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Abstract: Nowadays the increase of photovoltaic penetration and simultaneously, the 

decentralization of electricity system, poses a number of challenges for distribution system 

developers and operators. The spread of high output power photovoltaic power plant 

connections demands the development of a network infrastructure. The analysis of 

development directions can be done with software simulation, for which network models 

are needed, which can characterize real networks well. To create such reference networks, 

knowing existing topologies, hierarchical agglomerative clustering can be a solution. When 

the parameters of the clusters are specified well, their software implementation can be 

done. In this study, a possible clustering process of selected Hungarian medium voltage 

overhead networks (including the determination of the optimal cluster number too), and the 

formulated network clusters are presented. The clustering of twenty selected 22 kV medium 

voltage networks was done using hierarchical agglomerative clustering. Then the optimal 

cluster number was determined. Based on Davis-Bouldin and Silhouette criterions, this 

cluster number was four. Two of the four generated clusters are single clusters, containing 

only one feeder. The size and looping of the characterized sample networks are well 

observable. In this paper a method has been created to generate medium voltage 

distribution network models, which can be used to simulate the effects of the growing 

photovoltaic penetration in the Hungarian distribution network. 

Keywords: distribution network; network clustering; hierarchical agglomerative clustering 

1 Introduction 

Nowadays, in both domestic and international energy market trends, photovoltaic 

penetration quickly increases. Photovoltaic systems, considering their output 

power, covering the entire power plant range (from household size small to size 
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small and over that). A large amount of this (approx. 333 MWp, which is 56%) is 

household size small power plants. Due to a change of the renewable support 

system at the end of 2016, the number of “applications for licenses for the 

installation” of photovoltaic power plants with 500 kVA output power increased 

significantly. Based on the photovoltaic market predictions, in the next decade, the 

number of small power plants is going to increase, which will increasingly 

decentralize the structure of the electricity infrastructure (firstly at the distribution 

voltage level) [1] [2]. In Table 1, the increasing tendency of the built-in 

photovoltaic capacity is shown. 

Table 1 

Cumulative photovoltaic capacity development in Hungary [1] [2] 

 
2015 2016 2017 2018 

Built-in household size small 

power plant capacity [MWp] 
129 164 241 324 

Built-in small power plant 

capacity [MWp] 
16 27 61 approx. 240 

Total built in photovoltaic 

capacity [MWp] 
172 235 344 665 

In order for the low, and medium voltage networks to approximate the smart grid 

structure, electricity infrastructure development is necessary. Modeling of these 

distribution networks (here on medium voltage level) is essential to determine 

development directions and to answer emerging questions. For these simulations, 

the software implementation of medium voltage networks is recommended. 

Because in the examined area, there is a significant number of varied topology 

medium voltage networks, their software implementation and running simulations 

is a powerful time and resource consuming task. It is recommended to formulate 

reference networks with which the real feeders can well be described. Such 

reference networks can be created by clustering real networks. These distribution 

network models can be approximated more precisely than the mathematical 

models described in the literature [5]. Thus, real decision situations can be 

handled by the generated reference networks. In this paper a method has been 

created to generate Hungarian medium voltage distribution network models. 

In Section 2 the used hierarchical agglomerative clustering method is presented, 

with which the numerous medium voltage networks are decreased to a 

manageable number of clusters. In Section 3.1, the examined distribution feeders 

are presented. In Section 3.2, the clustering method and principal component 

analysis are used, in Section 3.3 the determination process of the optimal cluster 

number are presented. Section 4 d the results of clustering and the generated 

clusters are presented. 
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2 Data Analysis Techniques 

Data mining techniques can be used to get significant information from the 

examined database. [2].By reviewing a number of studies (Table 2) in which some 

kin fog these techniques (typically clustering methods) were used for grouping 

low or medium voltage electricity network, it can be said that classification, K-

means (and K-medoids) clustering and hierarchical clustering are the most 

frequently used methods. [3] 

Table 2 

Methods of network analyzing techniques 

Name of method 
Referenced in 

literature 
Number of groups 

Number of analyzed 

networks 

Classification 
[3] [4] [5] [6] [7] [8] 

[9] [10] [11] [30] 

