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Abstract: There is already a lot of research in the literature on the binary separation of 

healthy people and people with some illnesses that affects speech. However, there are only 

a few examinations where more illnesses are recognized together. The examination of the 

latter is justified by the fact that a person may suffer from several illnesses at the same time 

to a certain extent. In the present study, multiclass classification of depression, Parkinson’s 

disease, and general voice disorders (organic and functional dysphonia) was performed 

using speech samples. Foremost, several acoustic features were examined as input (such as 

Mel-Frequency Cepstral Coefficients (MFCCs), mel-band energy values, formants and 

their bandwidths). Using the inputs, auto- and cross-correlation structures were formed as 

image representations and fed to a convolutional neural network (CNN). Parameter 

optimization of the correlation structures and the CNN model was applied to achieve the 

highest accuracy. Moreover, the result of the tuned process was compared to the result of a 

baseline process. Finally, multiclass (5 and 4 classes) classification was performed with 

the best parameters. The prominent feature set was the MFCCs (55.9% accuracy, 52.2% 

macro F-score) for 5 class classification. 64.3% accuracy and 60.0% macro F1-score was 

obtained for 5 classes after parameter optimization. For classifying 4 classes (merging 

dysphonic ones together), 74.9% accuracy and 71.7% macro F1-score was achieved. 

Keywords: depression; voice disorders; Parkinson’s disease; speech; Convolutional 

Neural Network 

1 Introduction 

Several illnesses have effect on speech production making speech a very 

important biomarker. There is much research in the literature on recognizing a 

disease while comparing samples with healthy control. However, some illnesses 

can occur at the same time, for example, Parkinson's disease is often accompanied 
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by depression. In this paper, we demonstrate multiclass classification process 

separating illnesses such as depression, Parkinson’s disease, and dysphonia, 

supplemented with healthy class. 

Depression is one of the most common psychiatric illnesses, affecting more than 

300 million people worldwide. Nearly 800,000 people commit suicide each year 

according to World Health Organization (WHO) due to depression [1]. Possible 

triggers of depression can be stressful or negative life events, physiological 

disorders, social problems [2]. Early detection of the disease is not always clear, 

as its symptoms vary widely from individual to individual [3]. The diagnostic 

process of depression is further complicated by the fact that the person can be 

completely isolated from society [4]. 

Parkinson's disease is a neurological degenerative disease that mainly occurs in 

the elderly. The source of this illness is the death of dopamine-producing cells in 

the brain. Typical symptoms are resting tremor, muscle rigidity, instability, 

bradykinesia. The disease also affects the vocal cords and the muscles of the face, 

thus appearing during speech production [5]. The importance of its early diagnosis 

is given by the fact that it is currently an incurable disease, the progression, and 

symptoms of which can only be alleviated [6]. 

Dysphonia (the auditory-perceptual symptoms of voice disorders) is a disease that 

occurs regardless of age and gender causing changes in speech quality. It is 

observed with an increased frequency in people who use their voice heavily, such 

as singers and teachers [7]. It directly affects the patient's quality of life, which 

can also bring about isolation from society, triggers depression, anxiety. It can 

also present as an accompanying symptom of tumours, which can be fatal if not 

properly diagnosed and treated [8]. Dysphonia is classified as either an organic or 

a functional dysphonia, where organic dysphonia results from some sort of 

physiological change in one of the subsystems of speech, while the latter refers to 

a voice problem in the absence of a physical condition. 

In the conference article [9], the three disease classes – mentioned above – were 

included in addition to the healthy control class. Approximately 270 features were 

calculated per recording, including voice quality measures (e.g., jitter, shimmer), 

pitch and intensity related measures, spectral indicators (e.g., formant frequencies, 

MFCCs), prosodic features (e.g. Pairwise Variability Indices [PVI]), energy 

metrics (e.g. Soft Phonation Index [SPI]). Parkinson’s disease, depression, and 

general voice disorders were classified with 10 fold cross-validation among the 

healthy class. As a result, the accuracy ranged from 71.7% to 86.6%. The former 

result was achieved by the k-nearest neighbours (k-NN) classifier, the latter was 

accomplished with support vector machine (SVM) with radial basis function.      

