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Abstract: Aggregation operators with an annihilator are in the focus of a significant 

number of research papers due to their applicability in both theoretical and practical areas 

of mathematics. Therefore, the main topic of this paper is distributivity and conditional 

distributivity for some classes of aggregation operators with this property. The 

characterization of all pairs (𝐹, 𝐺) of aggregation operators that are satisfying 

distributivity law, on both whole and restricted domain, where 𝐹 is a 𝑆-uninorm from 𝑈𝑚𝑖𝑛, 

and 𝐺 is a t-norm or a uninorm from 𝑈𝑚𝑖𝑛 or 𝑈𝑚𝑎𝑥 is given. 
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1 Introduction 

Lately, aggregation operators have been intensively investigated due to their 

valuable role in many applications, from mathematics and natural sciences to 

economics and social sciences (see [9, 11, 15]). Of the special interest is their role 

in the integration theory [22] and in the utility theory [6, 11, 13]. Regarding this, 

the main problem that is being studied is the characterizations of the pairs of 

aggregation operators that are distributive. This issue appeared first in [1]. The 

more recent results concern t-norms and t-conorms [9], quasi-arithmetic means 

[2], uninorms and nullnorms [5, 8, 18, 19, 23], semi-t-operators and uninorms [24, 

25], etc. The issue of the simultaneous distributivity of t-norms and t-conorms 

over uninorms was investigated in [4]. Also, the problem of distributivity that is 

directed towards the restricted domain, i.e., the conditional (restricted) 
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distributivity, is highly important since this approach can provide more solutions 

([12, 15, 16, 17, 21, 22]). 

The next step is to direct this type of research towards the general commutative 

aggregation operators with an annihilator, namely towards T-uninorms and S-

uninorms. The characterization of this type of operators was done in [20]. 

Therefore, the aim of this paper is to continue the research from [14] where the 

problem of 𝑇-uninorms and uninorms was considered. Now the 𝑆-uninorms, 

which are a generalization of conjunctive uninorms and nullnorms (t-operators), 

are observed. The first part of paper considers distributivity of 𝑆-uninorms over t-

norms and t-conorms and uninorms from the class 𝑈min ∪ 𝑈max. The second part 

deals with distributivity equations on the restricted domain. Since the conditional 

distributivity of nullnorms over uninorms was considered in [12], the results given 

here upgrades the previous results. 

2 Basic Notions 

The core of this research are aggregation operators with an annihilator. As stated 

in [11], an aggregation operator in [0,1]n is a function 𝐴(n): [0,1]n → [0,1] that is 

non-decreasing in each variable and that fulfills the boundary conditions 

𝐴(n)(0, … ,0) = 0      and    𝐴(n)(1, … ,1) = 1. 

The integer n is the number of input values of the observed aggregation. Further 

on the binary aggregation operators are being investigated, therefore, the notation 

𝐴 will be used for 𝐴(2). Of course, depending on the intended application, some 

other properties can be required, e.g. associativity, commutativity, idempotency, 

decomposability, neutral and annihilator elements, etc., (see [11]). Also, if 

required, the previous can be extended to an arbitrary real interval [a, b]. 

Therefore, the firs part of this section consists of an overview of aggregation 

operators that are essential for the presented research. Necessary notions 

concerning distributivity are given in the second part of this section. 

2.1 Uninorms 

The first type of aggregation operators that is needed for the presented research is 

an aggregation operator with a neutral element, namely the uninorm. 

Definition 1 ([27]) A uninorm 𝑈: [0,1]2 → [0,1] is binary aggregation operator 

that is commutative, associative, and for which there exists a neutral element 

𝑒 ∈ [0,1], i.e., 𝑈(𝑥, 𝑒) = 𝑥 for all 𝑥 ∈ [0,1]. 

If 𝑒 = 1, the uninorm 𝑈 becomes a t-norm (triangular norm) and it is denoted by 

𝑇. If 𝑒 = 0,  the uninorm 𝑈 is a t-conorm (triangular conorm) denoted by 𝑆.          
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A uninorm is called conjunctive if 𝑈(0,1) = 0, and disjunctive if 𝑈(0,1) =
1.  Uninorms for which both functions 𝑈(𝑥, 0) and 𝑈(𝑥, 1) are continuous, except 

perhaps at the point 𝑒, are characterized based on the value 𝑈(0,1) by the 

following theorem from [10]. 

Theorem 2 ([10]) Let 𝑈 be a uninorm with a neutral element 𝑒 ∈ (0,1) such that 

both functions 𝑈(𝑥, 1) and 𝑈(𝑥, 0) are continuous except at the point 𝑥 = 𝑒. 

If 𝑈(0,1) = 0, then 

𝑈(𝑥, 𝑦) =

{
 

 𝑒𝑇 (
𝑥

𝑒
,
𝑦

𝑒
) 𝑜𝑛 [0, 𝑒]2,

𝑒 + (1 − 𝑒)𝑆 (
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) 𝑜𝑛 [𝑒, 1]2,

min(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

(1) (1) 

where 𝑇 is a t-norm, and 𝑆 is a t-conorm. 

If 𝑈(0,1) = 1, then 

𝑈(𝑥, 𝑦) =

{
 

 𝑒𝑇 (
𝑥

𝑒
,
𝑦

𝑒
) 𝑜𝑛 [0, 𝑒]2,

𝑒 + (1 − 𝑒)𝑆 (
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) 𝑜𝑛 [𝑒, 1]2,

max(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2) (2) 

where 𝑇 is a t-norm, and 𝑆 is a t-conorm. 

