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Abstract: Joint torque prediction plays an important role in quantitative limb rehabilitation 

training and the exoskeleton robot. The Surface electromyography signal (sEMG) with the 

advantages of non-invasive and easy collection can be applied to the prediction of human 

muscle force. By utilizing the sEMG, the recurrent cerebellar model neural network 

(RCMNN), which has better generalization and computational power than the traditional 

neural network has been used to predict the joint torque. In this work, a smooth function 

with adaptive coefficient is employed to polish the results of RCMNN, the proposed method 

shows great performance on torque prediction with the correlation coefficient between the 

torque and the estimation result up to 98.43%, such advanced model paves the way to the 

application on the quantitative rehabilitation training. 

Keywords: Torque prediction; ankle joint; sEMG; RCMNN 

1 Introduction 

Joint torque prediction plays an important role in quantitative limb rehabilitation 

training and exoskeleton robots [1]. A number of kinematics and non-invasive 

methods have been proposed to estimate the joint torque, but most of these require 

special measuring apparatus, such as isokinetic dynamometers, which made these 

methods unsuitable for application in patients’ daily lives and operations outside 

the lab. The Surface electromyographic (sEMG) signals are a kind of biological 
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electrical signals recorded on the skin surface, containing movement intentions of 

the human body [2]. Generally, compared with electromyographic (EMG) signals 

collected by needle electrodes, sEMG signals are widely used in rehabilitation 

medicine and sports medicine [3-6] because of their advantages in terms of simple 

operation, non-invasive and multi-point measurement. Moreover, due to the 

transmission time, sEMG signal is generated 30-150 ms earlier than human 

muscle movements, which makes it a valuable signal source for man-machine 

interaction technology [7]. Therefore, it is of significance to use the sEMG signals 

in the joint torque prediction. 

Several nonlinear models have been proposed for estimation of ankle joints torque 

from the sEMG signals, such as artificial neuron network (ANN) and fuzzy model 

(FCM) [8-13], which actually obtained good results in various nonlinear 

modeling. Kim et al. [14] using deep neural network to estimate the torque by the 

sEMG signal. Lu et al. [15] developed an sEMG-based torque estimation control 

strategy for a soft elbow exoskeleton. Xu et al. [16] proposed an sEMG-based 

joint torque estimation strategy combining with hill-type muscle model by using 

radical basis function neural network to make the results of muscular movement 

digitized. Currently, artificial neuron network (ANN) as a nonlinear model is still 

the most popular model used in torque prediction [17-19]. However, the learning 

of the neural network is slow since all the weights are updated during each 

learning cycle. The cerebellar model neural network (CMNN) has been widely 

used in high-precision control fields due to its simple structure, good 

generalization, rapid learning speed and good convergence [20-26]. A recurrent 

unit, which considers the effect of the previous moment on the current moment, is 

added to the CMNN to make it a recurrent CMNN (RCMNN). Since the 

prediction problem is relative to time sequence, the prediction performance of 

RCMNN is better than CMNN. Therefore, utilizing the sEMG and RCMNN to 

predict joint torque is an essential project in a wide range of real-time 

applications. 

In this paper, an sEMG-driven RCMNN is introduced to predict the torque of the 

ankle joint. A group of processed signals consisting of the joint angular velocity, 

accelerometer signals, and sEMG signal related to the joint torque are sent to the 

predictor and then the prediction output result is obtained. At last, a smoothing 

function with the adaptive coefficient is used to process the output result of the 

RCMNN to obtain the final torque prediction result. 

2 Data Acquisition 

To estimate the ankle joint torque, Delsys Trigno Wireless System was used for 

collecting sEMG signals, and BIODEX System 4 Pro Strength Testing System 

was applied for collecting angular velocity, accelerometer, and torque signals  
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(Fig. 1(a)). Five Trigno sEMG sensors were placed on the subject muscles, 

including gastrocnemius, tibialis anterior, peroneus Longus, extensor halluces 

longus, and extensor digitorum longus, for detecting the sEMG signals on the 

disinfected skin surface. Then the subjects were fixed on BIODEX System 4 Pro 

Strength Testing System to swing ankle joint eversion and inversion as described 

in Fig. 1 (b). The raw data from the sEMG and position sensors are sampled at 

rates of 2000 Hz and 418 Hz using a 16-bit A/D converter, respectively. Note that 

all the subjects, ranging in age from 17-42 years participated in this study, are in 

ankle health, and none of them has a history of injuries. 

 

(a)                                                                      (b) 

Figure 1 

The system setup for the experiment 

After data acquisition, a serial of raw sEMG data were collected and shown in  

Fig. 2. 

