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Abstract: Unsupervised learning methods play an essential role in many deep learning ap-
proaches because the training of complex models with several parameters is an extremely data-
hungry process. The execution of such a training process in a fully supervised manner requires
numerous labeled examples. Since the labeling of the training samples is very time-consuming,
learning approaches that require less or no labeled examples are sought. Unsupervised learn-
ing can be used to extract meaningful information on the structure and hierarchies in the data,
relying only on the data samples without any ground truth provided. The extracted knowledge
representation can be used as a basis for a deep model that requires less labeled examples, as it
already has a good understanding of the hidden nature of the data and should be only fine-tuned
for the specific task. The trend for deep learning applications most likely leads to substituting as
much portion of supervised learning methods with unsupervised learning as possible. Regarding
this consideration, our survey aims to give a brief description of the unsupervised clustering
methods that can be leveraged in case of deep learning applications.
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1 Introduction

The three primary methods for learning-based systems are supervised, unsupervised
and reinforcement learning. Reinforcement learning is applied in fields when an
agent takes actions in an environment, and a suitable policy for acting has to be
learned [1]. The other two learning methods are used when the output of the system
does not influence the inputs in any way. In case of supervised learning the training
samples are provided with correct labels, so a ground truth is available. Meanwhile,
in unsupervised learning, no such a-priory knowledge of the data is required. Mod-
els that are trained in an unsupervised manner only require the collected data for
training.

Deep learning is a widely researched topic currently. The majority of deep learn-
ing approaches utilize supervised learning [2]. However, given the vast number of
trainable parameters of such models, the training process requires numerous labeled
examples in order to achieve good generalization [2]. The labeling of the samples
is a very resource-intensive and time-consuming process, and usually, the labeling
can only be done manually [3]. So naturally arises a need for methodologies that
enable the training of such models with less or no labeled examples. This is usually
done by applying unsupervised learning first, and then fine-tuning the model with
the help of labeled samples and supervised learning [2, 4]. Among others, the future
of deep learning is expected to be driven by the development of more sophisticated
and accurate unsupervised learning methods [2].

Supervised learning methods always have a well-defined objective, like classifying
the inputs into one of the formerly known classes, or the regression of a function
between a set of inputs and inspected outputs. In this case, the output features are
formerly known, just like the class labels in classification. In unsupervised learning,
however, the aim is to discover unknown structures, similarities, and grouping in the
data [5].

Clustering is the process when the objective is to create groups of data samples
(clusters) based on some kind of similarity measure between the data samples [5].
The difference between classification and clustering is that clustering is carried out
in an unsupervised manner, so no class labels are provided, and sometimes even the
number of clusters is not known a-priory.

In this survey, we provide a brief introduction of the most significant unsupervised
clustering methods and their applicability in the field of deep learning. We aim to
give a summary of such clustering techniques that can also be leveraged in deep
learning applications, in the aspect of the expected trends of the future development
in this field of study [2]. Previous approaches focused on either clustering methods
or unsupervised deep learning. A detailed and general description of unsupervised
clustering methods can be found in the work of Xu and Wunch, who provide an in-
depth survey on clustering algorithms in [5]. They introduce the general description
of a clustering procedure, provide multiple measures for similarity that are used
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for clustering, and give a detailed explanation of several clustering algorithms and
their applicability. Other works that provide a detailed introduction of clustering
algorithms are [6] and [7]. Bengio et al. give an exhaustive survey on unsupervised
learning in deep learning in [4].

2 Unsupervised clustering methods

In case of unsupervised learning, the task is to uncover hidden relationships, struc-
tures, associations or hierarchies based on the data samples provided to the system
[5]. This kind of information gives us a better understanding of the data and the un-
derlying processes generating it. The clusters can be constructed based on similarity
or distance measures, so similar samples belong to the same cluster. The similarity
measure can also be described as a distance measure because the similarity of two
samples can be interpreted as the distance between the two samples in the feature
space [5].

One approach for unsupervised clustering is to use these similarity measures and
construct the regions of the feature space corresponding to the different clusters
based on the computed distances between the training samples [5].

Another approach is to extract features with high discrimination power or to find
principal directions of the feature space along which the data can be better separated.
These features can be any subset of the input data or they can also be constructed
by a network architecture [4].

Often, it is more convenient to use the computation mechanism of a supervised
learning algorithm, but work it around, so no true labeling is needed. An example
of this is anomaly detection, which can be handled as a clustering problem. In case
of anomaly detection, one can expect two clusters, one for the normal samples and
one for the anomalies. In case of an unsupervised training process for anomaly
detection, one can extract the training data from only one cluster, the cluster of
normal samples. As the training data, in this case, is expected to come from only
one cluster, it can be automatically labeled as belonging to the same class, and
the calculation for a supervised method can be used to train a system to classify
similar samples as ones that belong to this cluster [8]. However, when an anomaly
appears, that is not similar to the examples seen during the training process, then it
is classified as a sample not belonging to the cluster of normal samples; thus it is
classified as an anomaly.

