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Abstract: Coverage path planning for mobile robots aims to compute the shortest path that 

ensures the overlap of a given area, with applications in various domains. This paper 

proposes a coverage path planning strategy, referred to as Iterative Structured Orientation 

Coverage, which has two main advantages over the state-of-the-art, namely it is it versatile 

and it is capable to handle complex environments. The path planning strategy is expressed 

as three new approaches to coverage path planning. The suggested approaches are 

validated by simulation and experimental results. The source codes along with the test set 

are available in a public repository. 
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1 Introduction 

As shown in [1] and [2], robot coverage path planning (CPP) deals with the 

problem of covering a certain area with a movable object as, for example, with a 

mobile robot (MR). CPP makes use of two classes [3]: it is complete if it 

guarantees complete coverage or heuristic in other cases. There are also two main 

CPP strategies: offline if there is an a priori known map, otherwise online if the 

robot needs to discover the environment. 

The most widely used approaches to CPP are Random Path Planning (RPP) [4], 

Exact Cellular Decomposition (ECD) [1], Boustrophedon Cellular DeComposition 

(BCDC) [1] [38], Backtracking Spiral Algorithm (BSA) [4], Internal Spiral Search 
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(ISS) [5], U-turn A* Path Planning (UAPP) [5] and Neural Network (NN)-based 

CPP [6]. A critical analysis of these approaches is presented as follows. 

RPP imposes the MR to move on several random trajectories. Each time when the 

current trajectories are obstructed a new one is chosen and next repeated. RPP is a 

simple but not effective approach. Combining RPP with preprogrammed 

trajectory patterns such as spirals and serpentines and/or a wall following 

mechanism the algorithm may increase efficiency [4]. Due to its simplicity, the 

path planning algorithms specific to RPP are used in nowadays popular 

autonomous robotic vacuum cleaners. 

ECD uses cells to fill the whole map. Usually the MR covers each cell using 

simple back-and-forth motions. After the current cell is covered, the robot moves 

to another cell. Finally the whole map will be covered. The Trapezoidal 

Decomposition is a particular case of ECD given in [1], and characterized by the 

decomposition of the map into trapezoids, which are covered with simple back-

and-forth motions. 

BCDC has been introduced in [4] and the path planning algorithms based on 

BCDC became popular as highlighted in [5]. The word boustrophedon literally 

means “the way of the ox” in Greek [4]. The original supposition is that the map is 

composed from polygons, so it is a line map [6]. BCDC exploits this hypothesis 

and generates cells (easy to be covered) and finally generates the connection 

between these cells. BCDC performs an exact cellular decomposition, and each 

cell in the boustrophedon is covered with back and forth motions [4]. 

The drawback of the polygonal decomposition is the big number of cells. This 

problem has been corrected by merging cells [7]. Fig. 1 illustrates an example of 

BCDC-based solution where four cells are produced. The cells are generated using 

a beam of parallel lines because of intersection with obstacles. These cells are 

actually convex polygons that do not have any holes. Consequently, the cells are 

covered with back and forth motions. This aspect is also illustrated in Fig. 1. 

Finally, the thick path shows how each cell is connected to ensure a complete 

coverage. 

 

 

Figure 1 

The cells (a) and the path (b) generated by BCDC 
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BSA is similar to ISS. The MR traverses the area in a certain direction. If the area 

is free, i.e., not covered, the MR will move forward. If it is already covered or 

there is an obstacle in the way, the MR will turn perpendicularly [5]. 

UAPP combines the heuristic feature of A* algorithm with the U-turn search 

algorithm [5]. The MR moves from the origin point using a U-turn algorithm, and 

next plans the shortest path in term of an A* algorithm [5]. 

The NN-based approach generates collision-free complete coverage paths in 

known environments by producing shunting equations [6]. Several features 

specific to NNs that offer convenient input-output maps to model complex 

systems [7–13] can be included and combined with the NN-based CPP approach. 

Some recent applications of CPP are reported in [14–18]. The path planning 

approaches can be applied to various categories and applications of MRs [19–27]. 

This paper proposes a novel CPP strategy, which is referred to as Iterative 

Structured Orientation Coverage (ISOC). ISOC uses discrete grid maps and 

targets the complete coverage. The specific feature of our approach is the 

combination of two ideas, considering the whole area as one unit and using the 

BCDC-based motion. 

