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1 Introduction

In the literature of economics and finance the measure of risk has always been a very
interesting topic, and nowadays it may be even more important than ever. One of
the first idea to be taken into consideration is the risk in financial activities coming
from Markowitz [26], who developed his famous model, where the investors make
portfolios from different securities, and try to maximize their profit and minimize
their risk at the same time. In this model, the profit was linear and the risk was
defined as the variance of the securities. The Markowitz model can be formulated
as a linearly constrained optimization problem with two objective (linear profit and
quadratic risk) functions.

In the general case, the least risky portfolio is not the most profitable one; thus
we could not optimize the two objectives at the same time. Therefore, we need to
find portfolios, where one of the goals cannot be improved without worsening the
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other. This kind of solutions are called Pareto optimal or Pareto efficient solutions
discussed by Pareto [30].

Single Pareto optimal solution of the Markowitz model can be computed by scalar-
ization methods, see Luc [23] and Miettinen [28], where the weighted sum of the
objective functions, serving as a new objective function, defines a single quadratic
objective function. Therefore, after the scalarization of the Markowitz model, the
optimization problem simplifies to a quadratic optimization problem over linear
constraints [25]. The simplified problem’s optimal solution is a single Pareto op-
timal solution of the original problem. The effect of the weights of the objective
functions determine the computed Pareto efficient solution of the original problem.
The weights might have unpredictable effects on the computed Pareto efficient so-
lution in general. Weakness of this approach is that it restricts the Pareto efficient
solution set to a single element and it’s local neighborhood. In this way, we lose
some information, like how much extra profit can be gained by accepting a larger
risk. Finding - or at least approximating - the whole Pareto efficient solution set
of the original, multi-objective problem, may lead to a better understanding of the
modeled practical problem [27].

For some unconstrained multi-objective optimization problems there are research
papers [7, 8, 13, 34] discussing algorithms applicable for approximating the Pareto
efficient solution set. However, many multi-objective optimization problems - natu-
rally - have constraints [13,14]. A simple example for a constrained multi-objective
optimization problem is the earlier mentioned Markowitz model. In this paper, we
extend and generalize the algorithm of Dellnitz et al. [7] for approximating the
Pareto efficient set of a linearly constrained convex multi-objective problem. Fliege
and Svaiter [13] obtained some theoretical results, that are similar to our approach
for finding joint decreasing directions.

In the next section, most important definitions and results of vector optimization
problems are summarized. In the third section, we discuss some results about the
unconstrained vector optimization problem. The method called subdivision tech-
nique introduced by Dellnitz et al. [7, 8] was developed to approximate the Pareto
efficient solution set of an unconstrained vector optimization problems. The subdi-
vision method uses some results described in [34]. An important ingredient of all
methods, that can approximate the Pareto optimal set of a convex vector optimiza-
tion problem, is the computation of a joint decreasing direction for all objective
functions. We show that - using results from linear optimization - a joint decreasing
direction for an unconstrained vector optimization problem can be computed.

In the fourth section, the computation of a feasible joint decreasing direction for
linearly constrained convex vector optimization problem is discussed. The set of
feasible joint decreasing directions forms a finitely generated cone and can be com-
puted, as shown in Section 4. Interesting optimality conditions of Eichfelder and
Ha [10] for multi-objective optimization problems show some similarities to those
that are used in this paper during the computations of joint decreasing directions;
however their results do not have practical, algorithmic applications yet.

Section 5 contains an algorithm, which is a generalization of the subdivision method
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for the linearly constrained convex vector optimization problem. In Section 6, we
show some numerical results obtained on a real data set (securities from Budapest
Stock Exchange) for the Markowitz model.

Comparing our method presented in Section 5, with the subdivision algorithm of
Dellnitz et al. [7, 8], clearly, our method works for unconstrained vector optimiza-
tion problems (UVOP), like that of Dellnitz et al. [7, 8], but we generate different
joint decreasing directions. Furthermore, our method is applicable to vector op-
timization problems (VOP) with convex objective functions and linear constraints,
keeping all advantageous properties of subdivision algorithm of Dellnitz et al. [7,8].

For the (VOP) there are some sophisticated scalarization methods reported in [15].
This method, as scalarization methods in general, finds a single Pareto optimal solu-
tion. The scalarization method introduced by [15] defines a weighted optimization
problem (WOP) of (VOP) with fixed weights and a feasible solution set, that de-
pends on the current feasible vector x. Thus, in each iteration of the algorithm the
actual feasible solution set is restricted to such a subset of the original feasible so-
lution set, where some Pareto optimal solutions are located.

Subdivision techniques - including ours - find a cover set of the Pareto optimal
solution set, formed by boxes used in the subdivision procedure (see Sections 5 and
6). The approximation of the whole Pareto optimal solution set is controlled by
the diameter of the covering boxes computed in the subdivision procedure of the
algorithm.