In addition, when feature selection was used, the accuracy of the SVM with radial 

basis function improved from 86.6% to 88%. 

In a previous research, we have already examined the recognition of these three 

disease classes (depression, Parkinson's disease, and dysphonia) using auto and 
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cross-correlation structures from a limited set of acoustic-phonetic features [10]. 

The correlation structure was created following the work of Williamson et al., 

who have already successfully applied this solution in several researches [11-12]. 

The eigenvalues of the structures were used as input in the classification process 

created in RapidMiner Studio. k-NN and SVM algorithms were executed with 10 

fold cross-validation. 78% accuracy was achieved using formants frequencies, 

MFCCs, mel-energy values, and fundamental frequency together. 

Correlation structures have been already used for feature selection (Parkinson's 

disease, dysphonia) and recognition (dysphonia) by examining the sum of the 

upper triangular of the correlation matrix structure [13-14]. However, the 

correlation matrices as images for CNN have not been studied yet. 

Numerous publications have been already published in the literature reporting 

binary classifications for the disease classes presented here. In these, high 

classification accuracy has been achieved (above 85%). 

In a previous publication, the automatic separation of depression and healthy 

control was performed with 83%-86% accuracy with SVM. In this research audio 

recordings from 48 depressed subjects were used [15]. In a Chinese study, 

depression was detected with 82% accuracy using male speech samples with a 

regression procedure (for females the accuracy was 75%) [16]. 

In the case of Parkinson's disease, higher accuracy values (around 90%) can be 

found with both the sustained vowels and continuous speech in the literature [17-

20]. However, small Parkinson's databases were usually used. According to the 

mPower research, 5.826 participants were tested by their sustained "a" sound, 

86% accuracy was achieved [21]. 

Features like jitter, shimmer, MFCCs, and formant frequencies were the most 

commonly used acoustic features in recognizing dysphonia [22-23]. Both 

sustained vowels and continuous speech were examined. High accuracy (above 

90%) also can be achieved to recognize dysphonia [24]. 

In this work, correlation structures were also created from certain features, but 

were used as an image representation and were fed into a CNN for classification. 

The application of correlation structures as an image on convolutional networks is 

novel, such a process has not been studied in these disease classes yet. 

Respectively, there is less research in the literature for examining these three 

illness groups simultaneously. However, such an investigation is justified by the 

fact that these three groups of illnesses may even be present simultaneously in a 

person's speech [25-27]. Furthermore, these illnesses are rarely suspected in the 

early stages. Such a device may help point out any of them by using a speech 

sample at the general practitioner. 

In this study, a baseline CNN model was created first and a 5-class classification 

(depression, Parkinson’s disease, organic-, functional dysphonia, and healthy) was 

performed on it using several features. Secondly, parameter selection was done in 
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the correlation structure and the CNN model using a specific group of features. 

Finally, 4-class classification was executed with the tuned correlation structure 

and model. 

The content of the article follows the next structure: In Section 2, the speech 

databases are presented. The process and methods are described in Section 3.      

In Section 4, the result of multiclass classification and parameter tuning is 

summarized. In Section 5, a conclusion is drawn from the research and the results. 

2 Speech Databases 

The database contained speech samples of the three illnesses (Parkinson's disease, 

depression, voice disorders) and healthy recordings as a control class. Prior to 

each recording, the patients (and the control subjects) signed an informed consent 

in which they agreed to use their voice recordings for research purposes. 

Each subject read out loud “The North Wind and the Sun” in Hungarian language, 

a text that is often used in speech technology research. This resulted in about a 

one-minute-long recording for each subject. The database contained recordings in 

which the subjects did not have any other illnesses (other than Parkinson's disease, 

depression, voice disorders) that could have affected his or her speech.              

The presence of one disease (exclusion of other diseases) is certified by the doctor 

treating the patient. Audio materials were recorded at a sampling frequency of 

44.1 kHz with a clip-on microphone in a quiet room. The recordings were stored 

in 16 bits in PCM format. 

2.1 Depressed Speech Database (DE) 

Several versions of BDI (Beck Depression Inventory) questionnaire were created. 