Small number 

(approx. 3–5) 
some 100– some 1000 

Dimension reduction 

(SOM) 
[3] [4] [12] [13]  

Medium number 

(approx. 8–9) 
some 100 

Agglomerative 

clustering 

[3] [4] [10] [14] [16] 

[26] 

Large number  

(approx. 10–25) 
some 100–10000+ 

Partitional clustering [3] [4] [10] [17] [26] – some 100 

K-means clustering 

[3] [4] [14] [17] [19] 

[20] [22] [23] [24] 

[25] [26] [27] [29] 

Variable number  

(approx. 2–12) 
some 10–10000+ 

K-medoids clustering [3] [4] [17] [23] 
Medium number 

(approx. 8–9) 
some 1000 

The description of the mentioned methods are not presented in this paper, the 

clustering processes, the advantages and disadvantages of them can be found in 

another review paper of the authors [3]. 

The number of the examined feeders is relatively small (20), hierarchical 

agglomerative clustering can be used. 

2.1 Hierarchical Agglomerative Clustering 

“In hierarchical clustering, clusters are determined with the relative distance 

(Euclidean distance) between the examined data points. The main concept is that a 

selected item is more tied to a closer data point that to a farther one.” [3] [15] 

At the beginning of this process, all the data points (n) are considered as a single 

cluster. At each step of the algorithm, all data points are moved to a larger cluster. 

The clustering algorithms stop when all the n points are in the same cluster. As the 

graphical representation of the clustering, a tree-structure (dendrogram) can be 

used, which can be cut off at any level. At this level, the leave elements of the tree 

represent the clusters [2] [3] [4] [14]. 
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The advantage of the algorithm is that “it corrects the distance errors between the 

local minimum and the center of the clusters” [3] [4]. Besides the positive 

attributions, there are many negative ones too. The greatest one is the 

irrevocability of cluster merges. In one step if two clusters are combined, they 

cannot be divided again later, since the new cluster is used in the future steps of 

the algorithm. These steps are critical because incomplete mergers give incorrect 

results (clusters) [3] [4] [14] 

3 Clustering Method 

3.1 Input Network Data 

In this publication, 20 selected Hungarian medium voltage, 22 kV overhead 

distribution feeders which can be found in the same distribution system operator 

area, but at four different locations were examined. At the selection of the feeders, 

the most important criteria were to be able to physically accommodate (approx. 

500 kVA) photovoltaic small power plants (output power approx. at least 500 

kVA, area is at least 1 ha). Half of the examined networks are located in rural 

areas and the other half of them are located in suburban settings. 

Here, the examined networks are handled as graphs. These graphs can be 

characterized by specific mathematical variables, such as: 

 Total node number 

 Average node degree 

 Clustering coefficient (CC) 

 Characteristic path length (CPL) 

The average node degree can be defined with Eq. 1. [4] 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 =
2 ∗ 𝐸

𝑁
 (1) 

“where E is the number of edges, N is the number of nodes of the graph”. [4] 

The clustering coefficient can be defined with Eq. 2. [4] 

𝐶𝐶 =
1

𝑛
∗ ∑

2|{𝑒𝑗,𝑘: 𝑣𝑗 , 𝑣𝑘 ∈ 𝑁𝑖 , 𝑒𝑗,𝑘 ∈ 𝐸}

𝑘𝑖 ∗ (𝑘𝑖 − 1)

𝑛

𝑖=1

 (2) 

“where ej,k  is edge between vertex vj with vk; Ni is the set of immediately 

connected neighboring vertices for a vertex vi; ki is the element number of Ni and n 

is the size of the graph”. [4] 
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The CPL is interpreted as the impedance values of the lines (feeders). It can be 

defined with Eq. 3. [4] 

𝐶𝑃𝐿 =
1

𝑛 ∗ (𝑛 − 1)
∗ ∑ 𝑑(𝑣𝑖 ,

𝑘

𝑖≠𝑗

𝑣𝑗) (3) 

“where n is the size of the graph, and d is the distance between any two nodes of 

the graph”. [4] 

The values of these parameters can be found in Table 3. To calculation they, the 

built-in functions of MATLAB R2018b were used. 