Although both the scalarization algorithm of Gianessi et al. [15] and our subdivision
algorithm have some similarities (i.e., in each iteration the feasible solution set de-
creases), there are significant differences as well. The scalarization algorithm finds
a single Pareto optimal solution under some quite general assumptions, while the
subdivision algorithm approximates the whole Pareto optimal solution set for the
(VOP) with convex objective functions and linear constraints.

We use the following notations throughout the paper: scalars and indices are denoted
by lowercase Latin letters, column vectors by lowercase boldface Latin letters, ma-
trices by capital Latin letters, and finally sets by capital calligraphic letters.

The vector, with all 1 elements is denoted by e, i.e.

eT := (1,1, . . . ,1) ∈ Rn,

for some n ∈N, where T stands for the transpose of a (column) vector (or a matrix).
Vector ei ∈ Rn is the ith unit vector of the n dimensional Euclidean space.

2 Basic Definitions and Results in Vector Optimization

In this section, we discuss some notations, define the vector (or multi-objective)
optimization problem and the concept of Pareto optimal solutions. Furthermore, we
state two well known results of vector optimization, which are important for our
approach.
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We define the unit simplex set, as,

Definition 1. Let Sk denote the unit simplex in the k dimensional vector space,
and define it as follows:

Sk := {w ∈ Rk : eT w = 1, w≥ 0}.

Let F ⊆ Rn be a set and F : F → Rk is a function defined as

F(x) = [ f1(x), f2(x), . . . , fk(x)]T ,

where fi : F → R is a coordinate function for all i.

The general vector optimization problem (GVOP) can be formulated as

(GVOP) MIN F(x), subject to x ∈F .

If the set F and the function F are convex, then (GVOP) is a convex vector opti-
mization problem. We assume that F is differentiable.

Usually, different objective functions of (GVOP) describe conflicting goals, there-
fore such x ∈F , that minimize all objective functions at the same time, is unlikely
to exist. For this reason, the following definitions naturally extend the concept of an
optimal solution for (GVOP) settings.

Definition 2. Let (GVOP) be given. We say that x∗ ∈F is a

1. weakly Pareto optimal solution of problem (GVOP) if there does not exist a
feasible solution x ∈F which satisfies the vector inequality F(x)< F(x∗);

2. Pareto optimal solution if does not exist feasible solution x ∈F which satis-
fies the vector inequality F(x)≤ F(x∗) and F(x) 6= F(x∗).

Furthermore, we call the set F ∗ ⊆F a weakly Pareto optimal set if every x∗ ∈F ∗

is a weakly Pareto optimal solution of the (GVOP).

Our goal is to approximate the whole Pareto optimal or weakly Pareto optimal so-
lution sets for different vector optimization problems. During the approximation
procedure of the whole Pareto optimal solution set, we compute many Pareto op-
timal solutions and produce an outer approximation of the whole Pareto optimal
solution set.

The literature contains several methods that, find one of the Pareto optimal solutions,
see [9, 23, 28], but sometimes it is interesting to compute all of them, or at least as
much as we can.

One of the frequently used method to compute a Pareto optimal solution uses a
weighted sum of the objective functions to obtain a single objective optimization
problem. Let w ∈ Sk be a given vector of weights. From a vector optimization
problem, using a vector of weights, we can define the weighted optimization prob-
lem as follows
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(WOP) min wT F(x), subject to x ∈F .

We state without proof two well-known theorems, that describe the relationship
between (GVOP) and (WOP). The first theorem shows that the (WOP) can be used
to find a Pareto optimal solution, see for instance [9, 23, 28].

Theorem 1. Let a (GVOP) and the corresponding (WOP) for a w ∈Sk be given.
Assume that x∗ ∈F is an optimal solution of the (WOP) problem; then x∗ is a weak
Pareto optimal solution for the (GVOP).

Next theorem needs a bit more complicated reasoning, but for the convex case each
Pareto optimal solution of the (GVOP) can be found through a (WOP) using the
proper weights [9, 23, 28].

Theorem 2. Let (GVOP) be a convex vector optimization problem, and assume that
x∗ ∈F is a Pareto optimal solution of the (GVOP); then there is a w ∈Sk weight
vector, and a (WOP) problem, for which x∗ is an optimal solution.

The method, that will be described in section 5, decreases every coordinate function
of F at the same time and always moves from a feasible solution to another feasible
solution; hence we introduce the following useful definition.

Definition 3. Let problem (GVOP) and feasible point x ∈ F be given. Vector
v ∈ Rn, v 6= 0 is called a

1. joint decreasing direction at point x iff there exists h0 > 0 for every h ∈]0,h0]
satisfying that

F(x+hv)< F(x);

2. feasible joint decreasing direction iff it is a joint decreasing direction and
there exists h1 > 0 such that, for every h ∈]0,h1] we have x+hv ∈F .

Example. Let the following unconstrained vector optimization problem

(GVOP1) MIN F(x1,x2) =

(
f1(x1,x2) = x2

1 + x2
2

f2(x1,x2) = (x1−1)2 +(x2−1)2

)
,

be given alongside a point xT = (x1,x2) = (0,1) and direction vT = (1,−1). Now
we show that v is a joint decreasing direction for the objective function F at point x.

