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Abstract: The optimal design for loads with multiple points of application is herein 
investigated by using a formulation of displacement-constrained minimum volume topology 
optimization. For each one of the several points in which a moving force may be applied, a 
static load case is introduced, and a local enforcement is implemented to control the relevant 
displacement. Inspired by some recent contributions in stress-based topology optimization 
of large-scale structures, an Augmented Lagrangian approach, is adopted to handle 
efficiently the arising multi-constrained problem, in conjunction with mathematical 
programming. The results of some numerical simulations are shown to comment on optimal 
shapes for loads with multiple points of application, as compared to classical solutions for 
fixed loads. 
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1 Introduction 
Topology optimization is a design technique that allows investigating the optimal 
shape of structural components by distributing material within a given design 
domain, given a goal and a set of constraints [1] [2]. Among the others, the design 
performed by distribution of isotropic material is extensively adopted to investigate 
lightweight structures [3-5]. By selecting the density field as the unknown that 
governs pointwise the elastic modulus of the material, a minimization problem can 
be formulated adopting as objective function the work of the external loads at 
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equilibrium (the so-called structural compliance), while enforcing a constraint on 
the allowed amount of material (the available volume fraction). This is the well-
known volume-constrained minimum compliance problem [6]. Since the structural 
compliance equals twice the strain energy stored in the design domain, under the 
effect of any given load, this problem is in turn equivalent to searching for the 
distribution of an available amount of material that minimizes the strain energy, i.e. 
maximizes the overall structural stiffness. Minimum compliance problems may be 
solved very efficiently, see the recent contribution given in [7]. 

The design of two-dimensional structural components is addressed in the present 
work as a displacement-constrained minimum volume problem, focusing on the 
implementation of multiple constraints and load cases. Among the others, reference 
is made to [8-11] for discussions and reviews on displacement constraints in 
topology optimization, and to [12] for an insight on the optimal design including 
multiple loading. A displacement-constrained minimum volume formulation is 
ideally conceived to investigate lightweight design at the serviceability limit state. 
Indeed, displacement limits are prescribed for structural elements by technical 
codes, whereas the amount of material needed to fulfil these constraints is an 
outcome of the design problem. When the controlled displacement is that at the 
loaded point along the direction of the applied force, the work of the external load 
at equilibrium equals the scalar product of the controlled displacement and the 
applied force. In this case, the displacement-constrained minimum volume problem 
is equivalent to a classical volume-constrained minimum compliance problem.  
As discussed in [13], the same solution (up to a scaling) is expected to arise when 
considering either problem. This rationale does not apply when multiple loading or 
distributed loads are dealt with. 

Recent contributions in stress-constrained topology optimization, see in particular 
[14] [15], have shown that very large sets of local enforcements can be efficiently 
tackled by combining sequential convex programming and Augmented Lagrangian 
(AL) strategies, as an effective alternative to aggregation methods. Within the 
family of sequential programming approaches, the Method of Moving Asymptotes 
(MMA) [16] is widely adopted in structural optimization since it may linearize the 
objective function and the constraints not only in the direct variables but also in the 
reciprocal ones, see e.g. the discussion on topology optimization of elastic trusses 
in [17] and the application in [18]. In [14] an Augmented Lagrangian approach is 
proposed in which the original penalization term, see [19], is normalized with 
respect to the number of stress constraints. This approach is implemented herein to 
enforce a local control of the deflection when addressing loads with multiple points 
of application. When dynamic effects can be neglected, the case of a moving force 
may be handled as a set of several static load cases (describing successive positions 
of the load). A displacement constraint may be therefore implemented for each one 
of the load cases, to control the relevant displacement at the loaded node. Reference 
is also made to [20] [21], for examples of application of structural optimization on 
this topic. 
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While most of the methods available in topology optimization deal with volume-
constrained minimum compliance optimization, the proposed approach is 
concerned with the application of multiple local constraints to control the 
displacement field. Indeed, when dealing with the design of structural components 
at the serviceability limit state, prescriptions on the admissible deflection must be 
fulfilled. A peculiarity of the proposed approach consists in the adoption of the AL 
strategy to handle large sets of displacement constraints. Leveraging this 
framework, it is possible to control the deflection at each one of the loaded points 
when addressing distributed loads and (static) moving loads. The former case is 
frequently encountered in problems of structural design, see Figure 1(left): given a 
geometric domain with prescribed supports, the best shape is sought to carry a 
distributed load while fulfilling constraint for the deflection along the edge where 
the load is applied. The latter case is peculiar to the conceptual design of bridges or 
elements supporting overhead cranes, see Figure 1(right): the desired optimal shape 
must carry a load with multiple points of application, with full control of the 
deflection caused by the load in each one of its possible positions. 