The ISOC approach uses the concept of main lines. These main lines are actually a 

beam of parallel lines, which have a particular orientation in the map. This 

orientation ensures a set of straight lines with maximum length, surrounded by the 

map and interrupted by the obstacles. By composing (or linking) these lines we 

obtain the minimum length path. The composition stage relates our solution with 

optimization problems as, for example, the traveling salesman problem (TSP) or 

other problems in different applications treated with classical or evolutionary-

based algorithms [9, 11, 28–36], and also represents the advantage of the ISOC 

approach with respect to the state-of-the-art reported in [1–6, 14–19]. 

Three solutions to obtain the main lines are proposed. These solutions are inserted 

in the ISOC strategy resulting in three new ISOC approaches. 

The paper is organized as follow: the main contribution of the paper, which is the 

ISOC approaches, is discussed in the next section and presented in a unified 

formulation. Section 3 deals with the validation of the proposed approaches by 

simulation and experimental results for the Khepera III differential drive robot, 

and a comparative study is included. Section 4 is dedicated to concluding and 

summarizing remarks and to outlining the future research directions. 
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2 Iterative Structured Orientation Coverage 

Approaches 

As mentioned in Section 1, the map (domain) coverage in ISOC uses the main 

lines concept. The main lines represent a beam of parallel lines, which are 

trimmed by the map boundary in segments. The final path is obtained by 

composing these segments with additional segments. The additional segments 

ensure the path continuity. The main lines have a particular orientation, which 

ensures the minimum length of the path, i.e., the goal to make the MR navigate on 

long straight lines. Fig. 2 illustrates this concept by means of Fig. 2 (a) that 

illustrates the map and the main lines and Fig. 2 (b) that illustrates the main 

segments (lines) and the auxiliary segments. 

 

Figure 2 

The map and the main lines (a), the main segments (lines) and the auxiliary ones (b) 

The initial data of the CPP approach is the map. The map is generated from a 

picture and modeled by the map matrix 𝑀 = [𝑀ij]𝑖=1...𝑛,𝑗=1...𝑚 ∈ ℜ𝑛×𝑚 with the 

elements 

𝑀ij = {
1, if pixel (𝑖, 𝑗) is black,
0, if pixel (𝑖, 𝑗) is white,

  (1) 

where 𝑛 is the number of horizontal pixels and 𝑚 is the number of vertical pixels. 

Using the main lines concept, the problem of finding a minimum length path, 

which covers the whole map, reduces to the following steps, 1, 2 and 3: 

1. Find the appropriate main line, i.e., the orientation of the beam of parallel 

lines. 

2. Obtain the main segments. 

3. Link these segments with auxiliary segments such that the final (continuous) 

path has a minimum length. 
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These steps will be described in the next sub-sections, and next organized as a 

unified algorithm specific to the ISOC approaches. 

2.1 Finding the Main Lines (the Orientation of the Beam of 

Parallel Lines) 

The equation of the beam of parallel lines expressed in the discrete domain is 

{
𝐿𝑞1𝑘1

≡ 𝑖 = ⌊𝑗
𝑞1

(𝑚+1)
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4
,
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4
] ,

𝐿𝑞2𝑘2
𝑗 = ⌊𝑖

𝑞2

(𝑛+1)
⌋ + 𝑘2 + 1,              if 𝛼 ∈ [−

𝜋

2
, −

𝜋

4
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𝜋

4
,

𝜋
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where 𝛼 is the line slope in the continuous domain, 𝛼 = tan−1 (
𝑞1

𝑚+1
) or 𝛼 =

tan−1 (
𝑞2

𝑛+1
), 𝑞1 = 1...𝑚 or 𝑞2 = 1...𝑛 have a direct effect on the slope in the 

discrete domain, with the unified notation 𝑞 ∈ {𝑞1, 𝑞2}, ⌊𝑥⌋ indicates generally the 

integer part of 𝑥 ∈ ℜ, 𝑘1 = 𝛽1𝛿1 or 𝑘2 = 𝛽2𝛿2 is the intercept with the unified 

notation 𝑘 ∈ {𝑘1, 𝑘2} for both horizontal and vertical axes, 𝛽1 = 0...(𝑛 − 1 ) 𝛿1⁄ , 

𝛽2 = 0...(𝑚 − 1 ) 𝛿2⁄  the integer steps 𝛿1 and 𝛿2 are computed in terms of 

𝛿1 = ⌊𝑏
√𝑞1

2+(𝑚+1)2

𝑚+1
⌋ ,  𝛿2 = ⌊𝑏

√𝑞2
2+(𝑛+1)2

𝑛+1
⌋, (3) 

𝑏 is the distance between the lines (the robot width), 𝐿𝑞1𝑘1
 and 𝐿𝑞2𝑘2

 are the lines 

that belong to the beam with the unified notation 𝐿qk ∈ {𝐿𝑞1𝑘1
, 𝐿𝑞2𝑘2

} for both 

axes. Fig. 3 illustrates several examples of lines for different slopes. 