The automatic generation of multiple labels is also beneficial. However, this method
is no longer referred to as unsupervised learning. In the case of simulator-based
labeling, for example, there is no need for the time consuming manual labeling of
the data [9]. This enables large and very diverse datasets to be annotated. However,
these samples are still provided with ground truth, even though they are not manually
labeled. In case of the anomaly detection, the ground truth is the same for all of the
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samples, so it is more of an assumption on the nature of the data rather than real
labeling. That is why we call the use of only one label unsupervised learning, and
not the automatic generation of multiple labels.

In case of unsupervised learning for deep learning models, there are two major
approaches. Both rely on formulating an output for the neural network that can be
used to train it in the usual way with the help of gradient descent [4].

The first one is to try to reconstruct the input of the network on its output. The
loss function is computed based on the reconstruction error between the input and
the output of the network [10, 4]. This method is expected to extract a meaning-
ful compressed representation of the input from which it can be reconstructed with
minimal error. This requires the compressed features to represent features of high
discrimination power among the presented training samples. This way, the unsu-
pervised training can be carried out on the whole network or layer-by-layer. After
such training, the network is usually trained further with labeled examples, but it
requires much less of them because thanks to the unsupervised pre-training a good
representation of the input data is already available [2].

The second one is to use two networks in parallel. One of these networks that are
called generator is used to generate data that is as similar to the input data of the
other network (the discriminator) as possible [11]. The discriminator’s objective is to
discriminate the generated samples from the real ones. Both networks are trained in
parallel. The generator is trained to produce data that can fool the discriminator even
better and the discriminator is trained to be able to differentiate between synthetic
and real data more accurately. The model itself appends the label for the inputs
of the discriminator as a synthetic sample or real sample because it knows which
samples come from the generator, while the update of the generator is based on
the output response of the discriminator. So the system does not require a ground
truth annotation. During the process of training, the discriminator has to develop
an understanding of the features of the training dataset and later it can be used for
classification as well (in a similar way like the anomaly detectors) [11].

3 Clustering algorithms

In this section we provide a brief description of the clustering algorithms which are
especially suitable for deep learning applications. In table 1, we draw a straightfor-
ward categorization of the mentioned unsupervised clustering methods 1.

First, we discuss the approaches that are based on a distance measure. These meth-
ods define the similarity of data samples by the distance of the samples in the feature
space. Because of this property, the simpler variants of these methods fail to cluster
data that is not linearly separable. However, with the creative formulation of the
similarity measure, or with proper pre-processing of the data, even these techniques
can be applied for nonlinear clustering tasks [12].
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Class Methods Section

Distance measure
based

K-means clustering 3.1
Hierarchical clustering 3.2

Fuzzy clustering 3.3
Support vector machines 3.4

Spectral clustering 3.5
Decision trees 3.6

Statistical
Expectation maximization

algorithm 3.7

Neural networks

Self organizing maps
(Kohonen networks) 3.8

Adaptive resonance theory 3.9
Autoencoders 3.10

Co-localization 3.11
Generative models 3.12

Table 1
Classification of unsupervised clustering methods

3.1 K-means clustering

The k-means algorithm is an iterative (learning) method to discover k number of
clusters in the input space. The number k is defined a-priory [13, 14, 15]. Each
cluster is represented with a cluster centroid in the feature space. The similarity
measure of samples is a simple distance measure. The distance between the samples
and the cluster centroids can be computed, and a sample is associated with the
cluster with the closest centroid. All of the samples are associated with one and
only one cluster, so the clusters cover the whole feature space, and they are disjoint.
The iteration process consists of two stages: In the first stage, all the training samples
are associated with one of the clusters. Then in the second stage, the location of the
cluster centroids is updated. These two steps are repeated until a stopping condition
is met. The stopping criteria can be that no further change in the classification
of training samples happened after the last update of the cluster centroids, or the
distance between the centroids before and after the update is smaller than a specified
value (ε) [13, 14, 15].

Before the iteration process, there are some preliminary considerations to make that
affect the result of the clustering. These considerations are the number of clusters k,
the starting positions for the centroids of the clusters and the stopping condition.

A simple measure of the distance between the samples and the centroids is the
Euclidean distance. The Euclidean distance of the two points is the Euclidean norm
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of the vector pointing from one of the points to the other. The computation of the
Euclidean norm of a vector x ∈ Rn can be seen in equation 1.

‖x‖ =
√
x21 + · · ·+ x2n (1)

The Euclidean distance of a sample x ∈ Rn and a centroid c ∈ Rn is
‖x − c‖. Apart from the Euclidean distance, other metrics can be used like the
Manhattan or the Mahalanobis distance [5].

The update of the centroids of clusters is carried out after each element of the
training set has been associated with one of the clusters. The new cluster centroids
can be computed as like a center of mass for all the samples associated with that
given cluster.

The starting location of the cluster centroids can be randomly placed in the feature
space, or random samples can be selected as initial cluster centroids to ensure that
they are located in the feature space from where the data is drawn.