It is easy to show that

f1(x+hv) = f2(x+hv) = h2 +(1−h)2 = 2
(

h− 1
2

)2

+
1
2

From the last form of the coordinate functions, it is easy to see that the coordi-
nate functions are decreasing on the [0; 1

2 ] interval; therefore v is a joint decreasing
direction with h0 =

1
2 .

If we add a single constraint to our example, then we obtain a new problem
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(GVOP2) MIN F(x1,x2) =

(
f1(x1,x2) = x2

1 + x2
2

f2(x1,x2) = (x1−1)2 +(x2−1)2

)
,

subject to x1 ≤
1
3
.

It is easy to see that v is a feasible joint decreasing direction for problem (GVOP2)
too, with h1 =

1
3 .

From now on, let us consider (GVOP) with a convex, differentiable objective func-
tion F and let us denote the Jacobian-matrix of F at point x by J(x). Then, v ∈ Rn

is a joint decreasing direction of function F at point x, if and only if

[J(x)]v < 0, (1)

as v is a decreasing direction for the ith coordinate function fi at point x, if and only
if [∇ fi(x)]T v < 0.

3 Results for Unconstrained Vector Optimization

In this section, we review some results of unconstrained vector optimization, namely
for F = Rn. We assume that F is a differentiable function. The unconstrained
vector optimization problem is denoted by (UVOP) .

Before we show how a joint decreasing direction can be computed, we need a cri-
terion to decide wether an x is a Pareto optimal solution or not, see Schäffler et al.
[34].

Definition 4. Let J(x) ∈ Rk×n be the Jacobian matrix of a differentiable function
F : Rn → Rk at a point x ∈ Rn. An x∗ is called substationary point of F iff there
exist a w ∈Sk, which fulfills the following equation:

wT [J(x∗)] = 0.

In the unconstrained case, point x∗ is a substationary point of the objective function
F of (GVOP), if it is a stationery point of the weighted objective function of (WOP).
From Theorem 1 and Theorem 2 we can see that in convex case, substationary points
are weak Pareto optimal solutions of the unconstrained vector optimization problem
(GVOP).

We are ready to discuss two models to find joint decreasing directions. The first
model has been discussed in [34] and uses a quadratic programming problem formu-
lation to compute joint decreasing directions. Later we show that a joint decreasing
direction can be computed in a simpler way by using a special linear programming
problem.
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Let us define the following quadratic programming problem (QOP(x)) for any x ∈
Rn, with variable w

(QOP(x)) min wT
(

J(x) [J(x)]T
)

w, subject to w ∈Sk.

From the well known Weierstarss Theorem it follows that this problem always has
an optimal solution, since the feasible set is compact and the function

g : Sk→ R, g(w) = wT
(

J(x) [J(x)]T
)

w

is a convex, quadratic, continuous function for any given x ∈ Rn.

Next theorem is an already known statement [34, Theorem 2.1], for which we give
a new and shorter proof. This shows that using the (QOP(x)) problem we can find
a joint decreasing direction of F or a certificate that x is a Pareto optimal solution of
problem (UVOP).

Theorem 3. Let a problem (UVOP), a point x ∈ Rn and the associated (QOP(x))
be given. Let w∗ ∈ Rk denote the optimal solution of (QOP(x)). We define vector
q ∈ Rn as q = [J(x)]T w∗. If q = 0, then x is a substationary point, otherwise −q is
a joint decreasing direction for F at point x.

Proof. When q = 0 then Definition 4 shows that x is substationary point. When
q 6= 0, we indirectly assume that −q is not a decreasing direction for the ith coor-
dinate function, fi of F and [∇ fi(x)]T q 6= 0. It means that [∇ fi(x)]T q < 0. Since
[∇ fi(x)]T = eT

i J(x), so our indirect assumption means

[∇ fi(x)]T q = eT
i [J(x)][J(x)]

T w∗ < 0.

We show that ei−w∗ 6= 0 is a feasible decreasing direction of g(w∗) which contra-
dicts the optimality of w∗. The ei = w∗ can not be fulfilled because it contradicts the
indirect assumption, and it is easy to see, that ei is a feasible solution of (QOP(x))
so ei−w∗ is a feasible direction at point w∗.
Since

∇g(w) = 2[J(x)][J(x)]T w

thus

[∇g(w∗)]T (ei−w∗) = 2w∗T [J(x)][J(x)]T (ei−w∗)

= 2w∗T [J(x)][J(x)]T ei−2w∗T [J(x)][J(x)]T w∗

= 2qT [∇ fi(x)]−2w∗T [J(x)][J(x)]T w∗ < 0,

where the first term of the sum is negative because of the indirect assumption, and
the second term is not positive, because [J(x)][J(x)]T is a positive semidefinite ma-
trix.