𝑇 from (1) (and (2)) is the underlying t-norm of 𝑈 and 𝑆 is the underlying t-

conorm of 𝑈. The family of all uninorms of the form (1) is denoted by 𝑈min, while 

the family of all uninorms of the form (2) is denoted by 𝑈max. More on t-norms, t-

conorms and uninorms can be found in [10,11,26,27] and the relation between 

mentioned classes is given by the Figure 1. 

 

Figure 1 

Uninorms 
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Example 3  The first uninorms in the terms of Definition 1 were considered by 

Yager and Rybalov (see [27]) and they are idempotent uninorms 𝑈𝑒
𝑚𝑖𝑛  and 𝑈𝑒

𝑚𝑎𝑥 

from classes 𝑈min and 𝑈max, respectively, of the following form 

𝑈𝑒
𝑚𝑖𝑛 = {

max 𝑜𝑛   [𝑒, 1]2,
min 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (3) 

and 

𝑈𝑒
𝑚𝑎𝑥 = {

min 𝑜𝑛   [0, 𝑒]2,
max 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4) 

Uninorms (3) and (4) are the only idempotent uninorms from classes 𝑈min and 

𝑈max. On the other hand, the only idempotent t-norm (t-conorm) is minimum 

(maximum). The idea of a uninorm appeared for the first time in [3] in the form of 

the aggregative operator, which now can be considered as a generated uninorm. 

2.2 Commutative Aggregation Operators with an Annihilator 

Another type of aggregation operators that is needed for the presented research 

consists of aggregation operators with an annihilator (absorbing element). An 

element 𝑎 ∈ [0,1] is an annihilator for an aggregation operator 𝐴 if 

𝐴(𝑎, 𝑥) = 𝐴(𝑥, 𝑎) = 𝑎 

for all 𝑥 ∈ [0,1]. Further on, the general commutative aggregation operators with 

an annihilator 𝑎are denoted with a-CAOA (see [20]). 

For any binary operator 𝐴: [0,1]2 → [0,1] and any element 𝑐 ∈ [0,1], the section 

𝐴𝑐: [0,1] → [0,1] is given by 

𝐴𝑐(𝑥) = 𝐴(𝑐, 𝑥). 

Now, the continuity (discontinuity) of sections 𝐴0 and 𝐴1 plays a crucial role in 

classification and characterization of associative a-CAOA operators as given by 

Figure 2 (see [20]). 

 

Figure 2 

Classification of a-CAOA 
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2.2.1 𝑺-uninorms 

Definition 5 ([20]) A binary operator 𝐴: [0,1]2 → [0,1] is called a 𝑆-uninorm if it 

is an associative a-CAOA satisfying the following properties: 

 Section 𝐴0 is continuous and section 𝐴1 is not. 

 There is 𝑒 ∈ (0,1) such that 𝑒 is an idempotent element, the section 𝐴𝑒 is 

continuous and 𝐴𝑒(1) = 1. 

Theorem 6 ([20]) Let 𝐴: [0,1]2 → [0,1] be a binary operator. The following 

statements are equivalent: 

 𝐴 is a 𝑆-uninorm. 

 There exists 𝑎 ∈ [0,1), a t-conorm 𝑆′ and a conjunctive uninorm 𝑈′ with 

neutral element 𝑒′ ∈ (0,1) such that 𝐴 is given by 

𝐴(𝑥, 𝑦) =

{
 

 𝑎𝑆′ (
𝑥

𝑎
,
𝑦

𝑎
) , 𝑜𝑛 [0, 𝑎]2,

𝑎 + (1 − 𝑎)𝑈′ (
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
) , 𝑜𝑛 [𝑎, 1]2,

𝑎, 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎].

(5) 

 There exists 𝑎 ∈ [0,1), a t-conorm 𝑆 and a conjunctive uninorm 𝑈 with 

neutral element 𝑒 ∈ (0,1) such that 𝑈(𝑥, 𝑎) ≤ 𝑎 for all 𝑥 ∈ [0,1], 𝑈 ≤ 𝑆 

and 𝐴 = 𝑚𝑒𝑑(𝑎, 𝑈, 𝑆). 

Remark 7 Let 𝐴: [0,1]2 → [0,1] be a 𝑆-uninorm. 

 For a = 0,operator 𝐴 becomes a conjunctive uninorm, i.e., 𝐴 = 𝑈′. 
 If a ≠ 1, in order to ensure the discontinuity of 𝐴1 and since 𝐴𝑒(1) = 1,

a < e. 
 If 𝑈′ ∈ 𝑈𝑚𝑖𝑛, then 𝐴 is a 𝑆-uninorm from 𝑈𝑚𝑖𝑛 . 

Example 8 Binary operator 𝐴: [0,1]2 → [0,1] of the form 

𝐴(𝑥, 𝑦) = {

𝑎, 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

max(𝑥, 𝑦), 𝑜𝑛 [0, 𝑎]2 ∪ [𝑒, 1]2,

min(𝑥, 𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(6) 

is an idempotent 𝑆-uninorm from 𝑈min with annihilator 𝑎. It is obtained from (5) 

when for the t-conorm 𝑆′ the operator max is taken and the uninorm 𝑈′ is 𝑈𝑒
min. 

2.3 Distributivity on the Whole Domain 

Let 𝐴, 𝐵: [0,1]2 → [0,1] be two arbitrary operators. 

 𝐴 is left distributive over 𝐵 if 

𝐴(𝑥, 𝐵(𝑦, 𝑧)) = 𝐵(𝐴(𝑥, 𝑦), 𝐴(𝑥, 𝑧)),     for  all   𝑥, 𝑦, 𝑧 ∈ [0,1]. 