An algorithm for the k-means clustering method is presented in algorithm 1. In the
algorithm, the squared Euclidean distance is used for distance measurement, in line
13.

Algorithm 1 : K-means clustering
1: Definitions:
2: Let k be the number of clusters,
3: X, the set of training samples,
4: xi ∈ X, the ith sample, i ∈ {0, 1, . . . n},
5: xi ⇒ jth cluster, means that the ith sample belongs to the jth cluster,
6: cj , the jth cluster centroid, j = {1, 2 . . . k},
7: sj , the number of samples associated to the jth cluster
8: Initialization:
9: Let c+j be a random sample drawn from X , ∀ j

10: Iteration:
11: repeat
12: cj = c+j , ∀ j
13: ∀ i, find j for which ‖xi − cj‖2 is minimal ∀j and set xi ⇒ jth cluster

14: ∀ j, c+j =
1

sj

sj∑
k=1

xk, where xk ⇒ jth cluster

15: until c+j − cj < ε, or no samples are re-associated to an other cluster

It can be seen that the k-means algorithm is heavily constrained. Its performance
is profoundly affected by the proper selection of preliminary parameters, like the
number of clusters or the initial location for the centroids. There are methods for
determining a good set of parameters for a given training set [16]; however these
methods usually require the construction of several clustering systems with different
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parameters and evaluating their results. It is computationally intensive to calculate
the distance of each sample and each centroid, so for a large number of samples,
the basic algorithm has to be altered [17]. Also, if the number of clusters has to be
changed, the whole iteration process has to be done from scratch, so methods for
enabling on-line k-mean clustering were also developed [18, 19]. The basic method
also fails to reveal appropriate clusters for non-linearly separable data. This can be
worked through by formulation a similarity measure that operates in a transformed
space (which is usually higher dimensional) where the samples are linearly separable
[12].

3.2 Hierarchical clustering

Unlike the k-means algorithm, hierarchical clustering does not propose disjoint clus-
ters. It builds a hierarchical structure of clusters, that can be represented as a dendro-
gram [5]. The leaves of the dendrogram structure are the samples themselves (each
belonging to its own class), and the root of the structure is the cluster that includes
all of the samples. Thus cutting the dendrogram at different levels of hierarchy
results in a different number of clusters. Unlike the k-means clustering algorithm,
hierarchical clustering does not require the a-priory declaration of the number of
clusters, however doing so can serve as a stopping condition, resulting in faster
computation for the proposed clusters. The dendrogram can be built from the leaves
to the root (agglomerative method) or from the root toward the leaves (divisive
method) [5].

Both agglomerative and divisive methods are based on distance measures like the
Euclidean distance to compute the similarity of clusters. This measure in the context
of hierarchical clustering is called dissimilarity measure, which is the basis of the
four major clustering strategies [5, 20].

Single linkage clustering defines the similarity of two clusters with the help of the
minimum of all pairwise dissimilarities between the elements of the two clusters
[20]. The complete linkage clustering strategy defines the similarity of two clusters
as the maximum of the pairwise dissimilarities between the elements of the two
clusters [20]. If the similarity between the clusters is defined by the average of the
pairwise dissimilarities of the samples in the two clusters, then it is group-average
clustering [20]. Finally, the clusters can also be given centroids (computed from the
samples belonging to the clusters), just like the clusters in the k-means algorithm.
The centroid clustering strategy defines cluster similarity with the dissimilarity mea-
sure between the centroids of the clusters [20].

Agglomerative methods start with assigning a cluster for all samples. Then a cluster
for the two most similar clusters is created. This process is repeated until all samples
belong to a single cluster (root) or until a certain amount of clusters (k) is discovered
[5, 20].

Divisive methods start from one cluster (the root of the dendrogram) that holds
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all the samples. The cluster is divided into two sub-clusters, but due to the large
number of possible splits, the evaluation of all of the possible splits would be too
computationally expensive. Usually, a good split is done by finding the two elements
of the cluster with the highest dissimilarity and grouping the other samples to the
element of the selected two, that is more similar to the given sample [20]. The
created clusters can also be split into two, while all the resulted clusters contain
only one sample, or a formerly given number of clusters is discovered.

The divisive method is harder to implement, but it can extract more meaningful
clusters that the agglomerative approach because the latter tends to construct clusters
based on local similarities without the knowledge of the global distribution of the
data, while divisive methods have global information from the beginning [20].

3.3 Fuzzy clustering

The previously introduced methods of k-means and hierarchical clustering consider
clusters with hard margins, meaning that a sample either belongs to a given cluster
or not. In case of fuzzy clustering methods, a sample has a degree of membership
in a given cluster, which is a continuous value rather than a binary. As clustering
has a close relation to set theory, most of the clustering algorithms have a fuzzy
implementation. In this section, we introduce a fuzzy equivalent of the k-means
algorithm, the fuzzy c-means algorithm [21, 22, 23].