The previous result underline the importance of solving (QOP(x)) problem effi-
ciently. For solving smaller size linearly constrained convex quadratic problems
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pivot algorithms [1, 4–6, 16, 22] can be used. In case of larger size linearly con-
strained, convex quadratic problems, interior point algorithms can be used to solve
the problem (see for instance [18, 20]).

Theorem 3 shows that a joint decreasing direction can be computed as the convex
combination of the gradient vectors of coordinate functions of F . Following the
ideas discussed above, we can formulate a linear programming problem such that
any optimal solution of the linear program defines a joint decreasing direction of
problem (UVOP). Some similar results can be found in [13].

Let us define the linear optimization problem (LP(x)) in the following way:

(LP(x)) max q0, subject to [J(x)]q+q0e≤ 0, 0≤ q0 ≤ 1,

where q ∈ Rn and q0 ∈ R are the decision variables of the problem LP(x). Now we
are ready to state and prove a theorem that discusses a connection between (UVOP)
and (LP(x)).

Theorem 4. Let a point x ∈ Rn, an (UVOP) and an associated (LP(x)) be given.
Then the (LP(x)) always has an optimal solution (q∗,q∗0). There are two cases for
the optimal value of the (LP(x)), either q0 = 0 thus x is a substationary point of the
(UVOP), or q0 = 1 thus q∗ is a joint decreasing direction for the function F at point
x.

Proof. It is easy to see that q = 0, q0 = 0 is a feasible solution of problem (LP(x))
and 1 is an upper bound of the objective function, which means (LP(x)) should have
an optimal solution.
Let us examine the case

[J(x)]q+q0e≤ 0, q0 > 0. (2)

If system (2) has a solution, than
(

1
q0

q,1
)

is a solution of the system, so the optimal
value of the objective function is 1. This mean that

[J(x)]q≤−e

so the q is a joint decreasing direction of function F .
If the system (2) has no solution then the optimal value of the objective function is
0, and from the Farkas lemma ([11, 12, 17, 22, 29, 31, 32, 35]) we know that there
exists a w which satisfies the following:

wT [J(x)] = 0, eT w = 1, w≥ 0. (3)

It means that if the optimal value of the problem (LP(x)) is 0, than x is a substation-
ary point.

A linear programming problem (LP(x)) (and later on (LPS(x))) can be solved by
either pivot or interior point algorithms, see [21]. In case of applying pivot methods
to solve linear programming problem, simplex algorithm is a natural choice, see [24,
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29, 35]. A recent study on anti-cycling pivot rules for linear programming problem
contains a numerical study on different pivot algorithms, see [6]. Sometimes, if
the problem is well structured and small, criss-cross algorithm of T. Terlaky can
be used for solving the linear programming problem as well, see [17, 36]. More
about interior point algorithms for linear programming problems can be learnt from
[19, 24, 33].

In this section two techniques were introduced to decide whether a point x is a weak
Pareto optimal solution of problem (UVOP) or to find a joint decreasing direction.
Before we generalize this result to the linear constrained case let us compare this
technique with some known procedures. The classical scalarization technique based
on (WOP) finds a Pareto optimal solution x∗ of (UVOP). Due to the requirements
defined by the concept of the weak Pareto optimal solution, it may happen that in
some iterations of the scalarization algorithm such feasible solutions are computed
for which some objective function’s value increases. In our method this phenomena
can not happen, because in each iteration we select a joint decreasing direction.

4 Vector Optimization with Linear Constraints

In this section, we show how we can find a feasible joint decreasing direction for
linearly constrained vector optimization problems. First we find a feasible joint
decreasing direction for a special problem, where we only have sign constraints on
the variables. After that we generalize our results to general linearly constrained
vector optimization problems. Our method can be considered as the generalization
of the well known reduced gradient method to vector optimization problems. Some
similar result can be found in [13], for the feasible direction method of Zountendijk.

First we define the vector optimization problem with sign constraints (SVOP):

(SVOP) MIN F(x), subject to x≥ 0,

where F is a convex function. From Theorem 1 we know that x∗ ≥ 0 is a Pareto
optimal solution if there exists a w ∈Sk vector such that x∗ is an optimal solution
of

(SWOP) min wT F(x), subject to x≥ 0.

Since Slater regularity and convexity conditions hold, from the KKT theorem [24]
we know that x∗ ≥ 0 is an optimal solution of (SWOP) iff it satisfies the following
system:

wT [J(x∗)]≥ 0, wT [J(x∗)]x∗ = 0. (4)

Let the vector x ≥ 0 be given and we would like to decide wether it is an optimal
solution of the (SWOP) problem or not. Let us define the index sets

I+ = {i : xi > 0}, and I0 = {i : xi = 0},
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that depend on the selected vector x. Using the index sets I0, I+, we partition the
column vectors of matrix J(x) into two parts. The two parts are denoted by J(x)I0
and J(x)I+ . Taking into consideration the partition, the KKT conditions can be
written in an equivalent form as

wT [J(x)]I+ = 0, wT [J(x)]I0 ≥ 0, w ∈Sk. (5)

The inequality system (5) plays the same role for (SVOP) as (3) for (UVOP),
namely x is a Pareto-optimal solution if (5) has a solution.