 

Figure 3 

Examples of lines in the discrete domain 

Each line can be associated with a matrix 𝛬qk = [𝛬ij

qk
]𝑖=1...𝑛,𝑗=1...𝑚 ∈ ℜ𝑛×𝑚 with 

the elements 𝛬ij

qk
 

𝛬ij

qk
= {

1, if  (𝑖, 𝑗) = (𝐿𝑞1𝑘1
, 𝑗) ∧ (𝑖, 𝑗) = (𝑖, 𝐿𝑞2𝑘2

),

0, otherwise.
 (4) 
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Three solutions for the computation of the main lines are proposed in this paper. 

The first two solutions generate a beam of lines and define the main segments as 

the intersection between the map and the beam of lines, compute the segments 

length and compute (or approximate) the path length in terms of the sum of these 

lengths. An iterative process is conduced to compute the slope of the beam of 

lines, which generates a set of path lengths. The result, represented the main 

segments, is related to the minimum length path as the solution to the optimization 

problem 

𝑞∗ = argmin
𝑞∈𝐷𝑞

∑ 𝛤(𝛬qk, 𝑀)𝑘∈𝐷𝑘
 (5) 

where 𝑞∗ gives the optimum slope in the discrete domain, 𝐷𝑞  is the discrete 

domain of slope, 𝐷𝑘 is the intercept domain, the general notation 𝛤(𝛬qk, 𝑀) is the 

general notation for the path length: 

𝛤(𝛬qk, 𝑀) = 𝜆 ∑ ∑ 𝑝ij
𝑚
𝑗=1 ,𝑛

𝑖=1   𝑝ij = {
0, if 𝑀ij = 1,

1, if 𝛬ij

qk
= 1,

  (6) 

where the general notation 𝜆 ∈ {𝜆1, 𝜆2} is used for the distance between the points 

calculated as 

𝜆1 = √(𝑚+1)2+𝑞1
2

𝑚+1
,

𝜆2 = √(𝑛+1)2+𝑞2
2

𝑛+1
.

 (7) 

The first solution consists of the following steps: 

Step 1.1. The lines expressed in (2), which depend on 𝑞 and 𝑘, are generated. 

Step 1.2. The matrices 𝛬qk with the elements 𝛬ij

qk
 expressed in (4) are generated. 

Step 1.3. The path length 𝛤(𝛬qk, 𝑀) is computed according to (6). 

Step 1.4. The objective function in (5) is computed in terms of the sum 

∑ 𝛤(𝛬qk, 𝑀)𝑘∈𝐷𝑘
 for 𝑞 = const and variable 𝑘,  𝑘 ∈ 𝐷𝑘. 

Step 1.5. The optimization problem defined in (5) is solved considering that the 

objective function in the right-hand term of (4) depends on the variable 𝑞,  𝑞 ∈ 𝐷𝑞 , 

and the solution to this optimization problem, i.e., the variable that gives the 

minimum path length, is 𝑞∗. 

The first two solutions differ by the slope domain and by the map definition. The 

first solution preserves the initial map and defines a continuous domain of slope 

𝐷 = [0, 𝜋] in order to include all possible orientations of the beam of parallel 

lines. Fig. 4 illustrates an example of beam of parallel lines used in the first 

solution. 
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Figure 4 

Example of beam of parallel lines used in the first solution 

The second solution defines a new map using a composition of the initial map and 

uses a smaller domain of slope, i.e. 𝐷 = [0, 𝜋 4⁄ ]. Fig. 5 exemplifies a beam of 

parallel lines used in the second solution. 