Table 3 

The parameters of the examined feeders 

Network 

identifier 
Node number 

Average node 

degree 
CC CPL 

N1 350 2.0057 0.7230 27.0648 

N2 100 2.0000 0.7273 12.4315 

N3 153 1.9869 0.7349 18.0999 

N4 193 1.9896 0.7375 25.2386 

N5 32 1.9375 0.7646 6.1734 

N6 835 2.0216 0.7225 48.4478 

N7 82 2.0000 0.7224 11.5414 

N8 228 2.0175 0.7294 31.2079 

N9 244 2.0164 0.7279 22.4480 

N10 243 1.9918 0.7373 22.2443 

N11 125 1.9840 0.7347 20.6679 

N12 180 1.9889 0.7378 21.1089 

N13 59 1.9661 0.7480 10.1473 

N14 153 1.9869 0.7383 19.4555 

N15 140 1.9857 0.7438 16.7857 

N16 491 2.0000 0.7238 27.9195 

N17 175 1.9886 0.7290 18.8393 

N18 89 1.9775 0.7367 15.4949 

N19 166 1.9880 0.7301 21.4499 

N20 64 1.9688 0.7370 10.8889 

Based on the parameters, it can be said that the feeders have a varied size (node 

number) and topology. 

According to the confidentiality agreement signed between the Centre for Energy 

Research and the Distribution System Operator (DSO), the authors are not 

allowed to publish raw data. 
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3.2 Principal Component Analysis 

In this article, hierarchical agglomerative clustering is used. 

The most frequently used variables to describe clusters are the size of the network 

(number of nodes), the degree distribution of feeders (average node degree), the 

clustering coefficient and the characteristic path length of the feeders. The values 

of the parameters can be seen in Table 3. 

The network analysis is a procedure, in which often more than two variables are 

taken into account. The handling of a large dataset of multiple variables as a 

compact unit is a tough assignment. It is recommended to decrease the number of 

variables, without losing information. A solution can be for this reduction is the 

principal component analysis (PCA). Using PCA the nature of the array can be 

written with fewer mathematical parameters (factors) that contain most of the 

original information. Another task is to describe the nature of correlation between 

the original variables with the principal components [15] [18]. 

In this case, the feeders are characterized by four variables. Treating them as a 

unit is not easy, it is recommended to complete the principal component analysis. 

To get the values of the principal components, MINITAB 18.0, a statistical 

software was used. [4] The description of the algorithm used in the MINITAB 

software can be found at [36]. 

Based on the scree plot of the main components (seen in Figure 1) and using the 

“Elbow” criterion, the optimal number of principal components can be 

determined, which is equal to 2. This means that the examined feeders can be 

described with the first and second principal components [4]. 

 

Figure 1 

The scree plot for the eigenvalue of principal components for the feeders  

(the Elbow point is marked with a red dot) 
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The numeric values of the principal components for the original parameters and 

for the examined networks can be seen in Tables 4 and 5, respectively [4]. These 

values can be used in the clustering process, using a hierarchical agglomerative 

clustering algorithm. 

