a

network with a given degree distribution or a given average degree using the multifractal

generator method. This package is a part of the cxnet framework, which itself is suitable for

educational applications. The present paper discusses the reasons why this framework was

developed in Python. Those parts of the program that need longer running times were

identified and rewritten in C++. Running times of the generations were measured,

changing several parameters, and the new version turned out to be an order of magnitude

faster.

Keywords: complex network; graph theory; multifractal; software

1 Introduction

Networks have a collection of entities, called nodes. These nodes can be

connected or not, so the networks can be described as a graph in every moment.

Complex networks are very large networks with a usually different structure from

that of the random network. One of the aims of the science of complex networks is

to study the general properties of real networks.

There are a lot of networks in the fields of engineering and informatics (the World

Wide Web, the Internet), biology and medicine (network of protein interactions,

the food chain) and sociology (acquaintances). Over the last decade, many

networks and network models have been studied [1, 8].

To study the general properties of networks, one usually needs a method to create

networks with prescribed properties. To create such networks, one can use

optimization, which means that we change some parameters to approach the

mailto:horvath.arpad@arek.uni-obuda.hu

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 134 –

properties we want to achieve. A promising optimizing method is the multifractal

network generator [9]. This was improved to create less isolated nodes [10];

however at the size of real networks, the original method is reasonable. Using the

multifractal network generator, a broad range of networks with arbitrary properties

can be generated. The entropy of such generated networks is bigger than that of

the other usually-used models, such as the Erdős-Rényi model, the small world

model and Barabási-Albert model [4]. With this method, we can set more than one

target property, for example a power-law function as the degree distribution and a

clustering coefficient decreasing inversely proportional to the degrees of the

nodes. These two properties can be found in many real-world networks and in the

resulting networks of the hierarchical model [11]. Our goal is to develop an

educational framework that is suitable for generating and analyzing networks, and

then students would be able to develop standalone functions to extend the

possibilities of the framework. The framework has been implemented in Python

language, but some parts were written in C++ language as well. In this paper we

describe the method and compare the running times of the two versions: the one

written in pure Python and the other, where the calculation of the degree

distribution is written in C++.

2 The Multifractal Network Generation Method

The method of generating networks with the usage of multifractals is described in

detail in the article of Palla et al. [9].

In multifractal network generation, the generating measure is a central concept.

The generating measure is a probability measure defined on the [[[[unit

square. A network can be generated from the generating measure in two steps. The

first step is to create a link probability measure with the iteration of the generating

measure. In the second step the program creates links between the nodes using the

link probability measure. During generation, however, the program does not need

to generate any networks; it calculates the estimated properties of the network

from the generating measure.

2.1 Generating Measure and Link Probability Measure

Both the and axes of the unit squares are divided into not necessarily equal

intervals to define a generating measure. In our version, the and axes have the

same division points. With this division we created rectangles on the unit

square. Probabilities are assigned to each of the rectangles in a symmetric

fashion,

 ∑

 (1)

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 135 –

The probability assigned to the rectangle at the origin is denoted by the and

the one at the opposite corner is .

The K
th

 iteration of the generating measure means a unit square divided into

rectangles with assigned probabilities, as in the generating measure, but with

 rectangles. The first iteration () by definition gives the generating

measure itself.

For the case of , we obtain the division points from the division points of

the (K-1)
st
 iteration by dividing each of its intervals into subintervals, where the

length of subintervals are proportional to the length of intervals of the original

generating measure.

The pij(K) probabilities of the K
th

 iteration can be calculated as

 () ∏

 (2)

where

 (3)

The notation (i mod d) means that the remainder of the integer division and

 denotes the floor (integer part) of . Analogous equation to (3) gives jq as well.

 (a) (b)

Figure 1

A generating measure (a) with the division points 0.2 and 0.5, and the link probability measure resulted

by two iterations (b)

2.2 Generating the Network

The generation of networks proceeds in two steps. The first step is the iteration of

the generating measure to get the link probability measure. The second one is the

generation of the network from the link probability measure obtained after the

iterations. The latter goes as follows.

First the number of iterations () and the number of nodes () in the network

need to choose. If one axis of the generating measure is divided into intervals

with the division points, there will be intervals in one axis of the link

probability measure. We assign to each node with index ([] integer) a

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 136 –

random value from a uniform distribution on the [0,1[interval. We determine the

 index of the interval where is located ([]).