Now we can define a linear programming problem corresponding to (SVOP) such
that an optimal solution of the linear programming problem either defines a joint
decreasing direction or gives a certificate that the solution x is a Pareto optimal
solution of (SVOP).

(LPS(x)) max z,

subject to [J(x)]I+u+[J(x)]I0v+ ze≤ 0,
v≥ 0, 0≤ z≤ 1,

where u,v and z are the decision variables of problem (LPS(x)). Now we are ready
to prove the following theorem.

Theorem 5. Let a (SVOP) and an associated (LPS(x)) be given, where x ∈F is
a feasible point. The problem (LPS(x)) always has an optimal solution (u∗,v∗,z∗).
There are two cases for the optimal value of problem (LPS(x)), z∗ = 0 which means
that x is a Pareto optimal solution of the (SVOP), or z∗ = 1 which means that
qT = (u∗,v∗) is a feasible joint decreasing direction of function F.

Proof. It is easy to see that u = 0, v = 0, z = 0 is a feasible solution of the problem
(LPS(x)) and 1 is an upper bound of the objective function, therefore (LPS(x)) has
an optimal solution.
Let us examine the following system

[J(x)]I+u+[J(x)]I0v+ ze≤ 0, v≥ 0, z > 0. (6)

If system (6) has a solution, then
( 1

z u, 1
z v,1

)
is an optimal solution of the problem

(LPS(x)) with optimal value 1. Thus the vector qT = (u,v) satisfies

[J(x)]q≤−e < 0,

so the q is a feasible joint decreasing direction for function F at x ∈F . Vector q is
feasible because qI0 = v≥ 0.
If the system (6) has no solution then the optimal value of the objective function is
0, and from a variant of the Farkas lemma, see [11, 12, 17, 22, 31, 32, 35] we know
that there exists a w which satisfies the following system of inequalities:

[J(x)]TI+w = 0, [J(x)]TI0 w≥ 0, eT w = 1, w≥ 0. (7)
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It means that if the optimal value of problem (LPS(x)) is 0, then point x is a Pareto
optimal solution of (SVOP).

We are ready to find feasible joint decreasing direction to a linearly constrained
vector optimization problem at a feasible solution x̃. Let the matrix A ∈ Rm×n and
vector b ∈ Rm be given. Without loss of generality we may assume that rank(A) =
m. Furthermore, let us assume the following non degeneracy assumption (for details
see [2]): any m columns of A are linearly independent and every basic solution is
non degenerate. We have a vector optimization problem with linear constraint in the
following form

(LVOP) MIN F(x), subject to Ax = b, x≥ 0.

Like in the reduced gradient method, see [2], we can partition the matrix A into two
parts A = [B,N], where B is a basic and N the non-basic part of the matrix. Similarly
every v ∈ Rn vector can be partitioned as v = [vB,vN ]. We call vB basic and vN a
nonbasic vector. We can chose the matrix B such that the x̃B > 0 is fulfilled. While
Ax = b holds, we know that

BxB +NxN = b, and xB = B−1(b−NxN).

We can redefine function F in a reduced form as

FN(xN) = F(xB,xN) = F(B−1 (b−NxN) ,xN).

Let us define using the partition (B,N) and the following sign constraint optimiza-
tion problem

(SVOPB(x̃)) MIN FN(xN), subject to xN ≥ 0.

Let qN denote a feasible joint decreasing direction for (SVOPB(x̃)) at point x̃N ,
which can be found by applying Theorem 5. Let qB = −B−1NqN ; then we show
that q = [qB,qN ] is feasible joint decreasing direction for (LVOP) at point x̃. Let us
notice that

A(x̃+hq) = Ax̃+h(BqB +NqN) = b+h
(
−B(B−1NqN)+NqN

)
= b,

for every h ∈ R. So FN(x̃ + hqN) = F(x̃ + hq) and while qN is a feasible joint
decreasing direction with h1 > 0 stepsize for (SVOPB(x̃)). We can show that q is
a joint decreasing direction for problem (LVOP) with the same h1 > 0 step size.
While x̃B > 0, there exists h2 > 0, such that x̃B +h2qB ≥ 0, therefore q is a feasible
joint decreasing direction for problem (LVOP) with a step-size

h3 = min(h1,h2)> 0. (8)

We can compute h1 and h2 using a ratio-test, since x̃i +hqi ≥ 0 for all i is required,
therefore

h1 = min
{
− x̃i

qi
: qi < 0, i ∈N

}
> 0, and

h2 = min
{
− x̃i

qi
: qi < 0, i ∈B

}
> 0.
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5 The Subdivision Algorithm for Linearly Constrained
Vector Optimization Problem

In this section, we show how can we build a subdivision method to approximate
the Pareto optimal set of a linearly constrained vector optimization problem. Our
method is a generalization of the algorithm discussed in [7], where you can find
some results about convergence of the subdivision technique. The original method
can not handle linear constraints.