 𝐴 is right distributive over B if 

𝐴(𝐵(𝑦, 𝑧), 𝑥) = 𝐵(𝐴(𝑦, 𝑥), 𝐴(𝑧, 𝑥)),     for  all   𝑥, 𝑦, 𝑧 ∈ [0,1]. 
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The previous two functional equations are called the left and the right 

distributivity laws (see [1], p. 318), and are denoted with (LD) and (RD). Of 

course, for a commutative 𝐴, (LD) and (RD) coincide. Now, 𝐴 is distributive over 

𝐵 if it is both left and right distributive over 𝐵. 

The following two lemmas answer some starting questions regarding 

distributivity. 

Lemma 9 ([5]) Let 𝑋 ≠ ∅, 𝐴: 𝑋2 → 𝑋 and let 𝑒 ∈ 𝑌, where 𝑌 ⊂ 𝑋, be a neutral 

element for the operator 𝐴 on 𝑌 (∀𝑥∈𝑌𝐴(𝑒, 𝑥) = 𝐴(𝑥, 𝑒) = 𝑥). If the operator 𝐴 is 

left or right distributive over some operator 𝐵: 𝑋2 → 𝑋 that fulfils 𝐵(𝑒, 𝑒) = 𝑒, 
then 𝐵 is idempotent on 𝑌. 

Lemma 10 ([5]) All increasing functions are distributive over 𝑚𝑎𝑥 and 𝑚𝑖𝑛. 

2.4 Distributivity on the Restricted Domain 

As seen in [9], the problem of distributivity of a t-norm 𝑇over a t-conorm 𝑆 on the 

whole domain has only the trivial solution, i.e., t-conorm in question has to be 

𝑆𝑀 = max. In order to obtain more solutions, the domain had to be restrict. That 

is, for the classical functional equation 𝑇(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑇(𝑥, 𝑦), 𝑇(𝑥, 𝑧)), the 

additional condition 𝑆(𝑦, 𝑧) < 1 is necessary (see [15], p. 138). This distributivity 

under the given restriction is called the conditional (restricted) distributivity and it 

is denoted with (CD). 

The similar restriction holds for conditional distributivity of a t-conorm 𝑆 over a t-

norm 𝑇: 

(𝐶𝐷)        𝑆(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑆(𝑥, 𝑦), 𝑆(𝑥, 𝑧)),   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑇(𝑦, 𝑧) > 0,  

for all 𝑥, 𝑦, 𝑧 ∈ [0,1]. 

The previous concept can be extended to some more general aggregation 

operators, as given by the following definition. 

Definition 11  Let 𝐹 be a 𝑆-uninorm with annihilator 𝑎 ∈ (0,1) and let 𝐺 be a t-

norm or 𝐺 ∈ 𝑈𝑚𝑖𝑛 ∪ 𝑈𝑚𝑎𝑥 . 𝐹 is conditionally distributive (CD) over 𝐺 if for all 

𝑥, 𝑦, 𝑧 ∈ [0,1]  the following holds 

(𝐶𝐷)        𝐹(𝑥, 𝐺(𝑦, 𝑧)) = 𝐺(𝐹(𝑥, 𝑦), 𝐹(𝑥, 𝑧)),   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝐺(𝑦, 𝑧) > 0. 

Lemma 12 ([5]) All increasing functions are conditionally distributive over 𝑚𝑎𝑥 

and 𝑚𝑖𝑛. 
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3 Distributivity Laws for 𝑺-uninorms over Uninorms 

This section considers distributivity of a 𝑆-uninorm from 𝑈min with an annihilator 

𝑎 over a t-conorm, a t-norm or a uninorm from 𝑈min ∪ 𝑈max. 

 

Figure 3 

Topics of the Section 3 

Since a 𝑆-uninorm is a commutative operator, there is no need to discus (LD) and 

(RD) separately. The distributivity of 𝐹 over 𝐺 for 𝑎 = 0, that is for 𝐹 being a 

uninorm from 𝑈min, was investigated in [18, 19]. Therefore, the further 

assumption is that 𝑎 ∈ (0,1). Also, further on the neutral element of the 

underlying uninorm of 𝐹 will be denote by 𝑒. The similar issues were 

simultaneously investigated in [7] and some of the following results are 

independently confirmed. 

3.1 𝑺-uninorm vs. t-norm and t-conorm 

The results concerning t-norms and t-conorms are not very surprising since the 

idempotence still plays an important role. Additionally, some aspects of the proofs 

are analogous to ones from [14], therefore, they can be omitted. Also, see [7]. 

Theorem 13  Let 𝐹 be a 𝑆-uninorm from 𝑈𝑚𝑖𝑛 and let 𝑇 be a t-norm. 𝐹 is 

distributive over 𝑇 if and only if  𝑇 = 𝑚𝑖𝑛. 

Theorem 14  Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  and let 𝑆 be a t-conorm. 

(i) If 𝐹 is distributive over 𝑆 then 𝑆(𝑥, 𝑥) = 𝑥 for all 𝑥 < 𝑒. 
(ii) Let the function 𝑠(𝑥) = 𝑆(𝑥, 𝑥) be left-continuous at the point 𝑥 = 𝑒. 

Then, 𝐹 is distributive over 𝑆 if and only if 𝑆 = 𝑚𝑎𝑥. 

3.2 𝑺-uninorm vs. uninorm from 𝑼𝒎𝒊𝒏 

Now the second operator is a conjunctive uninorm 𝑈 with continuous functions  

(except perhaps at the point 𝑒) 𝑈(𝑥, 0) and 𝑈(𝑥, 1). The first two lemmas are 

necessary for the proof of the main theorem of this subsection. 