For all pairs of the nodes we determine whether to connect the nodes or not. If the

 and random number belonging to the two nodes falls into the intervals

and , respectively, we connect the two nodes with the probability
(),

where the values of () are the probabilities after the K
th

 iteration of the

generating measure defined in equation (3).

2.3 Adjusting the Generating Measure

The creation of the generating measure can be shown as an annealing process

where the energy of the generating measure closes to the minimum as the

temperature decreases.

To create a generating measure that gives a network with a given target property,

we need to define an energy function (a non-negative function) that measures the

goodness of the generating measure. The smaller energy, the closer the network

created from the generating measure to the one with the target property.

After giving the numbers of intervals on one axis and the number of iteration,

our program starts with equal probabilities and equal interval lengths on the axes.

In each step it either relocates a division point or changes the probabilities. Then it

calculates the energy belonging to the generating measure. If this energy is

smaller than that belonging to the network of the existing generating measure E,

than it changes the generating measure to the new one and stores the energy. If

 , then the new generating measure will be accepted with the probability

 () (

), (4)

and rejected with () probability. The arbitrary parameter plays the role

of temperature (in units of the energy).

Decreasing the temperature slowly, the generating process has the possibility to

escape from local minima. The smaller the temperature, the more changes will be

rejected, and the network converges to that with the target property.

2.4 Calculating the Degree Distribution

One of the targets of the generation can be the degree distribution. The degree

distribution p(k) is a function of degree k giving the probability of a node having

the degree k. The expected values of a generating measure can be calculated as

 () ∑ ()

 , (5)

where

 ()

 (6)

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 137 –

 ∑ (7)

 is the expected degree of a node in the i
th

 interval, and is

the length of the i
th

 interval.

We can define the energy of a link probability measure as






 


max

min
))(),(max(

)()(k

kk kpkp

kpkp
E (8)

where ()

is the degree distribution of the actual link probability measure, and

 () is the target degree distribution.

3 Results

3.1 The mfng Program

There is an existing implementation of the multifractal network generator written

in C++ without the option of setting target properties [9]. Its source code is

unfortunately not available. Our earlier works are about the cxnet framework (a

Python package) we developed to investigate complex networks and bring them

into higher education [6-7]. The mfng generator does not need the cxnet

framework, but the analysis of the result needs it. During generation, the program

does not create networks. It calculates the expected values of the degree

distribution from equation (4) (see below). The analyser module of the mfng

software package provides three main features:

1) It can generate networks from the generating measure constructed by the

mfng generator.

2) It can calculate the degree distributions of these networks.

3) It can plot the degree distributions of these networks as well as the degree

distribution calculated from equation (4). It can use several binning

methods to create clearer plots. Figure 3 (a) is an example plot created

using the analyser module.

Earlier the mfng generator and analyser was a sub-module of the cxnet package.

To make the installation of the mfng easier it has become a standalone package.

The documentation of cxnet with the installation of the mfng package and a

tutorial can be reached from the page [12]. The mfng program can be reached from

its repository [13] using the git version control system, or can be downloaded as

zip or gzipped tar archive from there.

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 138 –

The mfng module includes the ProbMeasure class, the Generator class and some

property classes. An instance of the ProbMeasure class contains the probabilities

and the division points. It includes a function to iterate the measure, returning with

a new ProbMeasure instance. This function makes it possible to create the link

probability measure from the generating measure using the numpy module. The

mfng program generates the generating measure for the networks with the given

properties. There are two steps with the same temperature . In one step, the

generator changes the probabilities; in the second step it changes the division

points. The Generator class stores the main parameters of the generation and the

property we want to achieve. The main parameters of the generation are the initial

and final temperature, the number of steps, the number of intervals in the

generating measure and the number of iteration.

3.2 Changing the Division Points and the Probabilities

In two alternating steps, the program first changes the probabilities and then

changes one of the division points. Changing the probabilities is performed in

three steps. First, the program chooses one of the elements of the probability

matrix randomly. In the second step, it multiplies the probability with a random

value from a uniform distribution on the [0.9, 1.1[interval, so the probability will

not change more than 10%. For the element not in the main diagonal, the

symmetric element needs to be multiplied as well. In the third step, the probability

matrix is normalized.