Our algorithm approximates the Pareto optimal solution set F ∗, using small boxes
that each contains at least one computed Pareto optimal solution. The smaller the
sets, the better approximation of the F ∗, therefore we define the following measure
of sets involved in the approximation of F ∗.

Definition 5. Let H ⊆ Rn be given; the diameter of H is defined as

diam(H ) := sup
x,y∈H

||x− y||.

Let H be a family of sets, which contains a finite number of sets from Rn; then the
diameter of H is

diam(H) = max
H ∈H

diam(H ).

Let us assume that the feasible set of our problem is nonempty, closed and bounded.
In this case Pareto optimal solution set of the problem (LVOP) is a nonempty set,
defined as,

F ∗
L = {x ∈F : x is Pareto optimal solution of (LVOP)}.

Based on our assumption, that F is bounded set, there exists

H0 = {x ∈ Rn|l≤ x≤ u},

where l,u ∈ Rn are given vectors and

F ∗
L ⊆F ⊆H0∩{x ∈ Rn : Ax = b}.

Our goal is to introduce such a subdivision algorithm for (LVOP) problem, that iter-
atively defines better and better inner and outer approximation of the Pareto optimal
solution set of a problem (LVOP). The inner approximation will be an increasing
sequence of sets FP i, containing finitely many Pareto optimal solutions produced
by the algorithm. The outer approximation will be a family of sets Hi produced in
each iteration of the algorithm, that covers F ∗

L with decreasing diameter, diam(Hi).

The input of our method are data of the (LVOP) problem, namely matrix A ∈Rm×n,
vector b ∈ Rm, function F : Rn→ Rk, set H0 and a constant ε > 0.

The output of our algorithm is a family of sets H, such that diam(H)< ε and each
H ∈H contains at least one Pareto optimal solution.
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The algorithm uses some variables and subroutines, too. The S P , FP are finite-
element sets of points from Rn, H ,G ⊆F , H′,K,K′ and A are family of sets like
H.

Our algorithm in the first step defines the family of sets H, which contains only the
H0 set. The cycle in step 2 runs while the diameter of H is not small enough. The
algorithm reaches this goal in a finite number of iteration, because as you will see in
subroutine Newset(H) the diameter of H converges to zero. Nevertheless we show
that after every execution of the cycle the family of sets H contains sets H which
have Pareto optimal solutions. At the beginning it is trivial, because H contain the
whole feasible set.

Subdivision algorithm for (LVOP)

1. H= {H0}

2. While diam(H)≥ ε do

(a) H′=Newsets(H)

(b) S P = /0

(c) While H 6= /0 do

i. H ∈H

ii. S P = S P ∪ Startpoint(H )

iii. H=H\{H }

End While

(d) FP =Points(S P,A,b,F)

(e) While H′ 6= /0 do

i. H ∈H′

ii. If H ∩FP 6= /0 then H=H∪{H } End If

iii. H′ =H′ \{H }

End While

End While

3. Output(H)

In step 2(a) we define a family of sets H′ using the subroutine Newset(H). The sets
from H′ are smaller than sets form H and cover the same set. Therefore the result
of this subroutine has two important properties:

1. ∪H ∈H′ (H ∩F ) = ∪H ∈H (H ∩F ),

2. diam(H′) = 1
K diam(H),
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where K > 1 is a constant.

The steps in cycle 2, from step 2(b), delete the sets from H′ which do not contain
any Pareto optimal points. Step 2(b) makes set S P empty. The cycle in step 2(c)
produces a finite number of random starting points in set H ∩{x∈Rn : Ax = b} for
every H ∈ H using subroutine Startpoint(H ), and puts the generated points into
the set SP.

The main step of our algorithm 2(d) is the subroutine Points(S P,A,b,F) that pro-
duce a set FP which contains Pareto optimal points. This subroutine uses our
results from Section 4.

In cycle 2(e) we keep every set from H′ which contains Pareto optimal solutions
and add those to H. Finally, we check the length of the diameter of H and repeat the
cycle until the diameter is larger than the accuracy parameter ε .

Subroutine Points(S P , A, b, F)

1. While S P 6= /0 do

(a) s ∈S P

(b) x = s, z = 1

(c) While z = 1 do

i. (B,N) = A

ii. (xB,xN) = x

iii. (q,z)=Solve(LPS(xN))

iv. If z = 1 then

A. h3=stepsize(F , B, N, b, xN , q)

B. xN = xN +h3q

C. xB = b−B−1NxN

D. x = (xB,xN)

End If

End While

(d) S P = S P \{s}

(e) FP = FP ∪{x}

End While

2. Output(FP)

Subroutine Points uses a version of the reduced gradient method for computing
Pareto optimal solutions or joint decreasing directions, as discussed in Section 4.
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This subroutine works until from all points in S P search for a Pareto optimal point
has been executed. The cycle 1(c) runs until it finds a Pareto optimal point. As we
discussed in section 4 the cycle finishes when z = 0. In line 1(c)i the matrix A is
partitioned into a basic and a non basic parts, denoted by B and N, respectively.
The same partition is made with vector x according to 1(c)ii, and we choose the
basis such that xB > 0 should be satisfied. The LCP(xN) is solved in step 1(c)iii. If
the variable z = 0 then x is a Pareto optimal solution and we select a new starting
point from S P , unless S P is empty. Otherwise q is a feasible joint decreasing
direction for the reduced function FN . In step 1(c)ivB we compute step-size h3
which was defined in (8), and a new feasible solution x is computed.