The main idea behind the proofs that follow is analogous to one from [14] for 𝐹 

being a 𝑇-uninorm from 𝑈𝑚𝑎𝑥  and 𝑈 be a uninorm from the class 𝑈𝑚𝑎𝑥. However, 

it is very interesting to see how the duality of operators influences the process of 

proving and, therefore, the proofs in this section are not omitted. 
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Lemma 15 Let 𝐹 be a 𝑆-uninorm from 𝑈𝑚𝑖𝑛 and let 𝑈 be a uninorm from the 

class 𝑈𝑚𝑖𝑛  with a neutral element 𝑒1 ∈ (0,1). If 𝐹 is distributive over 𝑈 then 

𝑒1 > 𝑎. 

Proof. Let suppose the opposite, i.e., 𝑒1 < 𝑎. For 𝑥 = 𝑒1, 𝑦 = 0, 𝑧 = 1 assumed 

distributivity gives the following contradiction 

𝑒1 = 𝐹(𝑒1, 0) = 𝐹(𝑒1, 𝑈(0,1)) = 𝑈(𝐹(𝑒1, 0), 𝐹(𝑒1, 1)) = 𝑈(𝑒1, 𝑎) = 𝑎. 

Therefore, 𝑒1 ≥ 𝑎. 

If the assumption is now 𝑒1 = 𝑎, then for 𝑒1 = 𝑎 < 𝑥 < 𝑒 and 𝑦 = 0, 𝑧 = 1, from 

the distributivity law follows 

𝑎 = 𝐹(𝑥, 0) = 𝐹(𝑥, 𝑈(0,1)) = 𝑈(𝐹(𝑥, 0), 𝐹(𝑥, 1)) = 𝑈(𝑎, 𝑥) = 𝑈(𝑒1, 𝑥) = 𝑥. 

That is again a contradiction and, hence, 𝑒1 > 𝑎.∎ 

The previous lemma shows that 𝑒1 > 𝑎. The following one will explain relation 

between neutral elements 𝑒 and 𝑒1. Element 𝑒, as stated at the beginning of this 

section, is the neutral element of of the underlying uninorm of the observed 𝑆-

uninorm, while element 𝑒1 is the neutral element of the considered uninorm 𝑈 

from 𝑈𝑚𝑖𝑛 . 

Lemma 16 Let 𝐹 be a 𝑆-uninorm from 𝑈𝑚𝑖𝑛 and let 𝑈 be a uninorm from the 

class 𝑈𝑚𝑖𝑛  with a neutral element 𝑒1 ∈ (0,1). If 𝐹 is distributive over 𝑈 then 

𝑒1 = 𝑒 or 𝑒1 < 𝑒. 

Proof. Let suppose the opposite, that is that 𝑒1 > 𝑒. For 𝑒1 < 𝑥 < 1, 𝑦 = 𝑒, 𝑧 =
1, the assumed distributivity leads to the following contradiction 

𝑥 = 𝐹(𝑥, 𝑒) = 𝐹(𝑥, 𝑈(𝑒, 1)) = 𝑈(𝐹(𝑥, 𝑒), 𝐹(𝑥, 1)) = 𝑈(𝑥, 1) = 1. 

Therefore, either 𝑒1 = 𝑒 or 𝑒1 < 𝑒 holds.∎ 

The following theorem is the main result of this subsection. 

Theorem 17 Let 𝐹 be a 𝑆-uninorm from 𝑈𝑚𝑖𝑛 and 𝑈 be a uninorm from the class 

𝑈𝑚𝑖𝑛  with a neutral element 𝑒1 ∈ (0,1) and underlying t-conorm 𝑆 such that 

𝑆(𝑥, 𝑥) is left-continuous at the point 𝑥 = 𝑒. 𝐹 is distributive over 𝑈 if and only if 

𝑒1 > 𝑎 and exactly one of the following cases is fulfilled: 

(i) 𝑒1 = 𝑒, and 𝑈 is an idempotent uninorm, i.e., 𝑈 = 𝑈𝑒1
𝑚𝑖𝑛 , 

(ii) 𝑒1 < 𝑒, 𝑈 = 𝑈𝑒1
𝑚𝑖𝑛 , and 𝐹 is given by 

 

𝐹(x, y) = 
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{
 
 
 
 

 
 
 
 𝑎𝑆

′ (
𝑥

𝑎
,
𝑦

𝑎
) 𝑜𝑛 [0, 𝑎]2,

𝑎 + (𝑒1 − 𝑎)𝑇1
′ (

𝑥−𝑎

𝑒1−𝑎
,
𝑦−𝑎

𝑒1−𝑎
) 𝑜𝑛 [𝑎, 𝑒1]

2,

𝑒1 + (𝑒 − 𝑒1)𝑇1
′′ (

𝑥−𝑒1

𝑒−𝑒1
,
𝑦−𝑒1

𝑒−𝑒1
) 𝑜𝑛 [𝑒1, 𝑒]

2,

𝑒 + (1 − 𝑒)𝑆1 (
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) 𝑜𝑛 [𝑒, 1]2,

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

min(x, y) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(7) 

where 𝑆1 and 𝑆′ are t-conorms, and 𝑇1′ and 𝑇1′′ are t-norms. 

 

Figure 4 

The form of the S-uninorm from Theorem 17 

Proof. (⇒) Let 𝐹 be a 𝑆-uninorm from the class 𝑈min and let 𝑈 be a uninorm from 

𝑈min that satisfy distributivity law. From Lemma 15 and Lemma 16 follows that 

𝑒1 > 𝑎, and either 𝑒 = 𝑒1 or 𝑒 > 𝑒1. The next step is to prove that 𝑈 is an 

idempotent uninorm and it can be done analogously to the corresponding proof 

from [14]. Consequently, 𝑈 is an idempotent uninorm, i.e., 𝑈 = 𝑈𝑒1
min, and the 

claim (i) holds. 