The latest version of which was published in 1996, named BDI-II was used in this 

research [28]. This version consists of 21 questions (0 to 3 score for each 

question). Speech recordings from people suffering from depression were 

approximately evenly distributed among the depression severity categories 

defined by the BDI-II (Beck Depression Inventory-II) as mild depression (score: 

14-19), moderate depression (score: 20-28), and major depression (score: 29-63). 

Below the score of 14, the patient is considered healthy. 

Speech samples from individuals suffering from depression were collected from 

the Psychiatric and Psychotherapy Clinic of Semmelweis University, Budapest. 

A total of 91 speech samples were used from the Depressed Speech Database: 58 

female subjects (mean BDI score: 27.6 (±9.3); mean age: 37.5 (±16.7) and 20 

male subjects (mean BDI score: 26.6 (±8.6); mean age: 40.6 (±15.9)). 
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2.2 Voice Disorder Speech Database (UD) 

Speech samples were recorded from patients diagnosed with different voice 

disorder by the Outpatients’ Clinic of the Head and Neck Surgery Department of 

the National Institute of Oncology, Budapest. 

The voice disorder database included patients’ voice suffering from disorders such 

as functional dysphonia, recurrent paresis, tumours at the vocal tract, cysts, tract 

stenosis, vocal node, laryngitis, laryngeal paralysis, spasmodic dysphonia. 

Overall, these were divided into two major groups: organic dysphonia (OD) and 

functional dysphonia (FD). Together, OD and FD form the UD database. 

The RBH (Roughness, Breathiness, Hoarseness) scale describes the severity of 

voice disorders that is widely used in Hungary [29]. The scale scores the 

roughness, breathiness, and hoarseness of the voice with integers between 0 and 3. 

The integer 3 is the most severe category. The severity of dysphonia was 

determined by the clinician who made the diagnosis during the consultations. 

167 recordings (74 men and 93 women) were used from OD, while 68 (20 men, 

48 women) were used from FD. Their mean ages were 51.6 (OD) and 55.8 (FD) 

years, respectively, and their standard deviations were 14.4 (OD) and 16.1 years 

(FD). 

The hoarseness (H) value was used to describe the severity of the voice disorder. 

The mean hoarseness of functional dysphonia (FD) was 1.5 and the standard 

deviation was 0.7 for male subjects. For women, the mean was 1.3 and the 

standard deviation was 0.6. For organic dysphonia (OD), the mean of H was 2.1 

and the standard deviation was 0.9 for male patients. For women, the values were 

1.8 and 0.8, respectively. 

2.3 Parkinson's Disease Speech database (PD) 

Audio recordings of patients diagnosed with Parkinson's disease (PD) were 

collected from two locations in Budapest: Semmelweis University (25 recordings) 

and Virányos Clinic (55 recordings). 

H&Y (Hoehn and Yahr) scale was used to describe the severity of the disease, 

which ranges from 1 to 5 [30]. The 5 indicates the most severe condition, while a 

1 indicates mild symptoms. Furthermore, the scale is non-linear, from which it 

follows that H&Y 2 does not present twice as severe symptoms as H&Y 1. 

80 speech samples were collected from patients with PD: 43 males (mean H&Y 

score: 2.7 (±1.2); mean age: 62.6 (±13.5)) and 37 females (mean H&Y score: 2.6 

(±1.2); mean age: 65.2 (±9.2)). 
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2.4 Healthy Control Database (HC) 

In addition, a database of healthy people’s recordings was also created as a control 

group (HC). According to their own statement, healthy individuals did not have 

any illnesses (and have not been diagnosed with any known illnesses) that would 

affect their speech at the time of recording. 

140 healthy speech samples were recorded: 85 female speakers (mean age: 49.6 

(±15.2)) and 55 male speakers (mean age: 51.4 (±21.6)). 

3 Methods 

The examination process is illustrated in Figure 1. Firstly, acoustic features were 

obtained from the speech recordings. From these, auto and cross-correlation 

structures were generated. Finally, classification with the help of CNN was 

executed. 