To change the division points, the program adds zero and one to the list of the

division points, so the division points will be d0, d1, d2, …, dm-1 , dm, where d0=0

and dm=1.

Then the program chooses randomly one of the inner division points with the

index i [1,m-1] and chooses a random value from the uniform distribution on

the [0,1[interval. The program relocates the chosen division point to (),

where

 ()

{

(

)

(

)

(

)

(

)

 (9)

Here, , and and is an arbitrary exponent.

If the () function gives 0, the division point stays in the original place. With

the increasing exponent parameter, the () function is more likely to be close

to zero, so the new division point is more likely to stay in the proximity of the

original division point (Figure 2).

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 139 –

Figure 2

An example for the () function used for relocating a division point. This example uses one inner

division point () with the actual value 0.3, so the parameters are and . The function

was plotted with these parameters and with the exponents . The value of the function will

be in the interval [[[[.

3.3 Generating a Network with Given Degree Distribution

Our program calculates the degree distribution as in equation (5), and in our

measurements, it used the energy function in the equation (8).

The two property classes, DegreeDistribution and DegreeDistributionC, can

calculate the degree distribution of a generating measure and can return with the

energy of that distribution. In the first one, the calculation of the degree

distribution has been written in Python using the numpy package. The second one

uses C++ functions for that calculation. Each version uses the same Python

function to calculate the energy from the degree distribution.

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 140 –

 (a) (b)

Figure 3

Results of a generation. The target was a power-law function degree distribution with the exponent .

In subfigure (a) the target degree distribution was drawn with a blue dotted line, the initial degree

distribution calculated from the generating measure with a red dotted line, and the degree distribution

calculated from the last accepted generating measure with a green dashed line. The degree distributions

of networks generated from the initial and from the last accepted one are drawn with dots. In the

subfigure (b) the energy as the function of the step number can be seen.

3.4 The Advantages of Python Programming Language

There are several reasons to use the Python language for the main program.

Python itself is a dynamically-typed, object-oriented language with some useful

complex data types (list, dictionary, set). These data types and the dynamically-

typed property make possible a very flexible argument handling of functions with

default argument values and keyword arguments. We frequently use two Python

shells (ipython and IDLE) to run Python commands interactively. IDLE is part of

most installations, but ipython has several useful extra abilities, like the interactive

plotting of the functions with the pylab package.

The Python language has a huge standard library that can be reached in the

standard installations on many operating systems, including Windows, Linux and

MacOSX. We used the shelf package to store the generated results as well as the

energies, the divisions and the probabilities of each step in a binary form.

Another advantage is the many useful free and high quality packages not included

in the standard library. One of them is the numpy package that has its own data

structures like array and matrix. An array is a sequence of elements of the same

type. Numpy has mathematical functions like logarithm that can calculate the

logarithm of each element of the array or matrix in one step. This calculation is

quite fast, because the functions of numpy are written in the C programming

language. The calculations can be slow if the calculations have too many steps at

the Python level. For example, if we have more additions, subtractions,

multiplications, divisions and functions calls, the Python must check whether the

factors, the terms or arguments are arrays or not. These steps slow down the

calculations.

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 141 –

The other useful package is the pylab package, which provides mathematical and

plotting functions very similar to that of in MATLAB. This package is based on

the numpy and matplotlib packages. The pylab, numpy and matplotlib packages

are not part of the standard library.

To analyse the properties of the network belonging to the generating measure, the

program uses the igraph complex network analyser package.

A big part of the code is covered with unit tests, which allows us to check easily

the functioning our program in several environments (Python versions and

operating systems), as the unittest package is also part of the standard library.

To identify the most CPU intensive parts of the program the cProfile module of

the standard library can be used.

3.5 Numpy Version of the Program

The first version of the program used the numpy package of the Python

programming language. With this package we can use arrays (row vectors), which

can be manipulated more efficiently than Python lists. We used the cProfiler

module to determine the parts of the program that needs too much time. We found

that the iteration and the calculation of the estimated degree distribution belonging

to the link probability measure were two such parts.