The next issue is the structure of 𝐹 for 𝑒 > 𝑒1. The first step is to show that 

𝐹(𝑒1, 𝑒1) = 𝑒1. Let 𝑥 = 𝑦 = 𝑒1, 𝑧 = 𝑒. From the assumed distributivity follows 

𝑒1 = 𝐹(𝑒1, 𝑒) = 𝐹(𝑒1, 𝑈(𝑒1, 𝑒)) = 𝑈(𝐹(𝑒1, 𝑒1), 𝐹(𝑒1, 𝑒)) = 𝑈(𝐹(𝑒1, 𝑒1), 𝑒1) =

𝐹(𝑒1, 𝑒1). 

For 𝑎 ≤ 𝑥 ≤ 𝑒1,due to the distributivity law, holds 

𝑥 = 𝐹(𝑥, 𝑒) = 𝐹(𝑥, 𝑈(𝑒1, 𝑒)) = 𝑈(𝐹(𝑥, 𝑒1), 𝐹(𝑥, 𝑒)) = 𝑈(𝐹(𝑥, 𝑒1), 𝑥). 

Since 𝐹(𝑥, 𝑒1) ≤ 𝐹(𝑥, 𝑒) = 𝑥 ≤ 𝑒1 and 𝑈 = 𝑈𝑒1
min, the following can be obtained 

𝑥 = 𝑈(𝐹(𝑥, 𝑒1), 𝑥) = min(𝐹(𝑥, 𝑒1), 𝑥) = 𝐹(𝑥, 𝑒1). 

Also, for 𝑒1 ≤ 𝑥 ≤ 𝑒 holds  𝑒1 = 𝐹(𝑒, 𝑒1) ≥ 𝐹(𝑥, 𝑒1) ≥ 𝐹(𝑒1, 𝑒1) = 𝑒1. Therefore, 

𝐹(𝑥, 𝑒1) = {
𝑥 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑒1,
𝑒1 𝑓𝑜𝑟 𝑒1 ≤ 𝑥 ≤ 𝑒.

 (8) 
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Now, from (5) and (8) follows that 𝐹 has to be of the form (7). 

(⇐) It is enough to prove the claim (ii), since the proof for the claim (i) is 

analogous. Therefore, let 𝐹 be a 𝑆-uninorm given by (7) and 𝑈 = 𝑈𝑒1
min. To prove 

the distributivity law, we have to consider 43 = 64 cases. However, directly from 

the Lemma 10, distributivity for 𝑥 ∈ [0,1] and (𝑦, 𝑧) ∈ [0, 𝑒1]
2 ∪ [𝑒1, 1]

2 holds. 

Otherwise, for 𝑦 < 𝑒1 < 𝑧, 𝑈(𝑦, 𝑧) = 𝑦 and 𝐹(𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑧). Now, 𝐿 will be 

used to denote the left side of distributivity law, i.e., 𝐿 = 𝐹(𝑥, 𝑈(𝑦, 𝑧)) = 𝐹(𝑥, 𝑦). 

Also, the right side is denoted with 𝑅, i.e., 𝑅 = 𝑈(𝐹(𝑥, 𝑦), 𝐹(𝑥, 𝑧)). As in [14], 

there are four cases for evaluation of the 𝑅: 𝑥 ≥ 𝑒, 𝑒1 ≤ 𝑥 ≤ 𝑒, 𝑎 ≤ 𝑥 ≤ 𝑒1and 

𝑥 ≤ 𝑎. In all cases 𝑅 = min(𝐹(𝑥, 𝑦), 𝐹(𝑥, 𝑧)) = 𝐹(𝑥, 𝑦) is obtained. 

As seen above, in all considered cases 𝐿 = 𝑅 is obtained, which proves that the 

distributivity law holds.∎ 

Remark 18 a) If the assumption of the of left-continuity for the function 𝑆(𝑥, 𝑥) 
at 𝑥 = 𝑒 is omitted, the claim (i) from the previous theorem still holds,while the 

claim (ii), according to Theorem 14, is of the following form: If 𝐹 is distributive 

over 𝑈 then 𝑈(𝑥, 𝑥) = for 𝑥 < 𝑒 and 𝐹 is given by (7). 

b) The restriction of the previous theorem to 𝑎 = 0, i.e., to 𝑆-uninorm being just a 

uninorm from the class 𝑈min, has been shown in [18, 19]. The case (i) generalizes 

the Proposition 6.6 from [18, 19], and the case (ii) generalizes the Proposition 6.7 

from [18]. 

3.3 𝑺-uninorm vs. Uninorm from 𝑼𝒎𝒂𝒙 

The second operator in this subsection is a disjunctive uninorm 𝑈 with continuous 

functions (except perhaps at the point 𝑒) 𝑈(𝑥, 0) and 𝑈(𝑥, 1), i.e., a uninorm from 

the class 𝑈max. Now, as in [14], the following can be shown. Also, see [7]. 

Lemma 19 Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  and let𝑈 be a uninorm from the class 

𝑈𝑚𝑎𝑥  with a neutral element 𝑒1 ∈ (0,1). If  𝐹 is distributive over 𝑈 then 𝑒1 < 𝑎. 