The fuzzy c-means algorithm is very similar to the k-means algorithm. The applied
objective function to be minimized can be seen in equation 2. Where N is the num-
ber of samples, C is the number of clusters, xi is the ith sample, i ∈ {1, 2 . . . N},
cj is the jth cluster centroid, j ∈ {1, 2 . . . C}, µij is the degree of membership of
xi in cluster j, ‖.‖ is any norm for measuring distance (like the Euclidean norm)
and m is a coefficient to control fuzziness 1 ≤ m ≤ ∞ [21, 22].

Jm =

N∑
i=1

C∑
j=1

µm
ij‖xi − cj‖2 (2)

The function Jm is minimized with an iteration process, during which the degrees
of membership for each sample and each clusters are updated. After the update, the
new centroids for the clusters are computed. The degrees of membership can be
determined according to the equation 3 [21, 22].

µij =
1

C∑
k=1

(
‖xi − cj‖
‖xi − ck‖

) 2
m−1

(3)

i ∈ {1, 2 . . . N}, j ∈ {1, 2 . . . C}
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The centroids of the clusters are calculated like in equation 4 [21, 22].

cj =

N∑
i=1

µm
ij · xi

N∑
i=1

µm
ij

(4)

j ∈ {1, 2 . . . C}

The preliminary steps before the iterative algorithm are to define the number of
clusters (C), the coefficient for fuzziness (which is usually set to 2) and to assign an
initial degree of membership for all training sample for each cluster. This is usually
done by filling a matrix U of size N ×C with random values for µij . The stopping
condition can be formulated exactly like in the k-mean algorithm [21, 22].

After these preliminary steps, the cluster centroids are computed with the help of
equation 4 based on the training samples and the given U matrix containing the
degree of membership of each training sample in each cluster. Then the elements
of the matrix U are modified according to equation 3. These two steps are repeated
until the stopping condition is met.

It can be seen from equation 3 that in the marginal case, if m is set to be m = 1, the
degrees of membership converge to either zero or one, making it a crisp clustering
method, like k-means.

According to this approach, most of the clustering methods can be fuzzified by
assigning a degree of membership to the samples.

3.4 Support vector machines

The SVM-based clustering is usually referred to as support vector clustering de-
scribed in detail in [24]. The idea behind the support vector clustering method is
based on the work of Schölkopf et al. [25] and Tax and Dunin [26], who introduced
methods to carry out the support vector description [27] of data structures in a high
dimensional space with the help of kernel functions [12].

Rather than separating the data samples from each other directly in feature space,
the kernel function enables to formulate a distance measure of a higher dimensional
space called feature space and use this kernel function to design the separation of the
data samples [12]. Such a separation can lead to highly nonlinear, complex decision
boundaries in the data space.

The complete mathematical description of the support vector clustering (SVC) method
can be found in [24]. In this survey, we only explain the core idea behind this tech-
nique.
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In case of SVC, the training samples are mapped to a high dimensional feature
space utilizing a Gaussian kernel function. The data in feature space is enclosed in a
hypersphere of center a and a radius of R. A penalty parameter is added to control
the allowed number of outliers. An outlier x is a sample in data space for which
‖Φ(x) − a‖22 > R2 + ξ. Where Φ(.) is the kernel function that maps the sample x
from the data space to the feature space, and ξ is the slack variable to enable soft
margin [24].

The contour of the hypersphere forms boundaries in the data space that separates
points of the data space that are inside and those that are outside of the hypersphere
when mapped to the feature space, with the given kernel function. These boundaries
can be non-convex and can even form disjoint sets of points in the data space. The
shape of the decision boundary depends on the parameters of the kernel function
and the penalty coefficient for outliers [24]. The proper tuning of these parameters
depends on the noise and overlap of structures in the provided data, and it is de-
tailed in [24]. If the parameters are all set to suitable values, then smooth disjoint
boundaries should form in the data space.

The clusters are marked by the disjoint sets in the data space [24]. So two samples
in the data space x1 and x2 are said to belong to different clusters if any path
that connects these two points in the data space exits the hypersphere in the feature
space. In [24] this criterion is checked numerically for twenty points of a connecting
line between x1 and x2.

A more straightforward approach for unsupervised clustering with support vector
machines is to use the one-class support vector machine (OCSVM) [25, 26]. The
OCSVM method operates as the basis of the SVC algorithm. If only two clusters are
expected, like in anomaly detection [8], there is no need for the cluster assignment
method proposed in [24] so the system can be simplified.

3.5 Spectral clustering

Spectral clustering is used for graph partitioning [28] by analyzing graphs with
methods of linear algebra. The spectral clustering algorithm is also based on a
similarity measure. The training data can be represented as a similarity graph, which
is an undirected graph, with the training samples as the vertexes and the edges
associated with a weight of the similarity between the two vertexes they connect.
From the similarity graph, the graph Laplacian is computed. The different kinds of
similarity graphs and graph Laplacians can be found in [28].

The graph Laplacian matrix is used to split the data into clusters. Given a required
number of clusters noted by k, the first k eigenvectors with the largest corresponding
eigenvalues of the graph Laplacian are selected [28]. These eigenvectors are used
as centroids for the clusters. The data samples are then associated with one of the
clusters with the help of the k-means method.