We ran the generation with 2000 steps and 2000 nodes. The time of the generation

was 5392 seconds. The calculation of the degree distribution from the link

probability needed 3625 seconds (67%), and the calculation of the link probability

measure took 1748 seconds (32%). The calculation of the energy from the actual

degree distribution and the other parts of the program took less than 1% of the

running time.

3.6 The C++ Version of the Program

According to the running time measurements, the iteration of the generating

measure and the calculation of the degree distribution were rewritten. The C++

program gets the generating measure from Python and writes the degree

distribution to the standard output, where the Python collects information. In the

future we plan to implement a more appropriate coupling between the C++ and

the Python part of the program. We will wrap the C++ code with SWIG or

CPython [2] to call the C++ functions easier.

3.7 The Comparison of the Running Times

We carried out a sequence of generations to compare the running time of the pure

Python version using the numpy module and the version using C++ code. The

program ran on a Debian Linux server installed as a VMware virtual machine.

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 142 –

The target degree distribution of the generations was a power-law degree

distribution with the exponent . There were three parameters that changed: the

number of steps, the number of iterations and the number of nodes in the network.

More details about the network generator program can be found in the Appendix.

The resultant running times are in Table 1 and are plotted on Figures 4 and 5.

Table 1

The running times of the two versions and ratio of the numpy version and the C++ version. The full

running times are in minutes, but the running times of one step are in milliseconds.

Figure 4

Running time of the C++ version of the generator as a function of number of nodes with a scale-free

degree distribution as the target property. The number of iteration (K), number of nodes and number of

steps have been varied.

This method of network generation makes it impossible for the network to have

multiple edges between a node pair or to have self-loops (edges with the same

nodes at its two endpoints), so the maximal degree cannot be bigger than the

number of nodes in the network. During generation, the maximal degree in

equation (8) was set to smaller by one than the number of the nodes, so with an

increase in the number of nodes in the generation, the number of the terms in the

nodes type full one step full one step full one step full one step full one step full one step

numpy 23,37 701,01 89,88 2696,40 503,47 15104,10 58,35 700,18 224,40 2692,80 1259,86 15118,32

C++ 1,68 50,52 4,44 133,20 13,59 407,64 4,28 51,42 11,10 133,20 33,52 402,19

ratio 13,9 20,2 37,1 13,6 20,2 37,6

numpy 53,62 1608,51 175,50 5265,00 759,10 22773,00 133,81 1605,73 439,85 5278,20 1905,34 22864,08

C++ 3,79 113,80 9,75 292,50 27,78 833,49 9,70 116,44 24,20 290,40 69,59 835,08

ratio 14,1 18,0 27,3 13,8 18,2 27,4

numpy 102,72 3081,60 319,47 9584,10 257,36 3088,28 801,56 9618,72

C++ 7,12 213,56 17,60 528,00 16,96 203,54 43,83 525,96

ratio 14,4 18,2 15,2 18,3

K=5 K=6

2000

5000

10000

2000 steps 5000 steps

K=4 K=5 K=6 K=4

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 143 –

sum and the running time increases, too. With an increase in the number of

iterations, the running time increases fast, because the number of probabilities in

the link probability measure increases exponentially with the number of iteration.

For larger values of the number of iterations, the running times of the mfng

version became too large (bigger times than one day can be found in Table 1), but

with the C++ version this time is acceptable. The running time of mfng version

compared to that of the C++ version is 13–38 times longer in these generations,

and this ratio increases with the increasing number of iterations.

Figure 5

The ratio of the running times of the numpy version and the C++ version.

Conclusions

With the multifractal network generator (MFNG) method one can generate a wide

range of networks with prescribed statistical properties. The method uses a

mapping between the generator measures (a measure defined on the unit square)

and the networks. It simulates an annealing process to get the optimal parameters

of the generator measure. If one knows the generator measure, the degree

distribution and some other statistical properties of the network can be calculated.

In our mfng program there are two realizations of the MFNG method. Our first

realization of the MFNG method was written in Python using the numpy package.

After rewriting some functions of the mfng program in C++ language, the running

time of the program was reduced significantly, which allows for using a higher

iteration number and more steps, so one can create generating measures that

generate networks with properties closer to the target property.