Let us summarize the properties of our subdivision algorithm at the end of this sec-
tion. In each iteration of the algorithm, a set of Pareto optimal solutions, FP i, as
inner approximation of F ∗

L and a family of box sets Hi, with diameter diam(Hi), as
outer approximation has been produced. The input data for inner and outer approx-
imations of F ∗

L are as follows

FP0 := /0 and H0 := {H0}.

Proposition 1. Let a problem (LVOP) with nonempty, polytope F and differ-
entiable, convex objective function F be given. Furthermore, let us assume that
F ⊆H0 holds, where H0 ⊂ Rn is a box set (i.e. generalized interval). Our subdi-
vision algorithm in iteration k produces two outputs:

a) a subset of Pareto optimal solutions FPk, and

b) a family of box sets Hk,

with the following properties

1. FP i ⊆FP i+1 for all i = 0,1, . . . ,k−1,

2. ∪H ∈Hi+1H ⊆ ∪H ∈HiH for all i = 0,1, . . . ,k−1,

3. diam(Hi+1) =
1
K diam(Hi), where K > 1 is a constant,

4. FP i ⊂F ∗
L , for all i = 0,1, . . . ,k,

5. F ∗
L ⊂ ∪H ∈HiH , for all i = 0,1, . . . ,k.

Dellnitz et al. [7] discussed two important issues related to subdivision methods: (i)
convergence (see Section 3), and (ii) possibility of deleting box that contains Pareto
optimal solution (see paragraph 4.2).

Convergence of subdivision methods according to Dellnitz and his coauthors fol-
lows under mild smoothness assumptions of the objective functions and compact-
ness of their domains together with some useful properties of the iteration scheme.
All these necessary properties of the objective functions and iteration scheme are
satisfied in our case, too. Convergence of our subdivision method is based on simi-
lar arguments as in case discussed by Dellnitz et al. [7].

It may occur that a box containing Pareto optimal solution is deleted during the sub-
division algorithm, as stated in [7]. This phenomenon is related to the discretization
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induced by the iteration scheme. Decision whether keep or delete a box during the
course of the algorithm depends on whether we found Pareto optimal solution in that
box or not. From each box, finite number of points are selected and tested whether
those are Pareto optimal solutions or joint decreasing direction corresponds to them.
From those test points that are not Pareto optimal solutions, using joint decreasing
direction an iterative process is started that stops with founding a Pareto optimal
solution. If all Pareto optimal solutions computed in this way lay out of the box, we
may conclude that the box under consideration does not contain Pareto optimal so-
lution. However, this conclusion is based only on finitely many test points thus there
is a chance to delete a box even if it contains Pareto optimal solution. This situa-
tion, in practice, can be handled by applying different strategies. All these strategies
decrease the opportunity of deleting a box containing Pareto optimal solution.

In [7] discussed a recovering algorithm that could be used after the diameter of
boxes reached the prescribed ε > 0 accuracy. Their recovering algorithm finds all
those boxes with the current diameter that are necessary to ensure that a cover set of
the Pareto optimal solutions is obtained. For details, see [7], recovering algorithm
(paragraph 4.2).

6 The Markowitz Model and Computational Results

Let us illustrate our method by solving the Markowitz model to find the most prof-
itable and less risky portfolios. The standard way of solving the model is to find one
of the Pareto optimal solution with an associated (WOP) see [26, 28]. The question
is whether such single Pareto optimal solution is what we really need for decision
making. Naturally, if we would like to make extra profit, we should accept larger
risk. Therefore, a single Pareto optimal solution does not contain enough infor-
mation for making a practical decision. If we produce or approximate the Pareto
optimal solution set then we can make use of the additional information for making
more established decision.

The analytical description of the whole Pareto optimal set for the Markowitz model
is known [37]. Thus as a test problem, the Markowitz model has the following
advantage: it is possible to derive its Pareto optimal solution set in an analytical
way [37], therefore the result of our subdivision algorithm can be compared with
the analytical description of the Pareto optimal solution set.

We are now ready to formulate the original Markowitz model. Our goal is to make a
selection from n different securities. Let xi denote how much percentage we spend
from our budget on security i (i = 1,2, . . . ,n), based on more approximate infor-
mation than a single Pareto optimal solution. Therefore, our decision space is the
n-dimensional unit simplex, Sn.