 

Figure 1 
Design domain and boundary conditions for two problems of structural design: the case of distributed 

loads (left), and the case of (static) moving forces (right) 

It is finally stated that, accounting for the wide variety of topology optimization 
methods for structural design, see in particular [1, 3, 5], alternative strategies may 
be successfully implemented when modelling the problem and enforcing 
constraints. Among the others, reference is made to the use of polygonal finite 
elements in topology optimization to solve the elastic problem [22], thus 
minimizing any mesh-related polarization in the research of optimal distributions 
of material when using standard four-node elements, see also [23]. It is finally 
remarked that the uncertainty inherent in material properties, loads, and boundary 
conditions of any structural design problem can be conveniently embedded in the 
optimization, see e.g., the reliability-based topology optimization with 
displacement limit state function discussed in [24]. This topic will be object of 
future extensions of the method. 

The organization of the paper is as follows. Section 2.1 presents the displacement-
constrained formulation, whereas Section 2.2 gives details on the numerical 
implementation, including the computation of the sensitivity information by means 
of the adjoint method. In Section 3 numerical applications are shown pointing out 
mechanical features of the achieved optimal layouts. They are focused on simple 
examples (rather than industrial applications), due to the main goal of preliminary 
assessing the proposed method through benchmark. Finally, conclusions are drawn 
based on the outcome of the numerical tests. 
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2 Problem Formulation and Implementation 
When dealing with the considered multi-constrained problem of topology 
optimization, the finite element method is used to solve the governing equation, 
herein the linear elastic equilibrium. The element-wise constitutive properties of the 
material depend on the set of optimization unknowns through an interpolation law. 
A gradient-based minimization algorithm is used to iteratively update the unknowns 
in order to find the set that minimizes the objective function, accounting for the 
enforced constraints. In each step, a finite element analysis is performed to solve 
the elasticity problem with the current distribution of unknowns to compute updated 
information for the minimizer. 

2.1 Problem Statement 

Standard four-node displacement-based elements are used to get a discretization of 
a given design domain. A discrete design variable is assigned to each element.  
In the e-th of the n elements belonging to the mesh, 0  𝜌  1 is the so-called 
“density” of the material. Using the Solid Isotropic Material with Penalization 
(SIMP) [6][25], the constitutive matrix 𝑪ሺ𝜌ሻ reads:  

𝑪ሺ𝜌ሻ ൌ 𝜌
𝑪𝟎  𝑪𝒎𝒊𝒏 (1) 

where 𝑪𝟎 is the plane stress constitutive matrix at full density, 𝑪𝒎𝒊𝒏 ൌ 10ିଽ𝑪𝟎 
stands for “void” and p is an interpolation parameter that penalizes intermediate 
densities, see in particular [7]. In the numerical simulations, p is increased from 3 
to 9 during the optimization by means of the continuation approach used in the 
referenced work. 