Table 4 

Values of the principal components for the variables 

 
PCA 1st component PCA 2nd component 

Node number 0.49287 -0.53713 

Average node degree 0.51853 0.37171 

CC -0.47021 -0.62420 

CPL (impedance) 0.51682 -0.42860 

Table 5 

Values of the principal components for the feeders 

Network 

identifier 

The 

eigenvalue of 

the 1st  

principal 

component 

The 

eigenvalue of 

the 2nd 

principal 

component 

The value of 

the 1st 

principal 

component 

The value of 

the 2nd 

principal 

component 

N1 1.711 0.262 187.192 -199.301 

N2 -0.136 1.301 56.407 -58.752 

N3 -0.379 0.164 85.448 -89.659 

N4 -0.079 -0.395 108.853 -114.204 

N5 -4.092 -1.722 19.608 -19.591 

N6 4.669 -1.817 437.294 -468.968 

N7 -0.003 1.703 47.078 -48.699 

N8 1.637 0.266 129.207 -135.547 

N9 1.230 0.700 132.565 -140.386 

N10 0.112 -0.351 131.950 -139.777 

N11 -0.381 0.082 72.974 -75.721 

N12 -0.221 -0.198 100.311 -105.452 

N13 -2.253 -0.408 34.991 -35.776 

N14 -0.466 -0.115 86.147 -90.242 

N15 -0.938 -0.314 78.357 -82.119 

N16 1.949 -0.351 257.125 -275.406 

N17 0.041 0.462 96.677 -101.788 

N18 -1.037 0.177 52.553 -54.171 

N19 0.091 0.283 93.590 -98.074 

N20 -1.612 0.277 37.846 -38.772 



A. S. Kazsoki et al. Hierarchical Agglomerative Clustering of  
 Selected Hungarian Medium Voltage Distribution Networks 

 – 208 – 

3.3 Optimal Cluster Number 

At the first step of the agglomerative clustering, the cluster number is decided. 

The determination of the optimal cluster number is based on the simultaneous 

application of Davies-Bouldin (DB) validity criteria and Silhouette (Si) validity 

criteria [4] [21] [28]. For the determination of DB and Si values the built-in 

functions of MATLAB R2018b academic version is used. 

3.3.1 Determination of the Optimal Cluster Number 

Empirically, in the case of a small number of data sets (around some 10 to 100), 

the optimal cluster number is between 2 and 5. It coincides with what was 

described in [28]. Therefore, the minimum number of the clusters can be 

determined with Eq. 4, and the maximum number of clusters can be determined 

with Eq. 5. 

𝑀𝑚𝑖𝑛 = 1 + 1 = 2 (4) 

“where Mmin is the minimal number of the clusters” [28]. 

𝑀𝑚𝑎𝑥 = ⌈√𝑁/2⌉ + 1 =⌈√20/2⌉ + 1 = 5 (5) 

“where Mmax is the maximal number of the clusters, N is the number of examined 

data points” [28]. 

𝑀𝑜𝑝𝑡 = [𝑀𝑚𝑖𝑛; 𝑀𝑚𝑎𝑥] (6) 

In this paper, the optimal cluster number has been investigated in the range, 

defined in Eq. 6 (cluster number is 2, 3, 4 or 5), their values are calculated with 

the simultaneous application of Davies-Bouldin and Silhouette criterions. 

3.3.2 Davies-Bouldin Criterion 

“The Davies-Bouldin evaluation is an object consisting of sample data, clustering 

data, and Davies-Bouldin criterion values used to evaluate the optimal number of 

clusters. This criterion is based on a ratio of within- and between-cluster 

distances.” [4] [31] The Davies-Bouldin index can be defined with Eq. 7 [4] [28] 

[31] [32]. 

𝐷𝐵 =
1

𝑘
∗ ∑ 𝑚𝑎𝑥𝑗≠𝑖{𝐷𝑖,𝑗}

𝑘

𝑖=1

 (7) 

“where Di,j is the within-to-between cluster distance ratio for the i
th

 and j
th

 

clusters” [28]. The mathematical description of this distance can be seen in Eq. 8 

[24] [25] [28]. 

𝐷𝑖,𝑗 =
(𝑑𝑖 + 𝑑𝑗)

𝑑𝑖,𝑗

 (8) 
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“where 𝑑𝑖 is the average distance between each point i and the centroid of the i
th

 

cluster, 𝑑𝑗 is the average distance between each point and the centroid of the j
th

 

cluster, di,j is the Euclidean distance between the centroids of the i
th

 and j
th

 

clusters” [24] [25] [28]. 

There is the worst-case for cluster i when Di,j has a global maximum at within-to-

between cluster ratio. The optimal cluster number can be identified when the 

Davies-Bouldin index has a global minimum [4] [24] [25] [28]. 

The objective function of the optimization problem based on Davies-Bouldin 

validity index is defined with Eq. 9. 

𝑀𝑜𝑝𝑡 = min
𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝐷𝐵𝑚 (9) 

“where Mopt is the optimal number of the clusters, m is the number of clusters” 

[28]. 

3.3.3 Silhouette Criterion 

“The value of the Silhouette criterion is a metric of how similar is the examined 

point to the other points in the same cluster, compared to points in other clusters.” 

[4] [33] The Silhouette value (Si) for the point i, can be defined with Eq. 10 [4] 

[28] [33]. 