 

Figure 2 

The raw sEMG signals 

In Fig. 2, from top to bottom are the amplitudes of gastrocnemius, tibialis anterior, 

longus tibialis, extensor pollicis, extensor digitalis longus. 
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3 Data Processing 

3.1 Outlier Processing and De-noising 

Due to the undesirable noise and disturbances, the raw sEMG signals are hardly 

estimated the ankle joint torque. As known, the surface muscle 

telecommunications energy is mainly concentrated between the frequency bands 

of 20 Hz and 500 Hz. For this reason, the raw signal can be filtered by removing 

the uncorrelated frequency band and the 50 Hz power frequency. In this study, the 

signal is processed by Fourier transform using a filter with the amplitude of the 

incoherent frequency at zero. Then, the inverse transform is performed to obtain 

the processed data of tibialis anterior shown in Fig. 3. 

 

Figure 3 

Contrast between raw signal and denoised signal 

It can be seen that the processed signal effectively restrains the noise and 

preserves the peaks and the abrupt part so that it can retain the characteristics of 

the raw signal. 

3.2 De-redundancy 

However, redundancy may exist between the sEMG signals of five muscles [27], 

which will limit the prediction accuracy of the neural network and increase the 

calculation amount and the prediction time of the model. 

In this section, a correlation coefficient is employed to determine the degree of 

coupling among different sEMG signals of muscles. The formula is described as 

follows 
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where 
i  is the standard deviation of the sEMG signal on the i-th muscle surface, 

and 
ijC  and 

ij  are the covariance and correlation coefficients of the sEMG 

signals on the i-th and j-th muscle surfaces. 

Finally, the correlation coefficient of the five muscles is shown in the following 

table. 

Table 1 

Correlation coefficient between muscles 

    Muscle 1 

Muscle 2 

Gas T-A L-T E-P E-D-L 

Gas 1 0.0277 -0.0868 0.2175 0.0589 

T-A 0.0277 1 -0.4539 -0.0684 0.1451 

L-T -0.0868 -0.4539 1 0.0140 -0.1261 

E-P 0.2175 -0.0684 0.0140 1 -0.0898 

E-D-L 0.0589 0.1451 -0.1261 -0.0898 1 

P.S. Gas, T-A, L-T, E-P, and E-D-L represent gastrocnemius, tibialis anterior, Longus 

tibialis, extensor pollicis, extensor digitalis longus respectively. 

Furthermore, to determine whether there is redundancy between the data, a 

method shown as Fig. 4 is used. 

 

Figure 4 

Redundancy decision flowchart 
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In this flowchart, all the data is divided into redundant signals and non-redundant 

signals. The first group of data, the gastrocnemius signal, is put into non-

redundant information and a threshold (absolute value is 0.4) is set. Then, the 

second group data is input, and calculate the correlation coefficient between group 

2 and non-redundant information. The correlation coefficient of the data is 

compared with the threshold value. When the correlation coefficients are bigger 

than the threshold value, the data is considered as redundant data, otherwise for 

the non-redundant data. Repeat the second step until all the data is judged. 

According to Table 1 and Fig. 4, the signals of the tibialis anterior and longus 

tibialis are redundant. 

3.3 Resampling 

Because the sampling frequency of sEMG (2,000 Hz) is higher than that of joint 

angle and joint force. In order to match the length of the sEMG signal the in time-

domain, the joint torque data are also re-sampled and are then smoothed. To test 

the effect of redundancy, in this paper, the data set is divided into a redundant 

group and a non-redundant group. The redundant data set includes processed 5 

channels of sEMG, joint angular velocity and accelerometer signals, and the non-

redundant data group includes 4 channels of sEMG except gastrocnemius, as well 

as joint angular velocity and accelerometer signals. The redundant group and non-

redundant group data after resampling are 7-dimensional and 6-dimensional 

feature vectors respectively, and they will be inputted into the RCMNN. 

4 Review of RCMNN 

4.1 Structure of RCMNN 

The schematics of the RCMNN are shown in Fig. 5 with the input space, the 

association memory space, the receptive-field space, the weight memory space, 

and the output space [28]. 

Input Space For a given input data Ii, i=1,2,… ,m, each input variable Ii is 

quantized into n discrete regions (called “elements” or “neurons”) according to 

given control space. The value of neurons n is called resolution. Based on this n 

element, n layers are defined in total. 
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Figure 5 

Architecture of a RCMNN [28] 

Association Memory Space In the space, the Guass function is used as the 

receptive-field basis function, which can be expressed as 

]
)(

[exp
2

2

ik

ikik
ik

mI
r




 , mi ,...,2,1 , nk ,...,2,1  (6) 

where ikr  represents the output of the k-th receptive-field basis function for the i-

th input, and the mean 
ikm  and variance ik  represent the center point and width 

of the Gaussian function. In addition, 
ikI  is the result of the recurrent unit and can 

be represented by 

)1()()t(  trwtII ikikiik
 (7) 

where t denotes the time step, and )1( trik
 is the value of ikr  through a time 

delay; ikw  is the recurrent gain, and the size of the value represents impact of the 

information of one previous point to the current moment. 