Theorem 20 Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  and let 𝑈 be a uninorm from the class 

𝑈𝑚𝑎𝑥  with a neutral element 𝑒1 ∈ (0,1) and underlying t-conorm 𝑆 such that 

𝑆(𝑥, 𝑥) is left-continuous at the point 𝑥 = 𝑒. 𝐹 is distributive over 𝑈 if and only if 

𝑒1 < 𝑎, 𝑈 = 𝑈𝑒1
𝑚𝑎𝑥  and 𝐹 is given by 

 

𝐹(x, y) = 
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{
 
 
 

 
 
 𝑒1𝑆1′ (

𝑥

𝑒1
,
𝑦

𝑒1
)   𝑜𝑛 [0, 𝑒1]

2,

𝑒1 + (𝑎 − 𝑒1)𝑆2′ (
𝑥−𝑒1

𝑎−𝑒1
,
𝑦−𝑒1

𝑎−𝑒1
) 𝑜𝑛 [𝑒1, 𝑎]

2,

𝑎 + (1 − 𝑎)𝑈′ (
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
)  𝑜𝑛 [𝑎, 1]2,

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

max (x, y) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
(9) 

where 𝑆1′, 𝑆2′ are t-conorms, and 𝑈′ is a uninorm from the class 𝑈𝑚𝑖𝑛. 

Remark 21 According to [18] (see Lemma 6.5), if 𝐹 is a uninorm from the class 

𝑈𝑚𝑖𝑛 , i.e., a 𝑆-uninorm in 𝑈𝑚𝑖𝑛 with annihilator a = 0, then there is no uninorm 𝑈 

from the class 𝑈𝑚𝑎𝑥 such that 𝐹 is distributive over 𝑈. Theorem 20 shows that, 

when 𝑆-uninorm in 𝑈𝑚𝑖𝑛 has annihilator a ∈ (0,1), there is a uninorm 𝑈 =
𝑈𝑒1
𝑚𝑎𝑥 ∈ 𝑈𝑚𝑎𝑥  with neutral element e1 < 𝑎 such that 𝐹 is distributive over 𝑈. 

 

Figure 5 

The form of the S-uninorm from Theorem 20 

4 Distributivity Laws on Restricted Domain for 𝑺-

Uninorms over Uninorms 

Theorems from the previous section illustrate that the distributivity law (on whole 

domain) is a very strong condition since it considerably simplifies the structure of 

the inner operator. In this case, the inner operator is reduced to an idempotent 

operator. The research so farhas shown that restriction of the domain of the 

distributivity law can provide some new solutions that are non-idempotent. 

Therefore, this section contains the counterparts of theorems 13, 17, 20 from the 

previous section, now done for the restricted domain. Now, in order to 

characterize all pairs (𝐹, 𝐺) satisfying (CD) condition, some kind of continuity for 

𝐹 and 𝐺 has to hold (see [15]). The following results are counterparts to results 

from [14] and, for the sake of rounding up this topic, the proofs are not omitted. 



D. Jočić et al.  On Distributivity and Conditional Distributivity of 𝑺-uninorms over Uninorms 

 – 220 – 

 

Figure 6 

Topics of the Section 4 

4.1 𝑺-uninorm vs. t-norm 

Theorem 22 Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  with continuous underlying t-conorm 

𝑆′, and let 𝑇 be a continuous t-norm. 𝐹 is conditionally distributive over 𝑇 if and 

only if exactly one of the following cases is fulfilled: 

(i) 𝑇 = 𝑇𝑀; 

(ii) there is 𝑐 ∈ (0, 𝑎] such that 𝑇 is given by 

𝑇(𝑥, 𝑦) = {
𝑐𝑇𝐿 (

𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

min(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (11) 

and 𝐹 is given by 

𝐹(𝑥, 𝑦) = 

{
  
 

  
 𝑐𝑆𝑃 (

𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

𝑐 + (𝑎 − 𝑐)𝑆1 (
𝑥−𝑐

𝑎−𝑐
,
𝑦−𝑐

𝑎−𝑐
) 𝑜𝑛 [𝑐, 𝑎]2,

𝑎 + (1 − 𝑎)𝑈′ (
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
) 𝑜𝑛 [𝑎, 1]2,

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

max 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(12) 

where 𝑆1 is a continuous t-conorm, and 𝑈′ is a uninorm from the class 𝑈𝑚𝑖𝑛 . 

 

Figure 7 

Conditionally distributive pair from Theorem 22 
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Proof. (⇒) Let 𝐹 be conditionally distributive over 𝑇. 

For 𝑥 ≥ 𝑎, as in Theorem 13, it can be shown that 𝑇(𝑥, 𝑥) = 𝑥. 

Let 𝑥 ≤ 𝑎. If 𝑐 ∈ (0, 𝑎] is an idempotent element of 𝑇, then, as in [14], there can 

be shown that all elements from [𝑐, 𝑎] are idempotents of 𝑇. Hence, either all 

elements from [0,1] are idempotent elements for t-norm 𝑇 and, therefore 𝑇 =
𝑇𝑀 = min, or there is the smallest nontrivial idempotent element 𝑐 ∈ (0, 𝑎] of 𝑇, 
i.e., 

𝑇(𝑥, 𝑦) = {
𝑐𝑇∗ (

𝑥

𝑐
,
𝑐

𝑐
) 𝑜𝑛 [0, 𝑐]2,

min(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  

where 𝑇∗ is a continuous Archimedean t-norm. Now, as in Theorem 5.21 from 

[15] (pp. 138-140), it can be proved that 𝑐 is also an idempotent element of 𝐹, i.e., 

𝑆-uninorm 𝐹 on the square [0, 𝑎]2 is of the following form 

𝐹(𝑥, 𝑦) =

{
 

 𝑐𝑆2 (
𝑥

𝑐
,
𝑦

𝑐
) 𝑖𝑓   (𝑥, 𝑦) ∈ [0, 𝑐]2,

𝑐 + (𝑎 − 𝑐)𝑆1 (
𝑥−𝑐

𝑎−𝑐
,
𝑦−𝑐

𝑎−𝑐
) 𝑖𝑓   (𝑥, 𝑦) ∈ [𝑐, 𝑎]2,

max(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

 (11) 

where 𝑆1 and 𝑆2 are continuous t-conorms. Also, in the same manner as in 

Theorem 5.21 from [15] (pp. 138-140), it can be obtained that 𝑇∗ is a nilpotent t-

norm, i.e., 𝑇 is of the form (11), and that 𝑆2 is a strict t-conorm such that 𝐹 is of 

the form (12). 