 

Figure 1 

Outline of the applied process. (Speech database, feature extraction, correlation structure, training / 

testing on convolutional network) 

The two-dimensional correlation matrices were input into a 2D convolutional 

neural network. After training the model, testing was done for automatic 

estimation. 

Five feature sets were examined with a baseline process. From here, one set of 

features is selected for further studies. Furthermore, parameter optimization was 

performed on the correlation structure as well as on the machine learning model. 

In the tuned process, multiclass classification (with 5, 4 classes) was finally 

executed. 

3.1 Acoustic Features Extraction 

Before calculating the acoustic features, the speech samples were normalized to 

the peak. Then, acoustic features were calculated in a 50 ms Hamming window 

with the time step 10 ms using Praat software [31]. With this technique, a time 

series (later on referred as a vector) can be assigned to each feature per recording. 
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Then, the following speech acoustic features were obtained [32-33]: 

Mel-Band Energy Values: The frequency range of the speech can be converted to 

a mel scale, from which mel-bands can be derived. The energy spectrum of speech 

can be passed through on these mel-bands, which resulted in cumulative energy 

values. The first 27 mel-band energy value was calculated from 100 Hz. Further 

on it is referred to as Melfilters. 

Mel Frequency Cepstral Coefficient: This is determined from the power spectrum 

by summing the energy values within a defined mel-bands. Then, the discrete 

cosine transform of its logarithm value is calculated. The values of the first 14 

coefficients were determined. These are hereinafter referred to as MFCCs. 

Formant frequencies: The maximum amplitude’s locations of the spectral 

envelope curves of the overtone beams amplified by human resonator cavities are 

called formant frequencies. The first three formant frequencies were calculated, 

which are hereinafter referred to as Formants. 

Bandwidth of formant frequency: Bandwidth means the frequency range measured 

at a decrease of 3 dB from the amplitude peak of the formant frequency.           

The bandwidths of the 1
st
, 2

nd
 and 3

rd
 formant frequencies were calculated, which 

are hereinafter referred to as Bandwidths. 

Finally, formant frequencies and their bandwidths were also used in a combination 

as a fifth set of features, referred to as Form-Band. So that set included Formants 

and Bandwidths vectors. 

Melfilters and MFCCs were calculated from the total speech sample, while 

formant frequencies and their bandwidths were calculated from the voiced 

sections. Thus, the vectors of MFCCs had the same length as Melfilters’.           

The length of the formant frequency vectors and the bandwidth vectors were also 

the same. 

Where the feature extraction program could not determine a value that data itself 

was removed from the vector and also deleted from the other feature vectors (in 

the same set) on the same index even if it was a numeric value. Thus, the feature 

vectors did not shift relative to each other in time. 

As a summary, Table 1 contains the extracted features, the name of the feature set, 

and the number of vectors in a set. 

Table 1 

Extracted acoustic features with the Praat software 

Feature Name of set Number of vectors 

Mel-Band Energy Values Melfilters 27 

Mel Frequency Cepstral Coefficient MFCCs 14 

Formant frequencies Formants 3 

Bandwidth of formant frequency Bandwidths 3 

Combination of formant frequencies 

and their bandwidths 
Form-Band 6 
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3.2. The Structure of Correlation Matrices 

Instead of using one single vector, several new vectors were created by shifts 

along time. At each shift, the elements were displaced by a certain extent 

(hereinafter referred as displacement rate) so that the last elements were placed at 

the beginning of the vector. At each shift, a new vector is produced. A general 

approach is shown in Eq. (1), where 𝑋0 is the original feature vector, 𝑥1, 𝑥2, … , 𝑥𝑚 

are its vector components (features from time to time). 𝑋1 is a new vector with one 

element (displacement rate is 1) shift. 𝑋𝑖 is the 𝑖th
 new vector after 𝑖 element 

(displacement rate is 1) shift. 

𝑋0 = [𝑥1, 𝑥2, … , 𝑥𝑚]  
𝑋1 = [𝑥𝑚 , 𝑥1, … , 𝑥𝑚−1] (1) 
𝑋𝑖 = [𝑥𝑚−(𝑖−1), 𝑥𝑚−(𝑖−2), … , 𝑥𝑚 , 𝑥1, … , 𝑥𝑚−𝑖]  

Pearson's correlation coefficient was used to describe the linear relationship of 

two feature vectors [34]. Calculating this correlation coefficient between the two 

original and their shifted feature vectors, a matrix can be filled. 