Let a ∈ Rn denote the expected return of the securities, while C ∈ Rn×n denotes the
covariant matrix of the securities return. It is known that the expected return of our
portfolio is equal to aT x. One of our goal is to maximize the expected return.
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It is much harder to measure the risk of the portfolio, but in this model it is equal to
the variance of the securities return, namely xTCx. Our second goal is to minimize
this value. Now we are ready to formulate our model

(MM) MIN
(
−aT x
xTCx

)
, subject to x ∈Sn.

For computational purposes we used data from the spot market [3] and daily prices
of A category shares has been collected for a one year period from 01. 09. 2010.
to 01. 09. 2011. Let Pi,d denote the daily price of the i-th share on date d, then the
i-th coordinate of the vector a is equal to (Pi,01.09.2011.−Pi,01.09.2010.)/Pi,01.09.2010..
Thus we only work with the relative returns from the price change and do not deal
with shares dividend. We compute the daily return of the shares for every day (d)
from 01. 09. 2010. to 31. 08. 2011. as (Pi,d − Pi,d+1)/Pi,d , and C is the co-
variant matrix of this daily return. To illustrate our method we use three shares
(i = MOL, MTELEKOM, OTP) that are usually selected into portfolios because
these shares correspond to large and stable Hungarian companies. We used the fol-
lowing data:

a =

 −0,1906
−0,2556
−0,1665


C = 10−5

 27,1024 7,5655 17,1768
7,5655 16,4816 8,1816

17,1768 8,1816 34,2139


The input data for the Subdivision algorithm for (LVOP) are: matrix A = e ∈ R3,
b = 1 since we have a single constraint in our model, and the objective function

F(x) =
(
−aT x
xTCx

)
. Let H0 = {0≤ x≤ e}, ε = 1

26 and K = 2.

At the beginning of the algorithm in step 1 the family of set H has been defined (see
Figure 1).

Figure 1 Figure 2

At the first iteration the procedure Newsets in step 2(a), defines H′ in the following
way. First, it cuts the set H0 into eight equal pieces as you see in Figure 2. After that
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Figure 3 Figure 4

all those sets are deleted from H′ that does not contain any point from the feasible
solution set of the problem. Thus the result of the procedure Newsets, the family of
H′ covering the feasible solution set of the given problem has been shown in Figure
3.

Figure 5 Figure 6

The main part of the algorithm starts at step 2(c). Two hundred random points
are generated from the unit simplex (set S P). For each generated point either a
joint decreasing direction is computed and after that a corresponding Pareto optimal
solution has been identified through some iteration or it has been shown that the
generated point itself is a Pareto optimal solution of the problem. After we obtained
200 Pareto optimal solutions in set FP at step 2(d) we delete those boxes that
does not contain any point from FP at step 2(e). The result of the first iteration
can be seen in Figure 4.

From the original eight boxes remains three. For these three boxes the procedure
has been repeated in the second iteration. The results of iteration 3, 5 and 7 are
illustrated in Figures 5, 6, and 7, respectively.

These figures illustrate the flow of our computations. Finally to illustrate the con-
vergence of our method the whole Pareto optimal set was determined based on the
result of [37], and compared to the result computed in the fifth iteration, see in
Figure 8.

The summary of our computations are shown in the 1 where I stands for the iteration
number; Bin and Bout denotes the number of boxes at the beginning and at the end
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Figure 7 Figure 8

of iteration, respectively. Furthermore, T (s) is the computational time of the Ith

iteration in seconds, while d is the diameter of the family of sets, H.

I Bin T (s) Bout d
1 1 8 3 2−3

2 24 29 7 2−6

3 56 70 15 2−9

4 120 166 29 2−12

5 232 312 56 2−15

6 448 696 110 2−18

7 880 1429 228 2−21

Table 1
Computational results for Markowitz model using subdivision method.

The total computational time for our MATLAB implementation using a laptop with
the following characteristics (processor: Intel(r) Core(TM) i3 [3.3 GHZ], RAM
Memory: 4096 MB), took 2710 seconds for the subdivision algorithm for the given
Markovitz model to approximate the whole Pareto optimal solution set with the ac-
curacy ε = 2.4 10−8.

Analyzing our approximation of the Pareto optimal solution set, we can conclude
that our first option is to buy OTP shares only. From the data it can be understood
that this share has the biggest return (smallest loss in the financial crisis), so this
solution represents the strategy when someone does not care about the risk but only
about the return. From that point a line starts which represents strategies related to
portfolios based on OTP and MOL shares. Clearly, there exists a breaking point
where a new line segment starts. From the braking point the line lies in the interior
of the simplex suggesting a portfolio based on all three selected shares.

Acknowledgement

This research has been supported by the TÁMOP-4.2.2./B-10/1-2010-0009, Hun-
garian National Office of Research and Technology with the financial support of the
European Union from the European Social Fund.

– 145 –



T. Illés et al. Approximation of the Whole Pareto Optimal Set for the Vector Optimization Problem

Tibor Illés acknowledges the research support obtained as a part time John An-
derson Research Lecturer from the Management Science Department, Strathclyde
University, Glasgow, UK. This research has been partially supported by the UK
Engineering and Physical Sciences Research Council (grant no. EP/P005268/1).

References
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