(⇐) Now, if the starting assumption is that 𝑇 is a t-norm of the form (11) and 𝐹 a 

𝑆-uninorm of the form (12), it can be easily shown that condition (CD) holds. For 

input values from [0, 𝑐]2 the problem is reduced to the pair (𝑆𝑃 , 𝑇𝐿) which satisfies 

(CD), and in all other cases it follows from Lemma 12.∎ 

Example 23 Operator F given by 

𝐹(𝑥, 𝑦) = 

{
 
 

 
 max 𝑖𝑓     (𝑥, 𝑦) ∈ [

3

5
, 1]2 ∪ [

1

4
,
1

2
] × [0,

1

2
] ∪ [0,

1

2
] × [

1

4
,
1

2
],

𝑥 + 𝑦 − 4𝑥𝑦 𝑖𝑓     (𝑥, 𝑦) ∈ [0,
1

4
]2,

1

2
𝑖𝑓     (𝑥, 𝑦) ∈ [0,

1

2
] × [

1

2
, 1] ∪ [

1

2
, 1] × [0,

1

2
],

min 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

is a 𝑆-uninorm in 𝑈min with annihilator 𝑎 =
1

2
, obtained by (12) where 𝑈′ = 𝑈3

5

min, 

𝑆1 = max and 𝑐 =
1

4
. The corresponding t-norm is of the form (11). 
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4.2 𝑺-uninorm vs. Uninorm from 𝑼𝒎𝒊𝒏 

Theorem 24 Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  with a continuous underlying t-

conorm 𝑆′, and let 𝑈 be a uninorm from the class 𝑈𝑚𝑖𝑛 with a neutral element 

𝑒1 ∈ (0,1) and continuous underlying t-norm and t-conorm. 𝐹 is conditionally 

distributive over 𝑈 if and only if 𝑒1 > 𝑎 and exactly one of the following cases is 

fulfilled: 

(i) 𝑒1 = 𝑒, and 𝑈 is an idempotent uninorm, i.e., 𝑈 = 𝑈𝑒1
𝑚𝑖𝑛 , 

(ii) 𝑒1 = 𝑒, and there is a 𝑐 ∈ (0, 𝑎] such that 𝐹 and 𝑈 are given by 

𝑈(𝑥, 𝑦) = {

max(𝑥, 𝑦) 𝑜𝑛 [𝑒1, 1]
2,

𝑐𝑇𝐿 (
𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

min(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

and 

𝐹(𝑥, 𝑦) = 

{
  
 

  
 𝑐𝑆𝑃 (

𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

𝑐 + (𝑎 − 𝑐)𝑆2 (
𝑥−𝑐

𝑎−𝑐
,
𝑦−𝑐

𝑎−𝑐
) 𝑜𝑛 [𝑐, 𝑎]2,

𝑎 + (1 − 𝑎)𝑈′ (
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
) 𝑜𝑛 [𝑎, 1]2,

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

max 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(14) 

(iii) 𝑒1 < 𝑒, 𝑈 = 𝑈𝑒1
𝑚𝑖𝑛 , and 𝐹 is given by (7), 

(iv) 𝑒1 < 𝑒, and there is a 𝑐 ∈ (0, 𝑎] such that 𝑈 is given by (13) and 𝐹 is 

given by 

𝐹(𝑥, 𝑦) = 

{
 
 
 
 
 

 
 
 
 
 𝑐𝑆𝑃 (

𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

𝑐 + (𝑎 − 𝑐)𝑆3 (
𝑥−𝑐

𝑎−𝑐
,
𝑦−𝑐

𝑎−𝑐
) 𝑜𝑛 [𝑐, 𝑎]2,

𝑎 + (𝑒1 − 𝑎)𝑇1′ (
𝑥−𝑎

𝑒1−𝑎
,
𝑦−𝑎

𝑒1−𝑎
) 𝑜𝑛 [𝑎, 𝑒1]

2,

𝑒1 + (𝑒 − 𝑒1)𝑇1′′ (
𝑥−𝑒1

𝑒−𝑒1
,
𝑦−𝑒1

𝑒−𝑒1
) 𝑜𝑛 [𝑒1, 𝑒]

2,

𝑒 + (1 − 𝑒)𝑆1 (
𝑥−𝑒

1−𝑒
,
𝑦−𝑒

1−𝑒
) 𝑜𝑛 [𝑒, 1]2,

max 𝑜𝑛 [𝑐, 𝑎] × [0, 𝑐] ∪ [0, 𝑐] × [𝑐, 𝑎],

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

min 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(15) 

where 𝑈′ is a uninorm from the class 𝑈𝑚𝑖𝑛 , 𝑇1′, 𝑇1′′ are t-norms, 𝑆1 is a t-

conorm, and 𝑆2, 𝑆3 are continuous t-conorms. 
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Figure 8 

Operator 𝐹 from Theorem 24 (iv) 

Proof. (⇒) Let 𝐹 be conditionally distributive over 𝑈. The first step is to prove 

that 𝑒1 > 𝑎, which can be done by supposing the opposite (see [14]). 

As in Lemma 16, it can be proved that either 𝑒 = 𝑒1 or 𝑒 > 𝑒1 holds. In the sequel 

it is supposed that 𝑒 > 𝑒1, since the case𝑒 = 𝑒1 is similar. 

For 𝑥 ≥ 𝑎, as in Theorem 17, holds 𝑈(𝑥, 𝑥) = 𝑥 and the structure of 𝐹 on the 

square [𝑎, 1]2 is given as in (15). 