To further understand ikw  here, a linear function instead of the Gaussian function 

is chosen as basis function and is defined as 

)()( tItr ikik   (8) 

Then, (7) can be expressed as 

)1()()t(  trwtIr ikikiik
 (9) 



H-Y Jiang et al. Torque Prediction of Ankle Joint from Surface Electromyographic  
 Using Recurrent Cerebellar Model Neural Network 

 – 190 – 

Since 
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Obviously, the output of RCMNN in the associative memory space contains the 

information of all previous parameters. 

Receptive-Field Space The k-th multidimensional receptive-field function is 

defined as 


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The output of the space indicates the excitation intensity for the last space. 

Weight Memory Space The weight of the receptive-field space with the output 

space is stored in the space and denoted in a vector as 

T

nk wwww ],...,,...,[ 1  (13) 

Output Space The output of RCMNN is the algebraic sum of the Receptive-Field 

Space in the weight memory space and is shown as 
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4.2 Learning Algorithm of RCMNN 

In this section, backpropagation (BP) is applied to update the 

parameters ikm , ik , ikw and w  of RCMNN. While BP is the iterative gradient 

decent algorithm designed to minimize the mean square error of an objective 

function defined as 
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where yye  0
, y0 is the previous known value for the testing data and the 

expected output of neural network. 

The parameter updating rule based on the gradient descent algorithm is derived 

according to 
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where ƞp is a learning rate, and if P is replaced by 
ikm ,
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ikw  and w then it 

denotes the updating rule for mean, variance, recurrent gain, and output weight, 

respectively. 

The changed values of the above parameters are calculated by the chain rule 

represented as 
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4.3 Convergence Analyses [29] 

Theorem 1 Let ƞp be the learning-rates for the P in (16). Then, the convergence of 

tracking error is guaranteed if ƞp is chosen as 

2
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Then, the change of the Lyapunov function is obtained as 
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According to the Taylor formula and the chain rule, the error function variation 

can be expressed as 
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From (27), )(NV  can be represented as 
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If 
P  is chosen as 

2

2
0

Y
P  , 0)(  NV  is guaranteed obviously. And easily, for 

any 1)(0 0  Ny , 1)(0  Ny , there is 0)( NV . Therefore, the Lyapunov 

stability of 0)( NV  and 0)(  NV  is guaranteed, which can explain the 

convergence of tracking error. The derivation results prove that the convergence 

of RCMNN model is guaranteed. 
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5 Simulation Result 

In this experiment, the goal of the model training is to find the values of the 

parameters ikm , ik , ikw and w  that minimizes the overall error. We take the     

7-dimensional redundant data set and 6-dimensional non-redundant data set as the 

input data of the RCMNN (Fig. 5) respectively, and the joint signals as output 

data. We randomly selected 80% data for training and verification, 20% data for 

testing. To compare the RCMNN with other methods, we use CMNN, and the 

most popular artificial neural network BP. The performance of trained models was 

subsequently tested by comparing predicted torque values from the model and the 

measured torque values. RMSE (Root Mean Square Error), NMAE (Normalized Mean 

Absolute Error), NRMSE (Normalized Root Mean Square Error), and CC (Correlation 

Coefficient) between the predicted joint torque and the measure joint torque data 

are used to evaluate network performance. 

5.1 The Updated RCMNN 

In the training of RCMNN, in order to make the RCMNN converge faster, the 

learning-rate ƞp is set as 

t

c
p   (29) 

In which c is a constant, and t is the training times. Obviously, the equation is in 

line with the law of error convergence. Because as the number of training 

increases, the error will continue to decrease, and when the error is small enough, 

an excessive learning rate will cause the error to oscillate. Thereby a decreasing 

learning rate accelerates the rate of convergence during model training, making 

the model meet the standard faster. 