The statement of the displacement-constrained problem of minimum volume 
topology optimization [12] is: 

൞

min
0𝜌𝑒1

𝑉 ൌ ∑ 𝜌𝑉,
𝑛
𝑒ൌ1

subject to ൫∑ 𝜌𝑒
𝑝 𝑲0,𝑒

𝑛
𝑒ൌ1 ൯𝑼𝑗 ൌ 𝑭𝑗, for 𝑗 ൌ 1, . . . 𝑙

𝑢  𝑢, , for 𝑖 ൌ 1, . . .𝑚

 (2) 

In the above problem, the objective function is the volume of the structural element 
𝑉. This may be computed through the sum over the contributions 𝜌𝑉,, being 𝑉, 
the volume of the e-th element at full density, that is for 𝜌 ൌ 1. 

The first constraint in Eqn. (2) prescribes the static equilibrium of the structural 
element under multiple load cases. The global stiffness matrix is given by the 
element contributions accounting for the constitutive law of Eq. (1). The element 
stiffness matrix reads 𝜌

 𝑲,, where 𝑲, refers to 𝜌 ൌ 1. For the j-th of the l load 
cases, 𝑭 is the load vector, and 𝑼 is the relevant nodal displacement vector. 
Design-independent loads are dealt with in the numerical investigations that follow. 
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The i-th of the m displacement components to be controlled is denoted by 𝑢.  
The second constraint in Eqn. (2) enforces a prescribed limit 𝑢,. This quantity 
𝑢, stands for the maximum value that the i-th displacement component is 
allowed to undergo at the serviceability limit state. Assuming that 𝑢 is an entry of 
𝑼 , meaning that the i-th constraint refers to the j-th load case, one has: 

𝑢 ൌ 𝑳
்𝑼 (3) 

where 𝑳 is a vector made of zeros with the exception of the entry referring to the 
i-th displacement degree of freedom, which takes unitary value. 

2.2 Numerical Details 

In this section, an insight is given on the treatment of the density field to avoid well-
known numerical instabilities while achieving crisp black/white layouts, and on the 
gradient-based approach used to handle the arising multi-constrained problem. 

2.2.1 Filtering and Projection 

A linear filter [26] [27] is implemented on the element variables 𝜌 to avoid the 
arising of checkerboard patterns and mesh dependence. The original variables 𝜌 
are mapped to the new set of 𝜌 as: 

𝜌 ൌ
ଵ

∑ ுೞ
∑ 𝐻௦𝜌௦

𝐻௦ ൌ maxሺ0, 𝑟 െ distሺ𝑒, 𝑠ሻሻ
 (4) 

where distሺ𝑒, 𝑠ሻ is the distance between the centroid of the e-th and s-th element, 
and 𝑟 is the filter radius, both entering the weight factor 𝐻௦. The filtered 
densities 𝜌 are subsequently mapped to the set of physical densities 𝜌ො to get crisp 
black/white solutions, see the projection proposed in [28]: 

𝜌ො ൌ
୲ୟ୬୦ሺఉఎሻା ୲ୟ୬୦ሺఉሺఘିఎሻሻ

୲ୟ୬୦ሺఉఎሻା ୲ୟ୬୦ሺఉሺଵିఎሻሻ
 (5) 

with 𝜂 ൌ ሾ0,1ሿ and 𝛽 ൌ ሾ1,∞ሿ. In the numerical simulations, 𝜂 ൌ 0.5, whereas 𝛽 is 
smoothly increased during the run from 2 to 16, by means of the continuation 
approach used in [7]. The layout of the optimal solution is given using maps of 𝜌ො. 