The implementation and interpretation of the spectral clustering method are de-
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scribed from several aspects in [28].

3.6 Decision trees

A decision tree is a tree-like graph structure. In order to assign a sample to a cluster,
the data is fed to the root node of the structure. At the nodes of the structure, the
data is inspected according to one of its given features and decided in which branch
the given sample should be propagated. So a splitting node has branches for all
possible values of the given feature towards the leaves. The leaves of the structure
correspond to different clusters, meaning that data with similar features fall to the
same cluster [29].

The structure is constructed based on a training set. During the training, the objective
is to find the best way to split the data, so to select an appropriate inspection feature
for all of the nodes. This method is called a greedy algorithm to find the splitting
feature [29]. The number of clusters can be controlled by the branching factor of the
structure [29].

The appropriate splitting feature is selected based on a measure of their discrimina-
tion power. A split based on a feature that can discriminate the data will result in
sets that are more homogeneous than that before the split. So often, the homogeneity
measure is used that can also be computed based on the distance metric between the
samples [30].

Basak and Krishnapuram proposed a method for unsupervised clustering with deci-
sion trees [30]. They introduced two homogeneity measures in their paper that are
based on the distance metric between the samples. During the construction of the
structure, at each node, a clustering of the training set is carried out based on a
single or a group of features [30].

The appropriate feature to split by in a given node can be selected by removing
features from the feature space and computing its effect on the homogeneity of
the data, or by simply observing the homogeneity of the data along each feature
separately [30].

Let the number of data points be N . If the similarity of two data points xi and
xj is computed like µij i, j ∈ {1, 2 . . . N} in equation 5, where dij is the distance
between xi and xj by a distance measure that is not necessarily the Euclidean
distance and dmax is the maximum distance of all pairwise distances between the
data points [30].

µij = g

(
1− dij

dmax

)
(5)

i, j ∈ {1, 2 . . . N}
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The function g is computed according to equation 6 [30].

g(x) =

{
x if 0 ≤ x ≤ 1
0 otherwise (6)

The discrimination power of a feature can be calculated according to equation 7, if
the discrimination power is measured by removing the feature from the feature set,
and according to equation 8, if the discrimination power is measured exclusively for
a given feature [30].

Hf = −

∑
i,j

µij(1− µf
ij) + µf

ij(1− µij)

 (7)

Ĥf = −
∑
i,j

µ̂f
ij(1− µ̂

f
ij) (8)

i, j ∈ {1, 2 . . . N}

The expression µf
ij is the similarity of xi and xj with the feature f removed from

the feature set and µ̂f
ij is the similarity of xi and xj only along the feature f . In

both cases the feature with the highest discrimination power is selected for splitting
feature at a given node [30].

Basak and Krishnapuram found that with this method, a well interpretable hierarchi-
cal clustering of the data can be made, which can also be translated into clustering
rules [30]. They also found that it is better to select a single feature as a splitting
criterion than a set of features.

3.7 Expectation maximization algorithm

The expectation maximization algorithm is an iterative process to find the parameters
of statistical models that describe the probability distribution of the data [31]. In case
of clustering, we suppose that the data can be distributed into k different clusters and
data in each cluster have its own probability distribution with its given parameters.
The type of the distribution of the clusters is based on assumption [31].

If it is known which data points belong to which clusters, the estimation for the
parameters of their probability distribution can be computed. If the parameters of
the probability distributions are given, the probability for each data sample coming
from the given distribution, belonging to a specific cluster can be computed. This
boils down to a k-means-like iteration process, where the initial parameters for
the probability distribution of the clusters are initialized, the probability of samples
belonging to one cluster thus can be computed, and the parameters of the probability
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distributions can be refined based on these calculated probabilities [31]. Then this
process is repeated until a specified stopping condition is met.

So the expectation maximization algorithm is very much like the fuzzy c-means
clustering, but with a stochastic aspect [31]. Instead of the degree of membership
of the samples in each cluster, the probability of the samples of belonging to the
clusters is used and the parameters to be updated are the parameters of the assumed
statistical model [31].

3.8 Self organizing maps (Kohonen network)

The Kohonen network is a fully connected artificial neural network with only an
input layer and an output layer [32, 33]. The input vectors presented to the network
are associated with one of the k different clusters. In the output layer of the network,
there is an output neuron for every cluster. So the output layer has k number of
neurons. The neuron with the highest activation decides the cluster a sample belongs
to [32, 33].

The network can be trained with the winner-take-all method [32, 33]. Let the weight
vectors of the output neurons be wi where i ∈ {1, 2, . . . k} and the input vectors
to be x. The jth output neuron is selected as the winner neuron, and the sample is
associated with its cluster, if

‖x−wj‖ = min
i=1...k

‖x−wi‖

The weight vector with the minimum distance from the sample can also be found
by finding the maximum of the scalar products of the input vector and the weight
vectors if the weight vectors are all normalized [32, 33]. This can be seen in equation
9.