After 50 times training, the results are drawn in Fig. 6 (a). Note that the output of 

RCMNN is generally close to the true value with a slight vibration, which is 

obvious at the bottom of the waveform. To smooth the waveform, the smooth 

function is applied in RCMNN, which is represented as follows 

)2()1()()( 321  tfctfctfctf  (30) 

where )(tf  is the data point at time t, and c1 ,c2 ,c3 are set as 0.5, 0.3, 0.2, 

respectively. 
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Figure 6 

Result of training data 

Table 2 

Comparison of the three cases 

Results RMSE NMAE NRMSE CC 

(a) 0.0273 0.1937 0.2299 0.9454 

(b) 0.0239 0.1828 0.2009 0.9582 

P.S. RMSE (Root Mean Square Error) =   

NMAE (Normalized Mean Absolute Error) =  

NRMSE (Normalized Root Mean Square Error) =  

CC (Correlation Coefficient) shown on formula (2) 

As shown in Fig. 6 (b) and Table 2, the frequency and amplitude of oscillation 

have a great reduction compared to the original output (Fig. 6 (a)). 

In the testing of RCMNN, the input data is sent to the predictor, and the prediction 

results and smoothed results are shown in Fig. 7 and the specific parameters are 

shown in Table 3. 

Table 3 

Comparison of the two cases 

Results RMSE NMAE NRMSE CC 

a 0.0281 0.2333 0.2483 0.9555 

b 0.0254 0.2188 0.2248 0.9640 
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Figure 7 

Result of testing data 

Results show the peaks and troughs of the output of the model appear significantly 

earlier than the sample output, while the smoothed RCMNN greatly improves the 

situation of oscillation, proving the validity of RCMNN. 

5.2 Results 

The results obtained by the RCMNN, CMNN, and BP network of the redundant 

group and the non-redundant group are shown in Table 4 and Table 5 respectively. 

Table 4 and Table 5 show that the performance of the RCMNN is better than that 

of BP and CMNN, due to its recurrent unit. In addition, according to Table 4 and 

Table 5, although the redundant group has one more dimensionality information 

related to the torque of ankle than the non-redundant group, the latter generally 

has better performance, like RMSE, NMAE, NRMSE, and CC. Hence, our 

subsequent experiments use the non-redundant data group. 

 

Table 4 

Results of the redundant group 

 

 RCMNN CMNN BP 

RMSE 0.0254 0.0358 0.0254 

NMAE 0.2188 0.3267 0.2157 

NRMSE 0.2248 0.3168 0.2252 

CC 0.9640 0.8826 0.9495 
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Table 5 

Results of the non-redundant group 

In the previous section, equation (30) is employed to smooth the output of 

RCMNN, and make an excellent result with a not suitable enough coefficient.      

In this part, an algorithm is summarized in Algorithm 1 to get a more appropriate 

coefficient. 

Algorithm 1  adaptive coefficient algorithm 

1：Set: X(t)=[y(t-2),y(t-1),y(t)]; Y(t)=y0(t); a weight vector with same number 

to the number of formula (30) coefficient and a threshold m. 

2：Train: Divide X(t) and Y(t) into training data and testing data; train the 

network until the correlation coefficient between the output of BP and is bigger 

than m. 

3：Finish: Assign the weight to the coefficient of formula (30), and use testing 

data to verify whether the coefficient is suitable. 

With the coefficient gotten by Algorithm 1, the non-redundant group shows its 

experimental results as Table 6. 

Table 6 

The results with the coefficient gotten by algorithm 1 

Subjects RMSE NMAE NRMSE CC 

1 0.0023 0.0266 0.0291 0.9864 

2 0.0026 0.0194 0.0235 0.9866 

3 0.0025 0.0364 0.0427 0.9843 

4 0.0028 0.0216 0.0226 0.9867 

In Table 6, after the weights obtained after training by the BP neural network are 

used as the coefficients of Formula (30), the experimental results obtained by the 

predictor are greatly improved. The correlation coefficient between the 

experimental output results and the torque data has been increased by more than 

two percentage points, and the improved performance of other parameters are also 

obvious. One of the curves on training data and testing data is drawn as follows. 

 RCMNN CMNN BP 

RMSE 0.0213 0.0335 0.0233 

NMAE 0.1810 0.2878 0.2056 

NRMSE 0.1881 0.2957 0.2068 

CC 0.9639 0.9035 0.9488 

javascript:;
javascript:;
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Figure 8 

Performance of RCMNN after smoothing 

Conclusions 

In this study, a RCMNN is employed as a predictor to estimate torque of ankle 

joint from velocity, position and sEMG signals. RCMNN shows excellent fitting 

ability in torque prediction, that is the correlation coefficient between torque and 

estimation result reaches 98.43%, and other performance parameters like RMSE, 

NMAE, and NRMSE are also satisfactory. Moreover, RCMNN accelerates the 

torque prediction, making the predictor a control source of the bionic prosthesis 

and rehabilitation robot. Hence, the outstandingly fitting ability of RCMNN has 

great application prospects on torque prediction. 
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