2.2.2 Solving Algorithm 

The optimization problem in Eqn. (2) is solved via mathematical programming, 
using the Method of Moving Asymptotes (MMA) [16] as minimizer. Displacement 
constraints are treated following the Augmented Lagrangian method implemented 
in [14]. Constraints are gathered in a modified version of the objective function such 
that the problem is turned into an unconstrained minimization. At the k-th AL step, 
this objective function reads: 
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𝑉 ൌ 𝑉 
ଵ


∑ ቆ𝑎𝑖

ሺ𝑘ሻ ௨
௨,

 ଵ

2
𝑏ሺ𝑘ሻ ൬ ௨

௨,
൰

2
ቇ𝑚

𝑖ൌ1  (6) 

where 𝑎
ሺሻ

 is the i-th entry of the vector of the Lagrangian multiplier estimators and 

𝑏ሺሻ  0 is a penalty factor. MMA is used to find an approximate solution of the 
normalized function in Eqn. (6). This solution allows updating the current values of 
the estimators of the Lagrangian multipliers and the penalty factor for the 
subsequent AL step. In the numerical simulations, the number of MMA iterations 
per AL step has been set to 5. 

The overall process is repeated until convergence is met, i.e. the maximum 
difference in terms of the minimization unknowns between two subsequent steps is 
less than 10ିଷ. 

2.2.3 Sensitivity Computation 

The adjoint method is used to compute derivatives in order to provide the gradient-
based minimizer with the sensitivity with respect to the design variables, see e.g. 
[1]. Accordingly, 𝑢 of Eqn. (3) does not change when a zero function is added at 
the right hand side. Exploiting the discrete equilibrium in Eqn. (2), denoting by 
𝑲ሺ𝝆ሻ the overal sriffenss matrix depending on the vector gathering the element 
unknowns, one may write: 

െ𝝀
்൫𝑲ሺ𝝆ሻ𝑼 െ 𝑭൯ (7) 

where 𝝀 is any arbitrary but fixed vector. After re-arrangement of terms, the 
derivative of 𝑢 with respect to the h-th entry of 𝝆 may be computed as: 

డ௨
డఘ

ൌ ቀ𝑳
் െ 𝝀

்𝑲ሺ𝝆ሻቁ
డ𝑼ೕ
డఘ

െ 𝜆
் డ𝑲ሺ𝝆ሻ

డఘ
𝑼 (8) 

that can be in turn written as: 

డ௨
డఘ

ൌ െ𝜆
் డ𝑲ሺ𝝆ሻ

డఘ
𝑼 (9) 

In the above expression, 𝝀 satisfies the adjoint equation: 

𝑲ሺ𝝆ሻ𝝀 ൌ ൬
డ௨
డ𝑼ೕ

൰
்

ൌ 𝑳 (10) 

Eqn. (9) can be evaluated recalling that the derivative of the e-th element stiffness 
matrix with respect to 𝜌 is equal to 𝑝𝜌

ିଵ 𝑲,, being 𝑲, the element stiffness 
matrix at full density. This sensitivity is null if  𝑒 ് ℎ. 

The derivatives with respect to the filtered variables 𝜌  and the physical ones 𝜌ො 
can be evaluated by applying the chain rule to Eqn. (4) and Eqn. (5), respectively. 
At each iteration in the process, only one matrix inverse must be computed to 
evaluate constraints and their sensitivities. This is because the linear systems in the 
first constraint of Eqn. (2) and Eqn. (11) share the same coefficient matrix 𝑲ሺ𝝆ሻ.  
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It is also remarked that this framework is ideally conceived for a straightforward 
implementation within commercial finite element codes, exploding their application 
programming interfaces, see e.g. [29]. 

3 Numerical Simulations 
Numerical simulations considering the optimal design under displacement 
constraints are presented in this section, dealing with fixed point forces, uniformly 
distributed loads, and forces with multiple points of application. The latter are 
referred to as moving point forces in the discussion that follows. 

In all the examples, the controlled displacements 𝑢 are those read at the m loaded 
nodes in the direction of the acting force. The limit 𝑢, is defined either as 𝛼𝑢,, 
i.e. 𝛼 times the value found at the same point in case of full material beam 𝑢,, or 
as 𝛼max


𝑢,. In the former case, the goal is reproducing the stiffness provided by 

a full material beam, with the scaling given by 𝛼. In the latter case, the bound of the 
displacement is the same for all the controlled points, as conventionally done in the 
assessment of structures at the serviceability limit state. In the numerical 
simulations that follow 𝛼 ൌ 1.50. 