 

Figure 5 

Example of beam of parallel lines used in the second solution 

The second solution is based on the generation of a new map by the union of four 

maps that are rotated as shown in Fig. 5. These four maps correspond to the four 

quadrants I, II, III and IV, obtained as follows. 
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The map in the quadrant I is 𝑀𝐼 = [𝑀𝐼,ij]𝑖=1...𝑛,𝑗=1...𝑚 ∈ ℜ𝑛×𝑚, with the map 

matrix elements: 

𝑀𝐼,ij = 𝑀ij, 𝑖 = 1...𝑛, 𝑗 = 1...𝑚 (8) 

The map in the quadrant II is 𝑀II = [𝑀II,ij]𝑖=1...𝑛,𝑗=1...𝑚 ∈ ℜ𝑛×𝑚, with the map 

matrix elements: 

𝑀𝐼,ij = 𝑀im−𝑗+1, 𝑖 = 1...𝑛, 𝑗 = 1...𝑚 (9) 

The map in the quadrant III is 𝑀III, obtained in terms of the composition 

𝑀III = [𝑃|𝑀𝑇] ∈ ℜ𝑚×𝑚,  𝑃 = [𝑃ij]𝑖=1...𝑚,𝑗=1...𝑚−𝑛,  𝑃ij = 1 (10) 

where the subscript 𝑇 indicates matrix transposition. 

The map in the quadrant IV is 𝑀IV = [𝑀IV,ij]𝑖=1...𝑛,𝑗=1...𝑚 ∈ ℜ𝑛×𝑚, with the map 

matrix elements: 

𝑀𝐼,ij = 𝑀in−𝑗+1, 𝑖 = 1...𝑛, 𝑗 = 1...𝑚 (11) 

The second solution consists of the following steps: 

Step 2.1. The map matrix in the four quadrants is computed using (8) to (11). 

Steps 2.2 to 2.6. These are the steps 1.1 to 1.5 in the first solution. 

The third solution approximates the main lines with the map axis, which is 

inspired from the properties specific to mechanical inertia. The map axis slope is 

obtained in terms of 

𝛼 =
1

2
tan−1 (

2𝐼xy

𝐼𝑦−𝐼𝑥
)  (12) 

where the following center of gravity-type relationships are employed: 

𝐼xy = ∑ ∑ 𝑖𝑐𝑗𝑐𝑀ij
𝑚
𝑗=1

𝑛
𝑖=1 ,  𝐼𝑥 = ∑ ∑ 𝑗𝑐

2𝑀ij
𝑚
𝑗=1

𝑛
𝑖=1 ,  𝐼𝑦 = ∑ ∑ 𝑖𝑐

2𝑀ij
𝑚
𝑗=1

𝑛
𝑖=1

𝑥 =
∑ ∑ jMij

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑀ij
𝑚
𝑗=1

𝑛
𝑖=1

,  𝑦 =
∑ ∑ iMij

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑀ij
𝑚
𝑗=1

𝑛
𝑖=1

𝑖𝑐 = 𝑖 − 𝑦,  𝑗𝑐 = 𝑗 − 𝑥,  𝑖 = 1…𝑛,  𝑗 = 1…𝑚

 (13) 

and 𝑀ij are the elements of the map matrix 𝑀 defined in (1). The beam of parallel 

lines is next computed using (2). 

The third solution consists of the following steps: 

Step 3.1. The map axis slope is computed using (12) and (13). 

Steps 3.2 to 3.6. These are the steps 1.1 to 1.5 in the first solution. 

An example of application of the third solution is given in Fig. 6. 
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Figure 6 

Example of map and map axis in used in the third solution 

2.2 Finding the Auxiliary Lines 

The result of the three solutions presented in the previous sub-section is an 

ordered beam of segments. The lines order has been defined in the process of 

definition of the main lines using the intercept of each line expressed in (2). The 

definition of the main segments splits the lines in several segments producing a 

list of segments ordered (in their turn) using a left to right convention. This means 

that each segment has two kinds of neighborhoods, i.e., the segments that belong 

to the lists of neighbor main lines and the segments that do not belong to the same 

list. The second type of segments is eluded because of the obstacles between these 

segments. An ordered beam of segments is illustrated in Fig. 7. 

 

Figure 7 

Example of ordered beam of segments 

Each segment defines two nodes, 𝑎 and 𝑏. The graph 𝐺 is defined between the 

nodes of the main segments: 

𝐺 = (𝑉, 𝐸), (14) 



E. Horváth et al. Robot Coverage Path Planning Based on Iterative Structured Orientation 

 – 240 – 

where the set of nodes (vertices) is 𝑉: 

𝑉 = {𝑖.𝑗.𝑘|𝑖 = 1...𝑛𝑠,  𝑗 = 1...𝑛𝑖,  𝑘 = 𝑎  or  𝑏} (15) 

𝑛𝑠 is the number of main segments, and 𝑛𝑖 is the number segments generated from 

𝑖th main line, and the set of edges is 𝐸: 

𝐸(𝑖.𝑗.𝑘, 𝑝.𝑟.𝑙) = {
1 if  𝑝 = 𝑖 + 1  or  𝑖.𝑗 = 𝑝.𝑟,
0 otherwise.