Denoting (𝑘 - 1) as the number of shifts, a submatrix of size 𝑘 × 𝑘 can be created 

using two feature vectors and their shifted variants from one set. This is shown on 

the right side of Figure 2. The rows stand for the first while the columns stand for 

the second feature vector. The first row and column indicate the original vectors 

whilst the other rows and columns represent the shifted vectors. The cells of the 

matrix contain the correlation coefficients of the two specific feature vectors.     

For example, the cell of the 3
rd

 row and 2
nd

 column (marked by a blue rectangle in 

Figure 2) includes the correlation coefficient of the two times-shifted Vector 2 and 

1 time shifted Vector 1, respectively. For instance, Vector 1 can be the first and 

Vector 2 can be the second formant frequency vector. 

 

Figure 2 

Structure of the correlation matrix: on the right side the submatrix of two feature vectors (size: 𝑘 × 𝑘). 

On the left there is the complete structure using a feature set with n vectors (size:(𝑘 × 𝑛)(𝑘 × 𝑛)). 
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One set of features was used up at once to create a correlation structure. Denoting 

the number of vectors in a set with 𝑛, the total size of the correlation structure is  

(𝑘 × 𝑛)(𝑘 × 𝑛). 

The total correlation structure is shown on the left side of Figure 2.                    

The constructed structure is symmetrical, with autocorrelation coefficients in the 

main diagonals and cross-correlation coefficients in the sub-diagonals. 

9 times shift (𝑘 = 10) with displacement rate 1 were set to create a baseline 

process. These baseline parameters (for the correlation structures and CNN) were 

successfully applied in preliminary research [35]. Later on, 4 times (𝑘 = 5) and 14 

times shift (𝑘 = 15) were also examined with the displacement rate 1, 4, and 8 as 

parameter tuning. 

One correlation structure was constructed for each person from each feature set 

(Overall, 5 correlation structures were available for each person). These as image 

representations were the input to the classification algorithm. 

3.3 Construction of CNN Model 

A simple CNN was created in Python (version 3.7.0) using Tensorflow (version 

1.12.0). The baseline parameters are based on preliminary research [35]. 

A sequential CNN model was created with two convolutional layers, followed by 

a maxpooling, a flatten and a dense layer. The arrangement of the CNN layers is 

shown in Figure 3. 

 

Figure 3 

The structure of the CNN model: two Convolutional layers, one MaxPooling, Flatten and Dense layer 

Correlation structures with the size of (𝑘 × 𝑛)(𝑘 × 𝑛) described above were used as 

input to the CNN. 32 kernels were used in the first Convolutional layer. Kernel 

size 𝑘 × 𝑘 and stride 𝑘 have been set according to the size of the submatrices of 

the input images. 

The kernel size and stride of the second Convolution layer were chosen so that  

2 × 2 size matrices were at the output of the layer. The size of the stride was equal 

to any dimension of the square kernel. 32 kernels were also used here. 
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The pool size of the MaxPooling layer was 2 × 2 as default. 

ReLU (Rectified Linear Unit) activation functions were set up after the first two 

Convolutional layers and 25% DropOut regulations after each of the first 3 layers. 

Finally, the output values of the Dense layer were converted into probability 

values with the SoftMax function. A vector with 𝑥 components resulted for each 

test subject, where 𝑥 denotes the number of classification categories.                 

The predicted class is the one having the highest probability output. 

ADAM optimization was applied during training sessions. Herewith, the 

automatic adjustment of the learning rate is realized taking into account the cost 

function. The cost function used here was the categorical cross-entropy [36]. 

For pre-processing, the imported data was shuffled wherein one correlation 

structure belonged to one subject. Normalization between 0 and 1 was also done 

on the elements of the matrices. 

3.4 Tests and Evaluation Methods 

With the created process (feature extraction from speech recordings, the built-up 

of the correlation structures, creating the CNN model), the following examinations 

were performed. The first two tests were executed with 5 classes: DE, PD, FD, 

OD, HC. Then the last test was performed with the database where FD and OD 

were merged to UD. 