Rectangular domain analyzed next have height equal to L and filter radius 
rmin=L/10. All the layouts presented next are respectful of all the enforced local 
constraints. Each solution is endowed with the value of the volume fraction of the 
material at convergence vf, that is the ratio of the last value of the objective function 
in Eqn. (2) to the volume of a full material beam. 

3.1 Cantilever Beam 

The first numerical investigation refers to a 3L × L cantilever beam that is fully 
clamped at the left side. A mesh of 300 × 100 four-node elements is used. At first, 
it is assumed that the specimen is acted upon by a vertical force located at the bottom 
right corner of the rectangular domain. According to Maxwell’s principle for 
elements in bending having constant cross-section, this is the location of a vertical 
force moving along the bottom side of the rectangular domain, such that the 
deflection of the element is the largest one. The formulation in Eqn. (2) is 
implemented considering one load case (l = 1) and controlling the vertical 
component of the displacement read at the loaded point, that is the lower corner of 
the tip (m = 1). The achieved design is the truss-like structure shown in Figure 2. 
The volume fraction is vf = 0.50. This means that only half of the material making 
a full material beam is needed if an increase by half in the deflection is allowed. 
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Figure 2 

Cantilever beam: optimal design considering a force applied at the tip (vf = 0.50) 

A second investigation is performed considering a uniformly distributed load acting 
all over the lower side of the rectangular domain. A set of constraints is enforced in 
the formulation of Eqn. (2) to control the vertical displacement at each one of the 
loaded nodes within the same load case (l = 1, m = 300). The optimal layouts that 
are found by enforcing the same ulim throughout the span (𝛼max


𝑢,) and by 

implementing the varying ulim (𝛼𝑢,), are shown in the left and right picture of 
Figure 3, respectively. 

  

Figure 3 

Cantilever beam: optimal design considering a uniformly distributed load, for the same ulim all over the 

span (left, vf = 0.40), and varying ulim to approximate the deflection of a full beam (right, vf = 0.50) 

The relevant deformed shapes are sketched in Figure 4, along with a horizontal line 
representing the quantity 𝛼max


𝑢,. In the latter case, the design is heavier than in 

the former (vf = 0.50 vs. 0.40) due to the stricter displacement constraints. Indeed, 
almost one half of the bottom side of the domain lies along the line representing the 
quantity 𝛼max


𝑢, in the former case, whereas in the latter such a deflection is 

allowed at the tip only. 

  

Figure 4 

Cantilever beam: deformed shapes of the layouts achieved considering a uniformly distributed load: 

same ulim all over the span (left), and varying ulim to approximate the deflection of a full beam (right) 

Two additional simulations are set to investigate the difference between 
displacement-constrained minimum volume optimization and volume-constrained 
minimum compliance design. Minimum compliance layouts are found using as 
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input the volume fractions found in output for the minimum volume layouts of 
Figure 3. The optimal layouts (in their deformed configuration) for vf = 0.40 and vf 
= 0.50 are represented in the left and right picture of Figure 5, respectively. In both 
pictures, the horizontal line representing the quantity 𝛼max


𝑢, already used in 

Figure 4 is reported to check the deformability. The achieved minimum compliance 
layouts have some similarity with the minimum volume design approximating the 
deflection of a full material beam, see Figure 3 (right). However, as expected, 
neither of them is stiff as the solutions found by enforcing a local control of the 
displacement field. 