For 𝑥 ≤ 𝑎, as in Theorem 22, it can be proved that either 𝑈 is an idempotent 

uninorm and 𝐹 is given by (7), or there is a 𝑐 ∈ (0, 𝑎] such that 𝑈 and 𝐹 are given 

by (13) and (15), respectively. 

(⇐) On the other hand, if the observed 𝑆-uninorm 𝐹 and uninorm 𝑈 are of forms 

(15) and (13), the (CD) condition can be proved as in Theorem 17.∎ 

4.3 𝑺-uninorm vs. Uninorm from 𝑼𝒎𝒂𝒙 

Theorem 25  Let 𝐹 be a 𝑆-uninorm in 𝑈𝑚𝑖𝑛  with a continuous underlying t-

conorm 𝑆′, and let 𝑈 be a uninorm from the class 𝑈𝑚𝑎𝑥 with a neutral element 

𝑒1 ∈ (0,1) and continuous underlying t-norm and t-conorm. 𝐹 is conditionally 

distributive over 𝑈 if and only if 𝑒1 < 𝑎 and exactly one of the following cases is 

fulfilled: 

(i) 𝑈 = 𝑈𝑒1
𝑚𝑎𝑥 , and 𝐹 is given by (9); 

(ii) there is a 𝑐 ∈ (0, 𝑒1] such that 𝐹 and 𝑈 are given by 

𝑈(𝑥, 𝑦) = {

max(𝑥, 𝑦) 𝑜𝑛 (𝑒1, 1] × [0,1] ∪ [0,1] × (𝑒1, 1],

𝑐𝑇𝐿 (
𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

min(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 (17) 

and 

𝐹(𝑥, 𝑦) = 
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{
 
 
 
 

 
 
 
 𝑐𝑆𝑃 (

𝑥

𝑐
,
𝑦

𝑐
) 𝑜𝑛 [0, 𝑐]2,

𝑐 + (𝑒1 − 𝑐)𝑆2′′ (
𝑥−𝑐

𝑒1−𝑐
,
𝑦−𝑐

𝑒1−𝑐
) 𝑜𝑛 [𝑐, 𝑒1]

2,

𝑒1 + (𝑎 − 𝑒1)𝑆2′ (
𝑥−𝑒1

𝑎−𝑒1
,
𝑦−𝑒1

𝑎−𝑒1
) 𝑜𝑛 [𝑒1, 𝑎]

2,

𝑎 + (1 − 𝑎)𝑈′ (
𝑥−𝑎

1−𝑎
,
𝑦−𝑎

1−𝑎
) 𝑜𝑛 [𝑎, 1]2,

𝑎 𝑜𝑛 [0, 𝑎] × [𝑎, 1] ∪ [𝑎, 1] × [0, 𝑎],

max 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
(18) 

where 𝑈′ is a uninorm from the class 𝑈𝑚𝑖𝑛 , and 𝑆2′, 𝑆2′′ are continuous 

t-conorms. 

 

Figure 9 

Conditionally distributive pair from Theorem 25 (ii) 

Proof. (⇒) Let 𝐹 be conditionally distributive over 𝑈. 

As in Theorem 20, it can be shown that 𝑒1 < 𝑎 and that, for 𝑥 ≥ 𝑎, holds 

𝑈(𝑥, 𝑥) = 𝑥. 

Now, analogously to [14], it can be shown that 𝑈 = max on the square [𝑒1, 1]
2. 

The nex step is to show that 𝑒1 is an idempotent element of 𝐹. For 𝑥 = 𝑒1, 𝑧 = 𝑒1, 

and an arbitrary 𝑦 ∈ (0, 𝑒1) from equation (CD) follows 

𝐹(𝑒1, 𝑦) = 𝐹(𝑒1, 𝑈(𝑦, 𝑒1)) = 𝑈(𝐹(𝑒1, 𝑦), 𝐹(𝑒1, 𝑒1)). 

Due to the assumption of continuity, the previous equality can be extended to 

𝑦 = 0 and 𝑒1 = 𝐹(𝑒1, 0) = 𝑈(𝑒1, 𝐹(𝑒1, 𝑒1)) = 𝐹(𝑒1, 𝑒1). Now, since 𝑆′ = 𝐹|[0,𝑎]2  

is a continuous t-conorm immediately follows that 𝑆′ is ordinal sum 𝑆1′ and 𝑆2′, 
i.e., 𝐹 is given by (9). Therefore, 𝑈 = max on the square [𝑒1, 1]

2 and 𝐹 is given 

by (9). 

For 𝑥 ≤ 𝑒1,analogous to Theorem 22 for 𝑥 ≤ 𝑎, it can be proved that either 𝑈 is an 

idempotent uninorm and 𝐹 is given by (9), or there is a 𝑐 ∈ (0, 𝑒1] such that 𝑈, 𝐹 

are given by (17) and (18) respectively. 

(⇐) On the other hand, if the observed 𝑆-uninorm 𝐹 and uninorm 𝑈 are of forms 

(18) and (17), respectively, the (CD) condition can be shown as in Theorem 17. ∎ 
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Conclusion 

Investigation of distributivity and conditional distributivity of a 𝑆-uninorm from 

𝑈min with an annihilator 𝑎 ∈ (0,1) is presented in this paper. The first set of 

results given in the third section concerns distributivity law on the whole domain 

and they extend and upgrade the corresponding ones from [18, 19]. Section 4 

illustrates that the conditional distributivity produces a larger variety of solutions 

and the represented research is the continuation of investigations of conditional 

distributivity for aggregation operators with annihilator from [12, 17]. The further 

research will be directed towards possible application of the obtained structures to 

utility theory. 
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