Leave-one-out cross-validation (LOOCV) was used for model evaluation for all 

tests. During this process, one subject is selected as the test element while the 

remaining samples are used as the training set. This is repeated until every sample 

was a test element. This means the training and testing process is repeated as 

many times as many samples are in the database. Moreover, the testing and 

training set were always disjoint. 

For evaluation, confusion tables were created from the output of the CNN models. 

Metrics such as recall, precision, accuracy, and F1-score were derived. 

a) Examination of feature sets: the 5 feature sets were tested separately in the 

baseline model. This gave sequential results on which features most appropriate 

for separation using this certain process. 

b) Parameter optimization: In this test, the baseline process was tuned. 

Specifically, the number of shifts and the displacement rate were changed in the 

correlation structure. By changing the displacement rate, the parameters of the 

neural network model were not changed. However, by changing the number of 

shifts, the kernel size and strides of the first convolution layer were adjusted as 

shown in Table 2. Finally, 4 time (𝑘 = 5), 9 time (𝑘 = 10) and 14 time (𝑘 = 15) 

shifts were examined. The displacement rate was set as 1, 4, 8. The number of 

kernels remained 32 for both Convolutional layers in this case. 
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Table 2 

The kernel size and stride of the first Convolutional layer based on the number of shifts 

Number of shift 𝒌 Kernel size Kernel stride 

4 5 5 × 5 5 

9 10 10 × 10 10 

14 15 15 × 15 15 

After choosing the right parameters for the correlation structures, the CNN 

parameter settings followed. The number of iterations during training and the 

number of kernels were changed in the new CNN model. The number of iterations 

was set to 25, 50, 75, 100, 125, 150, and the number of kernels was set to 16, 32, 

64, 128. The kernel numbers were chosen so that the first convolution layer had 

half the kernel number as had the second convolution layer. Thus, kernel numbers 

16/32, 32/64, and 64/128 were used, where the first number is the kernel number 

of the first convolution layer and the second is the kernel number of the second 

convolution layer. 

The parameter optimization was done before the training cycle and then it was 

tested by all the subjects separately. With this in mind, the separation of a third 

independent set was not necessary as the test set was already independent for the 

models. 

c) 4 classes classification: By combining organic (OD) and functional (FD) 

dysphonia, the general voice disorders (UD) group was created to investigate the 

4-class classification in the optimized process. 

4 Results 

4.1 Examination of the 5 Feature Sets 

The 5 feature sets were examined in the baseline process (9 times shift, 1 

displacement rate, 32 kernels, 100 iterations) based on accuracy and F1-score.    

All subject was used from the 5 classes. Results are shown in Figure 4. 

Accuracy values ranged from 43% to 56% for all feature sets, while macro F1-

score values ranged from 36% to 52%. The highest accuracy and macro F1-value 

were achieved with the MFCCs feature set (55.9% accuracy, 52.2% macro F1-

value). Melfilters achieved the second-best accuracy (51.1%) and macro F1-score 

(47.4%). 

Using the formants and their bandwidths separately, we obtained an accuracy of 

43.0% (formants) and 45.5% (bandwidths). While using them together, the results 

improved (52.0% accuracy, 44.3% macro F1-score). 
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Figure 4 

Achieved accuracy and macro F1-score with different feature sets on the baseline process using 5 

classes 

Table 3 shows the confusion matrix created from the feature set that achieved the 

highest accuracy (MFCCs). The columns are the original classes and the rows are 

the classifier's decisions. Precision and recall by classes are also noted. 

The recall of the DE class was low (38.5% recall), while the precision was high 

(64.8% precision) compared to the other classes. The recall of the HC class was 

73.6%. On the other hand, many samples from originally positive classes were 

classified as healthy, resulting in a 53.1% precision. 

It can also be seen that subjects with functional dysphonia tended to be classified 

as organic dysphonia or healthy (10.3% recall, 50% precision). 

Table 3 

The confusion matrix derived from the MFCCs feature set. The columns represent the original classes 

the rows represent the decision of the algorithm. 