  

Figure 5 
Cantilever beam: deformed shapes of the minimum compliance layouts achieved considering a 

uniformly distributed load and prescribing: vf = 0.40 (left), and vf = 0.50 (right) 

Finally, the optimal design in case of a point force moving along the lower side of 
the geometrical domain of the cantilever is considered. This may be simply 
implemented in Eqn. (2) by defining a load case for each one of the nodes belong 
to the load path of the point force (l = 300), and by controlling the relevant 
displacement at the loaded node (m = 300). Along the lines of the simulations 
performed in case of uniformly distributed load, two optimization strategies have 
been tested. The picture on the left in Figure 6, is the layout achieved by enforcing 
the same displacement limit all over the load cases (𝛼max


𝑢,). The optimal design 

has the same volume fraction of the optimal design found in the case of a specimen 
loaded by a vertical force at the tip. However, it has less and thicker members than 
the layout in Figure 2. Dealing with the moving force, a subsequent optimization is 
performed using the varying ulim that is aimed at reproducing the deflection of a full 
material beam (𝛼𝑢,). A much heavier design arises in this case to fulfil the stricter 
deflection constraints, see the picture on the right in Figure 6. 

  

Figure 6 
Cantilever beam: optimal design considering a moving vertical force, for the same ulim throughout the 

span (left, vf = 0.50), and varying ulim to approximate the deflection of a full beam (right, vf = 0.58) 
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3.2 Single Span Beams 

In this section the displacement-constrained minimum volume design is 
investigated dealing with single span beams occupying a rectangular domain with 
size 6L × L. A mesh of 600 × 100 four-node elements are used. Forces are applied 
at the lower side of the rectangular domain. 

At first, the case of simply supported beam is considered. Figure 7 gathers pictures 
representing the optimal layouts found when considering a force applied at midspan 
(top), a uniformly distributed load (center), and a moving vertical force (bottom). 
The last two layouts have been found by enforcing the same displacement limit all 
over the loaded points (𝛼max


𝑢,). The optimal design achieved in case of 

uniformly distributed load takes full advantage of the symmetry of the load and of 
the low value of the shear force around midspan. The solution found for the moving 
force is a more branched variation of that found considering a force applied at 
midspan. Indeed, this is the location of the point force for which the deflection is 
the largest in a beam with uniform cross section. The achieved design costs a very 
minor increase in terms of volume fraction (vf = 0.52 vs. 0.50). 

Then, the case of a two hinged beam is analyzed, considering the same loads and 
optimization problems already implemented for the simply supported beam.  
The achieved results are given in Figure 8. The optimal layout found for the 
uniformly distributed load is an efficient arch-like structure with inclined ties, a 
widely implemented solution in bridge design. In the solution found considering a 
force applied at midspan, the point load hangs from a central stiff region that is 
supported by two inclined struts. This layout cannot accommodate effectively 
forces with different point of applications. Indeed, the optimal solution found for 
the moving point force is a much heavier structure: the arch already exploited in the 
design for the uniformly distributed load is here endowed with a strut-and-tie sub-
structure that supports the point force all over its path. 

 

 

 

Figure 7 
Simply supported beam: optimal design considering a force applied at midspan (top, vf = 0.50), a 

uniformly distributed load (center, vf = 0.37), and a moving vertical force (bottom, vf = 0.52) 
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Figure 8 

Hinged beam: optimal design considering a force applied at midspan (top, vf = 0.42), a uniformly 

distributed load (center, vf = 0.36), and a moving vertical force (bottom, vf = 0.53) 

3.3 Two-Span Beam 

A two-span beam is considered adopting the same mesh used in the previous 
example. An additional support is added in the middle of the lower side. At first the 
optimal design is dealt with considering a uniformly distributed load applied at the 
lower edge all over the two spans (l = 1 and m = 598). The same displacement limit 
(𝛼max


𝑢,) is enforced at all the loaded points. The optimal design is represented 

in the top picture of Figure 9. The arm between the upper and the lower chord of 
the structure is in good agreement with the diagram of the bending moment of a 
two-span beam made of full material. To maximize the deflection, an alternative 
load scenario could be conveniently considered. The optimal design shown in the 
bottom picture of Figure 9 concerns the implementation of two load cases.  
The uniformly distributed load acts in one span at a time, i.e. l = 2 and m = 598, 
with half of the constraints referring to the points loaded in the left span (first load 
case) and half to the points loaded in the right span (second load case). In each of 
the two spans the design is quite similar to that found for the simply supported beam, 
see Figure 7 (center). 