Á. Horváth Running Time Comparison of Two Realizations of the Multifractal Network Generator Method

 – 144 –

Our program is part of the cxnet program framework intended to be used in

education. As the C++ functions can be reached from Python, the easy-to-use

Python framework would not necessarily be dropped. It makes it easier to use the

framework in the education, especially if the students are familiar with the cxnet

framework.

Acknowledgement

I would thank to Péter Orlik for his help in writing the C++ code. I would thank to

Marianna Machata, Trócsányi Zoltán and József Lakner for their linguistic help

and advice.

Appendix

In the running time comparison the program started the generation with a Python

program as follows:

import mfng
for steps in [10000, 20000]:
 T0 = 0.2
 generator = mfng.Generator(T0=T0, steps=steps, Tlimit=T0/10000,
 m=3, K=4,
 n=2000,
 divexponent=7,
 project="power_law",
)
 generator.append_property(
 mfng.DistributionFunction(
 "k**-2",
 maxdeg=n-1, mindeg=1
)
)
 generator.go()

The meaning of the program is as follows. First the program imports the functions

and classes of the mfng module. It carries out two generations creating a generator

in both generations. The temperature will decrease from 0.2 to 2×10
-5

 in 10000

and 20000 steps respectively. The generating measure in the generations would

have 3×3 probabilities and it would be created for a network with n=2000 nodes.

The changing of the division points will use the exponent 7 in equation (9). The

result will be saved in the project_power_law directory. There is one target

property with a distribution function proportional to the k
-2

 power-law function.

The degree distributions in the generation will be compared to the target

distribution from the degree 1 to 1999.

This version uses the numpy version to generate the generator function. If we

slightly modify this program—we would add DistributionFunctionC (with C in

the end) property to the generator instead of DistributionFunction—the generator

runs the C++ version.

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 145 –

References

[1] Albert, R., Barabási A.: Statistical Mechanics of Complex Networks,

Reviews of Modern Physics, Vol. 74, No. 1, 2002, pp. 47-97,

doi:10.1103/RevModPhys.74.47

[2] Behnel, S., Bradshaw, R., Citro, C., Dalacin, L., Seljebotn, D. S., Smith,

K.: Cython: The Best of Both Worlds, Computing in Science Engineering,

Vol. 13, No. 2, 2011, pp. 31-39

[3] Csárdi, G., Nepusz, T.: The Igraph Software Package for Complex

Network Research, InterJournal Complex Systems, 2006, Manuscript

Number. 1695

[4] Cardanobile, S., Pernice, V., Deger, M., Rotter S.: Inferring General

Relations between Network Characteristics from Specific Network

Ensembles. PLoS ONE Vol. 7, Jun 2012, e37911,

doi:10.1371/journal.pone.0037911

[5] Horváth, A., Trócsányi, Z.: Multifractal Network Generator with Igraph,

Symposium on Applied Informatics and Related Areas, 2010

[6] Horváth, A., Trócsányi, Z.: Complex Networks in the Curriculum of the

Computer Engineers, IEEE Proceedings of the 8
th

 International Symposium

on Applied Machine Intelligence and Informatics, 2010

[7] Horváth, A.: Studying Complex Networks with cxnet, Acta Physica

Debrecina, Vol. XLIV, 2010, pp. 37-47

[8] M. E. J. Newman, The Structure and Function of Complex Networks,

SIAM Review, Vol. 45, No. 2, 2003, pp. 167-256

[9] Palla, G., Lovász, L., Vicsek, T.: Multifractal Network Generator

Proceeding of the National Academy of Sciences, Vol. 107, No. 17, Apr.

2010, pp. 7640-7645, doi:10.1073/pnas.0912983107

[10] Palla, G., Pollner, P., Vicsek, T.: Rotated Multifractal Network Generator,

Journal of Statistical Mechanics: Theory and Experiment, Vol. 2011, No.

02, February 2011, P02003, doi:10.1088/1742-5468/2011/02/P02003

[11] Ravasz, E., Barabási A.: Hieararchical Organization in Complex Networks,

Physical Review E, Vol. 67, No. 026112, Feb 2003

[12] The homepage of the cxnet program, http://django.arek.uni-obuda.hu/cxnet

[13] The repository of the mfng program, http://github.com/horvatha/mfng

http://django.arek.uni-obuda.hu/cxnet
http://github.com/horvatha/mfng