 (16) 

Equation (16) evaluates the existence of the edge between two nodes. The edge 

exists if 𝐸(𝑖.𝑗.𝑘, 𝑝.𝑟.𝑙) = 1, that means if either 𝑝 = 𝑖 + 1, i.e. between the 

segments of two successive lines (the lines are not skipped) or 𝑖.𝑗 = 𝑝.𝑟, i.e. 

between the points of the same segment. 

This idea assigns a segment to a node. At the first glance each node can be 

connected with any other node. In order to avoid this complexity, a heuristic is 

proposed in this paper to connect only neighbor segments. 

The graph related to the segments illustrated in Fig. 7 is presented in Fig. 8 (a). 

 

Figure 8 

The graph (a) and its solution (b) 

Each edge of the graph is associated to a cost function. The simplest cost function 

definition is the distance between the nodes. If the nodes can be linked with a 

straight line, the computation of the distance is simple. Contrarily, if obstacles 

interfere, a trajectory between nodes must be defined. The graph can be further 

simplified by trimming these edges in order to fulfill the objective to minimize the 

cost function, i.e., to minimize the path length. 
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The problem of visiting all segments (nodes) is related to the TSP [32]. In contrast 

to the classical TSP approach, which assumes that all of them need to be visited 

once, the ISOC approach proposed in this paper does not have this constraint. The 

only constraint imposed here is that after a node is reached it is mandatory to visit 

the second node of the segment so the covering of the main segments is ensured. 

Fig. 8 (b) points out a possible solution that starts with the node 1.1.b and ends 

with the node 3.1.a. 

Concluding, the auxiliary segments are the lines (or trajectories) that connect the 

main segments and ensure a minimum path length. 

2.3 The Algorithm Specific to the Iterative Structured 

Orientation Coverage Approaches 

Using the steps 1, 2 and 3 related to finding a minimum length path specified at 

the beginning of Section 2 and the two previous sub-sections, the algorithm 

specific to the ISOC approaches to robot CPP is referred to as the ISOC algorithm 

and consists of the following steps: 

Step A. The initial data regarding the robot CPP is provided in terms of: 

 The map (1), i.e., a discrete representation of the boundaries and the 

obstacles 

 The overall dimensions of the robot 

Step B. The main lines are defined and the main segments are found using one of 

the three solutions presented in Sub-section 2.1, which lead to the minimum 

length path as the solution to the optimization problem defined in (5), expressed as 

the optimum slope 𝑞∗ of the main segments. 

Step C. The auxiliary lines are obtained using the results presented in sub-section 

2.2 by: 

 Computing the visiting order between the main segments 

 Computing the path between the main segments using the graph 𝐺 

defined in (14), (15) and (16) 

Concluding, the three ISOC approaches are characterized in a unified presentation 

by the ISOC algorithm. The difference between the three approaches is in the step 

B, where one of the three solutions to obtain the minimum length path presented 

in Sub-section 2.1 is included, and leads to one of the three new ISOC approaches. 

The ISOC approach with the first solution to obtain the minimum length path is 

next referred to as the first ISOC approach, the ISOC approach with the second 

solution to obtain the minimum length path is next referred to as the second ISOC 

approach, and the ISOC approach with the third solution to obtain the minimum 

length path is next referred to as the third ISOC approach. 
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3 Validation by Simulation and Experiments 

This section validates the ISOC approaches presented in the previous section by 

simulations and experiments conducted on mobile robots. The validation by 

simulation includes a comparison between the proposed approaches, and of the 

proposed approaches with another well-known approach discussed in Section 1, 

namely the BCDC approach. The validation by experiments is focused on a 

Khepera mobile robot. 

3.1 Simulation Results 

The comparison between the ISOC approaches has been carried out for artificial 

(generated) maps. The results are illustrated in Table 1. Although the first two 

ISOC approaches use optimal solutions and the third ISOC approach is heuristic, 

the results are close. As shown in the first row, the third ISOC approach gives a 

better result because of the discretization errors. 