The last set of investigations refers to a moving point force whose path is the lower 
side of the rectangular domain. This is implemented in Eqn. (2) by defining a load 
case for each one of the nodes belonging to the path followed by the point force (l 
= 598) and by controlling the relevant displacement at the loaded node (m = 598). 
As done in Section 3.1, two optimization strategies have been tested. 
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Figure 9 

Two-span beam: optimal design considering a uniformly distributed load acting on both spans 

simultaneously (top, vf = 0.46), and acting in one span at a time (bottom, vf = 0.50) 

In Figure 10 the optimal layout achieved by enforcing the same displacement limit 
all over the load cases (𝛼max


𝑢,) is represented. In Figure 11 the optimal design 

achieved by enforcing the varying ulim that is aimed at reproducing the deflection of 
a full material beam (𝛼𝑢,) is given. In both figures a map of the vertical 
displacements computed at the varying loaded point is provided, along with a plot 
of the fixed/ varying ulim. Although the optimal layouts are quite similar in terms of 
topology and volume fraction (vf = 0.62 vs 0.65), the relevant displacement plots 
are quite different. While most of the deck undergoes the maximum allowed 
displacement in the former case, a smoother variation is found, as expected, in the 
latter. 

  

  

Figure 10 

Two-span beam: design considering a moving vertical force and the same ulim throughout the spans (vf 

= 0.62): optimal layout and displacement computed at the varying loaded point 
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Figure 11 

Two-span beam: design considering a moving vertical force and a varying ulim aimed at approximating 

the deflection of a full beam (vf = 0.65): optimal layout and displacement computed at the varying 

loaded point 

Conclusions 

A formulation of topology optimization, by distribution of isotropic material, has 
been proposed, searching for structures of minimum volume subjected to multiple 
displacement constraints. The same problem can deal with fixed point or distributed 
loads and forces with multiple points of application. Indeed, for each one of the 
several points, in which a moving force may be applied, a local enforcement may 
be used to control the relevant displacement. 

Following recent contributions addressing stress-based topology optimization of 
large-scale structures, a modified Augmented Lagrangian approach has been 
implemented, in conjunction with sequential convex programming, to handle the 
arising multi-constrained problem, in an efficient way. 

Numerical simulations have been shown to elaborate on optimal design with 
multiple displacement constraints. Two strategies have been tested to formulate 
enforcements regarding the deflection: as conventionally done at the serviceability 
limit state, the same upper bound of the displacement can be used for all the 
controlled points. Alternatively, a varying limit may be used to mimic the stiffness 
provided by a full material beam. Optimal solutions for moving loads have been 
compared to classical solutions for fixed loads, both point forces and distributed 
loads. In a few examples, the optimal topology for moving loads was found to be a 
slightly heavier variation of the topology obtained for a single force applied where 
the maximum deflection was expected (see results concerning the cantilever beam 
and the simply supported beam). However, alternative layouts may arise to provide 
the required support along the entire load path (see results on the two hinged beam). 
It is also remarked, that the strategy adopted to enforce deflection constraints 
remarkably affects, as expected, the displacement read under the moving force (see 
results on the two-span beam). 
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The proposed design tool can be conveniently used to sketch preliminary solutions 
for any load conditions and restraint configurations. It is finally remarked that the 
considered multi-constrained formulation could be effectively augmented with 
other types of enforcements, such as buckling constraints and stress constraints, 
with the main aim of designing effective structural components [30]. The ongoing 
research is devoted to the extension of the proposed approach to multiscale design, 
moving from a deterministic framework, to a probabilistic one, implementing the 
methods proposed in [31-33]. 
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