< wj ,x >= max
i=1...k

< wi,x > (9)

Equation 9 only holds if the weight vectors of the network are normalized, so
‖wi‖ = 1 ∀i. The scalar product of the input vector and the weight vectors is the
activation of the output neurons. This is why the winning neuron is selected as the
one with the highest activation.

The interpretation of the scalar product is the projection of x in the direction of wi.
So if the projection is greater in a given direction, that means the input vector is
more similar to the normal weight vector pointing to that direction.

In case of the winner-take-all method, only the weight vector of the winner neuron
is modified during the training process [32, 33]. The objective is to minimize the
squared distance between the input vector and the winning weight vector. This can
be done by computing the gradient of the objective function and use gradient descent
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to modify the weights of the winning neuron [32, 33].

The gradient of the objective function with respect to the weights can be seen in
equation 10.

d‖x−wj‖2

dwj
= −2(x−wj) (10)

According to equation 10 the weight vector wj should be modified in the direction
of x−wj . The modified weights can be calculated according to equation 11.

wj := wj + η(x−wj) (11)

After the weight update, the weight vector wj has to be normalized again.

If the training data is linearly separable, the weight vectors of the Kohonen network
will converge to point to the center of mass of the clusters [32, 33]. The number
of output neurons must be larger than the number of clusters even if the number of
clusters is not known a-priory. The appropriate neurons to cluster by then can be
selected, by inspecting the direction of their weight vectors during and after training
and the ones that are not necessary can be omitted [32, 33].

3.9 Adaptive resonance theory

The adaptive resonance theory (ART) [34] model for neural networks is very similar
to the Kohonen network, but it includes some other functionality [35]. The structure
of the ART model is the same as the Kohonen network with the exception that
the output neurons also implement lateral inhibition. So the activation of an output
neuron decreases the activation of the others. The objective is the same, to find a
weight vector that is similar to the input vector. After the classification of the input
vector, the output activations are compared to a vigilance parameter [35]. If the
activation of the winning neuron is higher than the vigilance parameter, the training
continues like it was a Kohonen network. However, if the vigilance parameter is
larger than the winning neuron’s activation, it means that the presented input vector
is out of an expected range around the weight vector. In this case, the winning
neuron is turned off, and the prediction is made again. This is done until one of the
weight vectors overcome the vigilance parameter. If it is not overcome in any trials,
then such a neuron is selected that does not represent a cluster yet, and its weights
are modified towards the input vector [35].

With the tuning of the vigilance parameter, ART models can control the smoothness
of classification [35]. High values of the vigilance parameter result in fine clusters
and a lower value of the vigilance parameter results more general, smooth clusters
[35].
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3.10 Autoencoders

Autoencoders are artificial neural network structures that try to reconstruct their
input on their output [36]. The loss function is computed from the reconstruction
error of the network. As only the inputs and the computed outputs are used for the
loss function, there is no need for labeling, and thus the network can be trained in
an unsupervised manner [36].

The training of the autoencoder structure is carried out with the error backpropaga-
tion algorithm. A simple autoencoder structure can be seen in Figure 1.
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Figure 1
Simple autoencoder structure

In the structure in Figure 1, the network has fully connected layers. Let the input
vector be x ∈ Rn, so the number of neurons in the input layer is n. The objective
is to reconstruct the input in the output layer, so the output layer also consists of
n number of neurons. The number of neurons in the hidden layer is chosen to be
m where m < n. The matrix W1 is the weight matrix between the input and the
hidden layers. Each row of the W1 matrix is a weight vector of a neuron in the
hidden layer. So W1 is a matrix of Rm×n. The rows of W2 are the weight vectors
of the output neurons, so W2 ∈ Rn×m.

The hidden layer activations are computed according to equation 12, where f(.) is
the activation function of the hidden layer neurons, and it is applied element-wise
to the result of the matrix-vector multiplication. It is important to note that the bias
weights are not treated separately in this equation.

h = f(W1x) (12)

The output of the network can be computed similarly to the hidden layer activations.

y = f(W2h)

As the hidden layer has fewer neurons than the input layer and the objective of the
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network is to reconstruct the input on its output, the encoder part is responsible for
compression of the data [36]. The compressed representation of the data must be
informative about the input so it can be decoded with high accuracy. So the encoder
part of the network tries to extract features from the input that describe the data
well. These features can be used for clustering because they represent directions in
the feature space in which the input data can be well-separated [36].

The training of the structure can be accomplished by forming a loss function from
the difference of the input and the output, such as ‖x − y‖2 and minimizing this
function with respect of the weights of the network [36]. The gradient of the loss
function with respect of the weights can be computed, so the error-back-propagation
algorithm can be used to train the network without the need for labeled examples
[36].

3.11 Co-localization

Image co-localization is an unsupervised method for object discovery in images. A
set of images that all contain a common object are provided as training samples
[37]. The task of image co-localization is to find a bounding box for the common
object across all images [37].