 
Original classes  

HC DE FD OD PD Precision 

P
re

d
ic

te
d

 

cl
as

se
s 

HC 103 26 26 30 9 53.1% 

DE 8 35 1 3 7 64.8% 

FD 2 0 7 5 0 50.0% 

OD 18 18 30 118 22 57.3% 

PD 9 12 4 11 42 53.8% 

 Recall 73.6% 38.5% 10.3% 70.3% 52.5%  
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4.2 Parameter Optimization 

MFCCs were selected to adjust the correlation structure and parameters of CNN to 

achieve a better separation of classes. 

The results obtained by changing the number of shifts (𝑘) and displacement rate 

are shown in Figure 5. The accuracy is given on the left diagram, the macro F1-

score is given on the right diagram. The displacement rates are on the category 

axis while the shades of the bars indicate the number of shifts. 

According to Figure 5, it is worthwhile to use a correlation structure with a higher 

displacement rate. However, further changes were not experienced with the 

displacement rate of 8. Changing the number of shifts is significant at a low 

displacement rate. While at a higher displacement rate, changing the number of 

shifts will only cause small changes in the metric values. 

The highest, 61.7% accuracy was achieved at the displacement rate 4 with 15 

shifts. Using macro F1-score, 55.5% is reached as the peak at the displacement 

rate 8 with 10 shifts. 

The displacement rate 8 and 4 times shift were selected for further examination 

because at this displacement rate, all three shift numbers gave similar results. 

Nonetheless, the CNN parameters increased polynomial by linearly increasing the 

number of shifts. 

Figure 5 

Results obtained by varying the number of shifts and displacement rates in the correlation structure. 

The left side chart shows the accuracy, while the right side chart shows the macro F1-score. 

In the case of the CNN model, several parameters can be set, from which the 

number of iterations during the training and the number of kernels of two 

convolutional layers were selected for analysis. 
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The results obtained using different iteration numbers are shown in Figure 6.     

The horizontal axis shows the number of iterations, the vertical axis the 

percentage of accuracy. 

The mean (black line) and standard deviation (grey band) of the accuracy was 

calculated and plotted during the training process. The accuracy of the test set was 

also plotted (grey curve). In the latter case, the standard deviation could not be 

calculated. 

Based on Figure 6, the accuracy of both the test set and the training set increases. 

Over 125 epochs, a decrease can be observed at the test set accuracy. Thus, the 

iteration number in the CNN model was set from 100 to 125 in the following 

experiments. 

 

Figure 6 

The accuracy of the training (black line with grey band) and test set (grey curve) as a function of the 

epoch number for 5 classes 

The second parameter was the kernel number of the two convolutional layers to 

set. Kernel numbers were determined as the power of two so that the kernel 

number of the second convolutional layer was twice that of the first. Based on 

this, 16/32, 32/64, and 64/128 kernels were applied with 125 iterations (𝑘 = 5, 

displacement rate 8, MFCCs feature set). 

The results are shown in Figure 7, where the kernel numbers are shown on the 

category axis. The vertical axis shows the percentages of the accuracy and F1-

score. 

The value of accuracy ranged from 61.2% to 64.3% in this examination.           

The maximum of 64.3% was reached by setting the 32/64 kernels. Similarly, the 

macro F1-score had a maximum of 60.0% at 32/64 kernels. The lowest value of 

the macro F1-score was 54.6% at 16/32 kernels. The precision averaged along the 

classes varied over a narrow range, from 60.0% to 61.8% along the category axis. 

Recall increased from 55.2% to 60.0% at 32/64 kernels. 
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Figure 7 

The classification results by choosing different kernel numbers. The first number is the kernel number 

of the first Convolution layer, the second is the kernel number of the second Convolution layer on the 

category axis. 

Summarizing the results obtained by setting the two parameters of the network: 

the maximum of 125 iterations are worth using in the present construction. Setting 

32/64 kernels brought the highest accuracy and macro F1-score in the present 

method. It should also be noted that this choice of kernel numbers increased the 

number of free parameters in the model approximately polynomially. Thus, setting 

these parameters can also be considered when designing such an experiment. 