Table 1 

Comparison between the proposed approaches 

Results using the first two approaches Results using the third approach 

 
𝛼 = 90𝑜, 𝛤 = 14443 

 
𝛼 = 84.52𝑜, 𝛤 = 13684 
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𝛼 = 270𝑜, 𝛤 = 22575 

 
𝛼 = 269.54𝑜, 𝛤 = 23796 

 
𝛼 = 135𝑜, 𝛤 = 15305 

 
𝛼 = 163.6𝑜, 𝛤 = 15826 

 

Three types of maps have been used to validate the ISOC algorithm presented in 

the previous section: a simulated map obtained from V-REP [2], a real-life 

measurement map [37], and an artificially generated map. The maps developed in 

V-REP and imported to Matlab are called simulation maps. The real-world 

measurement maps are available datasets, which we have been downloaded from 

[37]. These maps represent the third floor common area of the MIT Stata Center 

(Dreyfoos Center) [38]. The artificially generated maps have been obtained by 

either hand drawing or randomly using Matlab. These maps are illustrated in Fig. 

9 as follows: three artificial maps in Fig. 9 (a), (b) and (d), and a real-world map, 

i.e. the test bench taken from our laboratory snapshot in Fig. 9 (c). 
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Figure 9 

Real-world and artificially generated maps 

The proposed approaches are next compared to the BCDC approach, and the 

results are presented in Table 2. The comparison shows that the ISOC algorithm is 

always slower than the BCDC algorithm, but most of the time it generates a 

shorter path. This confirms the results that have been foreseen at the very 

beginning of the creation of the ISOC approaches and algorithm: ISOC deals with 

complex maps better, meaning that it generates shorter paths, but this is reflected 

in its increased computational complexity. 

Table 2 

Comparison between the proposed approaches and the BCDC approach 

Map 

size 

(pixel) 

Number 

of holes 

Occupied 

ratio (%) 

BCDC-

based 
path 

length 

(mm)  

ISOC-

based 
path 

length 

(mm) 

BCDC-

based 

computation 
time (s) 

ISOC-

based 
computa

tion 

time (s) 

Image 

435600 1 73.04 9984.41 9625.15 15.65 32.17 Fig. 9 (a) 

453696 3 55.77 21392.96 18449.71 10.79 45.65 Fig. 9 (b) 

409600 5 60.06 27214.68 22278.05 14.82 96.97 Fig. 9 (c) 

90000 2 39.23 2879.35 2880.04 10.54 49.48 Fig. 9 (d) 

The comparison was done with an i7 processor, clock rate of 3.7 GHz and 16 GB 

memory. The comparison of the three proposed approaches from the point of view 

of the computation time shows that the first approach is the most time consuming, 

and the second approach reduces the computation time if a parallel computing (for 

each quadrant) is considered and the approximation is made faster. 
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3.2 Experimental Results 

A Khepera III differential drive robot has been used in the experiments. The map 

has been previously known, and after the path commutation, an open loop control 

was applied for the robot. The first phase of the experiments consists of a 

simulation, and the result is given in Fig. 10. 

 

Figure 10 

Simulation result of the known map and the robot path 

A map was evolved in the second phase and highlighted with yellow marker in 

order to visualize the real-world experiments as shown in Fig. 11 (a). The robot 

path was measured with a camera applied above the robot path. This camera took 

photos in approximately equivalent periods of time. Fig. 11 (b) shows a merge of 

several images that were taken during the experiments, and suggestively illustrates 

that the robot covers the path. The entire commented source code is available at 

the repository https://github.com/horverno/sze-academic-robotics-projects in order 

to test the presented results. 

 

Figure 11 

Image that shows the Khepera robot (a) and merged images illustrating the robot path (b) 

Conclusions 

This paper has proposed three approaches to coverage path planning expressed in 

a unified manner in terms of the ISOC algorithm. This algorithm starts with the 

initial data of the map and computes a collection of parallel segments named the 

main segments. These segments are linked with auxiliary segments into 

continuous paths. The ISOC strategy to coverage path planning links two ideas: 

the minimum length beam of parallel lines computed by means of three solutions 

that lead to the three ISOC approaches, plus the minimum length auxiliary lines 

that are based on a solution to the traveling salesman problem. 

https://github.com/horverno/sze-academic-robotics-projects
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Future research will focus on performance enhancement of the ISOC algorithm by 

means of four approaches. First, the parallelization of certain sections of code will 

be carried out by means of a GPGPU-based approach. Second, the use of abstract 

data types as lists, trees or graphs will be also considered. Third, own targeted 

functions will be written instead of the used general-purpose functions of an API 

or a toolbox. And last, the generated path can be executed with a help of a 

nonlinear model and controller [40-43]. 
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