Wei et al. proposed an image co-localization method, DDT (deep descriptor trans-
formation) that leverages the features extracted by pre-trained convolutional neural
networks [37]. A deep descriptor is a component vector of the output volume of
a convolutional layer. If the output volume has the dimensions of w for width, h
for height and d for depth, then a deep descriptor at the index i, j is the vector
xi,j ∈ Rd, i ∈ {1, . . . h} and j ∈ {1, . . . w}.

The pre-trained model is presented with N number of images that has a common
object on them to be localized. The deep descriptors for each image are collected
Xn = {xn

i,j ∈ Rd}, where n ∈ {1, . . . N} and the mean vector for all of the deep
descriptors is calculated as in equation 13 [37].

For equations 13,14 and 15, i ∈ {1, . . . h}, j ∈ {1, . . . w} and K = w · h ·N .

x̄ =
1

K

∑
n

∑
i,j

xn
i,j (13)

After calculating the mean vector, Wei et al. compute the covariance matrix accord-
ing to equation 14 [37].

Cov(x) =
1

K

∑
n

∑
i,j

(xn
i,j − x̄)(xn

i,j − x̄)T (14)

The eigenvector of Cov(x) that corresponds to the largest eigenvalue is noted as ξ1
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and the first principal component of a deep descriptor at an index of i, j for a given
image is described as in equation 15 [37].

p1i,j = ξT1 (xi,j − x̄) (15)

The first principal component can be calculated for all values of i and j, and the
result can be organized into a matrix P 1 ∈ Rh×w. The elements of P 1 for a given
image with positive value represent positive correlation across all the N number
of images for that descriptor, so it is likely to belong to the common object [37].
Thus the matrix P 1 is thresholded at zero for all of the images and the location of
the largest connected positive region is sought. As the dimension of the P 1 matrix
is the same as the feature map of the convolutional layer (w × h), the location in
the P 1 matrix can be reflected the image. So a region on the image can be found
that correlates across all of the images [37]. A minimal enclosing bounding box can
be formed for the proposed regions, thus solving the task of image co-localization.
Also, if the P 1 matrix does not contain any element with a positive value, it means
that the image does not contain the common object [37].

3.12 Generative models

In generative adversarial networks (GANs), there are two networks trained at the
same time [11], a generator network and a discriminator network. The generator
network generates data from random vectors, and the discriminator network tries to
tell apart the generated and synthetic data samples. The objective of the generator
network is to fool the discriminator. So it develops its internal parameters in a way
that it can generate data seemingly coming from the same domain as the real training
samples. The discriminator has to develop an understanding of the essential features
of the data in order to be able to discriminate between the synthetic ones [11].

After both the networks are trained, the transfer of the output of the generator
network can be examined by interpolating in the input space [11]. The results show
that the transfer between two input vectors with input space interpolation is smooth.
This implies that the discriminator network also possesses a smooth continuous
representation of the feature space, which means that such a model can be used
for extracting robust general low-level features even in case of training sets that are
discontinuous in the feature space [11].

Mathematical operations with the input vectors also show that the generator deals
with the features in the sense of similarity [38]. In case of image generation for
human faces, for example, let an input vector xsf yield an output of a smiling
female face, xnf a neutral female face and xnm result in a neutral male face. The
input vector xsm = xsf − xnf + xnm will result in a smiling male face. This also
implies, that the discriminator also has a sense of similarity, like smiling faces are
similar, female faces are similar, male faces are similar etc. moreover, this knowledge
can be utilized for clustering as well [38].
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4 Applications

In this section, we introduce some examples of how the different unsupervised clus-
tering techniques can be leveraged in deep learning applications.

The k-means clustering can be used to learn low-level filters for convolutional neu-
ral networks [39, 40, 41]. Socher et al. introduced a convolutional-recursive deep
learning structure for 3D object recognition from RGB-D data [39]. A single con-
volutional layer first processed both the RGB and the depth modalities. They pro-
posed an unsupervised method to build the filters based on the k-means clustering
algorithm. They compared their proposed method to other models introduced in
[42, 43, 44, 45]. Their experiments show, that their model, with an accuracy of
86.8 ± 3.3, was able to outperform all other methods except for the one introduced
in [45], which had a 0.7% higher accuracy, but required five times more memory.

Coates and Ng introduced an unsupervised method for learning deep hierarchical
features with the help of k-means clustering [46]. In their paper they describe the
main considerations and limitations to perform multiple layers hierarchical feature
representation with k-means clustering. They also show that this method, with an
accuracy of 82%, can achieve the performance of the state-of-the-art unsupervised
deep learning methods such as vector quantization (81.5% accuracy) and convolu-
tional DBN (78.9% accuracy) on the full CIFCAR-10 dataset, but with easier imple-
mentation (only one hyperparameter ’k’) and better scalability. A similar approach
can be seen in [47].