4.3 4 Classes Classification 

Based on the results of the classification with the baseline process, organic and 

functional dysphonia were difficult to distinguish from each other. Therefore, 

these two groups were combined and examined as the general voice disorder 

group. This test has been done by applying the optimized parameters (iteration: 

125, 32/64 kernels, 𝑘 = 5, displacement rate 8, MFCCs feature set) on the system. 

Recognition of depression was reduced by 7 samples, healthy by 4 samples, and 

Parkinson's disease by 1 sample in the classification of 4 classes compared to 5 

classes. However, the recognition of UD was improved by 70 samples.             

The overall results can be seen in Table 4. Accuracy 64.3% was achieved for 5 

classes and 74.9% for 4 classes on the tuned system. Macro F1-score increased 

from 60.0% to 71.7% by using 4 classes instead of 5 on the optimized process. 

Table 4 

Result of 5 and 4 classes classification with the optimized process using MFCCs 

 
Accuracy macro F1-score 

5 classes 64.3% 60.0% 

4 classes 74.9% 71.7% 
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Discussion 

Using the baseline process, the MFCCs feature set performed the best (55.9% 

accuracy, 52.2% macro F1-score). The MelFilters feature set resulted in the 

second-best output (47.4% accuracy, 51.1% macro F1 value). Its drop compared 

to the MFCCs is probably due to the fact that the 27 mel-band energy values 

contain everything up to 8 kHz, including signals that do not contribute to 

separation but are interfering. 

Furthermore, the Form-Band features indicated that the combination of formant 

and bandwidth could improve the separation of the classification algorithm 

compared to applying them separately. 

Increasing the number of shifts increased accuracy and macro F1-score.                

A possible reason for this may be that the first convolution layer may have 

performed better convolution from multiple samples (from a larger input context) 

than from a few samples. 

Metrics also improved by increasing the displacement rate, but a slight decrease 

was already experienced at a displacement rate of 8. The decrease may be due to 

the disappearance of the correlation relationship between the two feature vectors 

in the sub-diagonals. Thus, strong correlations in the structure are limited to the 

main diagonal, which adversely affects the classification. 

The highest test accuracy was obtained at 125 iterations, where even the results of 

the training and test set together progressed within the deviation band. The risk of 

overfitting on the training set increases at higher iterations. Also, the result of the 

test set has already decreased. At a low number of iterations, the accuracy of the 

test set changes more dynamically compared to the training set. This can 

presumably be caused by underfitting. 

Changing the kernel numbers brought a bigger change in the macro F1-score 

compared to the accuracy value. Their highest performance (accuracy: 64.3%, 

macro F1-score: 60.0%) occurred at 32/64 kernel number. Using a higher kernel 

number (than 32/64) did not improve the classification, but it did increase 

significantly the running time of the training. 

Combining OD and FD together as UD improved their correct recognition 

(accuracy: 74.9%, macro F1-score: 71.7%) while maintaining the optimized 

parameters. This is certainly influenced by the relatively large number of elements 

in the UD class. In contrast, the average improvement across classes is greater for 

4 classes than 5 classes. 

Conclusions 

In the present work, the recognition of depression, Parkinson's disease, and 

general voice disorders were examined using a method in a new approach. In this 

procedure, acoustic features were calculated from speech. Component shifts were 

performed on the feature vectors, from which a correlation matrix was created. 
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These matrices were the input of a CNN model to execute the separation. First, a 

baseline process served the feature selection purpose from several feature sets. 

Secondly, parameter optimization of the correlation structures and the CNN model 

was also performed. Finally, 4 and 5 class classification were performed. 

The advantage of this method is that it does not require more complex speech 

processing (such as segmentation). Furthermore, the convolutional network itself 

extracts the essential information from the image representations. 

Also, the classification results of 4 classes can be compared to the results 

discussed in [10]. Higher accuracy (74.9%) was achieved here against 69.4% in 

[10] using only MFCCs. Unfortunately, exceeding 86.6% that had been achieved 

in the [9] was not successful. However, multiple features were applied there while 

only MFCCs were applied in the present study. Moreover, many features required 

segmentation in [9] while the presented method here does not need segmentation 

which can be a huge advantage. 
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