Reducing the dimensionality of the data is an essential task for both visualizing
high dimensional data for better understanding and for clustering, as the distance
measures become simpler in reduced dimensional spaces. Yang et al. proposed a
method to optimize the dimensionality reduction and the clustering method together,
to construct a meaningful representation of the data in a reduced dimensional space
[48]. They used a deep neural network as the dimensionality reduction system and
trained it in respect to the clustering method (k-means clustering). In order to avoid
trivial solutions where the network maps any input to such latent space that it can
be trivially separated, a loss for the reconstruction of the input was also introduced,
like in the autoencoder structure. This way the network was able to create a latent
representation of the input with well separable clusters that are evenly scattered
around the cluster centroids.

For graph partitioning Tian et al. showed that the reconstruction of the similarity
matrix with autoencoders is a suitable alternative for the traditional matrix calcu-
lations in case of spectral clustering, in large-scale clustering problems, where the
input space is very high dimensional [49]. The hidden layer activations can be used
for the k-means clustering directly, instead of calculating the eigenvectors of the
graph Laplacian to place cluster centroids. Based on this result Vilcek proposed an
autoencoder structure for unsupervised detection of communities in social networks
[50].
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The connections between two neural network layers decide which features of the
first layers affect which features of the second layer. In case of fully connected
neural networks, all the neurons in the first layer can affect the activation of each
neuron in the second layer. It is decided during training, which connections are
neglected and which are of greater importance, by tuning the weights associated
with the connections. Connections get neglected because not all first layer features
are necessary for the computation of a given second layer feature [51, 41]. For
unsupervised learning, the tuning of the weights this way is not always possible, and
it is also computationally ineffective. Unsupervised clustering can be used to design
the connections between neural network layers [51, 41].

Bruna et al. proposed a generalization of deep convolutional architectures (locally
connected networks) based on analogies with graph theory and introduced a hier-
archical and a spectral construction method for convolutional structures [52]. Ex-
periments were carried out on a downsampled MNIST dataset, where the proposed
method was able to achieve equal or lower classification error than a fully connected
network that had more than twice the amount of parameters. In [53] another study
on the topic of spectral methods for deep learning is presented.

Fuzzy rules can be extracted from the collected data with the help of deep learning
[54]. In [54] a method is proposed for extracting fuzzy rules from the data by feeding
it to a restricted Boltzmann machine and applying a probability based clustering
method (similar to the expectation maximization algorithm) to form the fuzzy rules.

DFuzzy is a deep learning based fuzzy clustering approach for graph partitioning
[55]. DFuzzy enables vertexes to belong to multiple clusters with different degree.
An autoencoder structure is used to create graph partitions that can be mapped to
vertexes by the decoder. An initial clustering of the graph is performed with the
PageRank algorithm [56].

The NDT (neural decision tree) is a hybrid architecture of a decision three and
multilayer neural networks [57]. At each node in the decision tree, the splitting is
implemented by a neural network. Describing the structure as a whole and assum-
ing shared weights, enable the optimization of the whole architecture globally. The
authors compared the test set accuracy of the NDT, a decision tree and a neural
network on 14 different datasets, and found that none of these methods have a sig-
nificant advantage over the other, but the NDT model accuracy is in the top two on
13 of the 14 datasets.

Patel et al. proposed a probabilistic framework for deep learning [58]. Their proposed
model, the Deep Rendering Mixture Model (DRMM) can be optimized with the
expectation maximization algorithm. The method was introduced as an alternative
for deep convolutional neural networks and their optimization with backpropagation.
The model can be trained in an unsupervised and semi-supervised manner. The
experiments show that the best performing DRMM architectures were able to achieve
a test error rate of 0.57%, 1.56%, 1.67% and 0.91% in a semi-supervised scenario
for the MNIST dataset with 100, 600, 1000 and 3000 labeled examples respectively.
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Most of the convolutional and generative models for comparison had error rates that
are nearly two times greater than these.

In [59] a spatial mixture model was proposed for the unsupervised identification
of entities in the input. In the mixture model, each entity is described by a neu-
ral network with a given set of parameters. Based on the expectation maximization
algorithm, an unsupervised clustering method is introduced, that enables optimiza-
tion by differentiation. The basic idea behind this approach is similar to the neural
decision tree [57], but instead of a decision tree, a mixture model is created.

A detailed description of the autoencoder structure, its role in unsupervised learning
and place in deep learning, along with different types of autoencoders can be found
in [36].

Radford et al. introduced the Deep Convolutional Generative Adversarial Network
structure (DCGAN) [60]. In their work, they showed that deep convolutional models,
as generative networks, can extract useful features from the presented images in an
unsupervised manner. Their result shows that both the generator and the discrimina-
tor network can be trained to extract general features and thus they can be used for
other purposes as well, for example as feature extractors.

Summary

The current results show that deep learning can benefit a lot from unsupervised
clustering methods. The applications that utilize unsupervised learning in the process
of deep learning, perform well in many cases [39, 41, 46, 48, 52, 57, 58] and can
have other advantages, like fast training and inference, smaller memory needs and
easy implementation due to the lack of labeling. This paper promotes the use of
unsupervised techniques in the field of deep learning and argues that a significant
aspect of deep learning research should be to find ways to exploit the information
provided by the sheer data better, rather than acquiring more and more data in order
to build even more complex models to enhance performance.
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