𝑆𝑖 =
(𝑏𝑖 + 𝑎𝑖)

max {𝑎𝑗 , 𝑏𝑖}
 (10) 

“where ai is the average distance from point i to the other points of the cluster, bi 

is the minimum average distance from point i to the points in another cluster” [4] 

[28] [33]. 

The value of the Si can be in the range from -1 to +1. If it is closer to +1, point i is 

well-matched to its own, and poorly-matched to the other clusters. The optimal 

cluster number is then when the Silhouette index has a global maximum [4] [28] 

[33]. 

The objective function of the optimization problem based on Davies-Bouldin 

validity index is defined with Eq. 11. 

𝑀𝑜𝑝𝑡 = max
𝑖=𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝑆𝑖 (11) 

“where Mopt is the optimal number of the clusters, m is the number of 

clusters”[28]. 

The results of the two methods described above can be seen in Figure 2. The 

values of the validity indexes for each cluster number are depicted in Figure 2. 

Based on these, the optimal cluster number is 4 [4] [28] [33]. 
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Figure 2 

The values of the Davies-Bouldin and Silhouette evaluations in the case of 2, 3, 4, and 5 clusters 

calculated with MATLAB R2018b built-in functions 

The clustering algorithm was run 20 times to avoid local minima. The result of 

clustering was always the same. The clustering algorithm was convergent. 

4 Results 

In this publication, from the previously presented 20 medium voltage networks 

described above, by using principal component analysis and hierarchical 

agglomerative clustering algorithm, 4 network clusters were created. Clustering 

was done using the tutorial version of MINITAB 18.0 statistical software. 

In MINITAB 18.0, the agglomerative clustering method is based on the complete 

linkage method (also called furthest neighbor method), in which “the distance 

between two clusters is the maximum distance between an observation (feeder or 

data point) in one cluster and an observation (feeder or data point) in the other 

cluster” [37]. The complete distance is calculated with Eq. 10 [37]. 

𝑑𝑚,𝑗 = 𝑚𝑎𝑥{𝑑𝑘,𝑗; 𝑑𝑙,𝑗} (10) 

where dm,j is the distance between clusters m and j; m is a merged cluster that 

consists of clusters k and l, with m = (k,j); dk,j distance between clusters k and j; dl,j 

distance between clusters l and j [37]. 

The graphical representation of the clustering (dendrogram), can be seen in Fig. 3. 

In this figure, the clusters are colored respectively. 
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Figure 3 

Dendrogram for the clustered feeders 

For the graphical representation of the eigenvalues of principal components for the 

clustered feeders see Figure 4. 

 

Figure 4 

The score plot for the eigenvalues of principal components for the clustered feeders 
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Figure 5 

The score plot for the values of principal components for the clustered feeders 

In Figure 5, the centroids of the non-single element clusters are marked with black 

square markers, and the markers of real networks closest to the centroids are 

labeled too. The values of the centroids (see Table 6), were determined as the 

average of the data points in a cluster with them. The centroids of the one element 

clusters are the feeders, included in each cluster. 

Table 6 

Calculated centroids of clusters 

Variable Cluster1 Cluster2 Cluster3 Cluster4 

PCA 1st component 145.229 69.346 437.294 257.125 

PCA 2nd component -153.753 -72.359 -468.968 -275.406 

The final partition of clustering and the various distance metrics of the clusters can 

be seen in Table 7. 

Table 7 

Final partition of clustering 

 

Number of 

observations 

Within 

cluster sum 

of squares 

Average 

distance 

from 

centroid 

Maximum 

distance 

from 

centroid 

Cluster 1 4 5134.500 30.969 61.933 

Cluster 2 14 21507.800 34.968 72.514 

Cluster 3 1 0.000 0.000 0.000 

Cluster 4 1 0.000 0.000 0.000 

For the average numeric values of the variables, see Table 8. 
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Table 8 

The average value of parameters in the four clusters 

 
Node number 

Average node 

degree 
CC CPL 

Cluster 1 266.250 2.008 0.729 25.741 

Cluster 2 122.214 1.982 0.737 16.309 

Cluster 3 835.000 2.022 0.723 48.448 

Cluster 4 491.000 2.000 0.724 27.919 

In order to illustrate the characteristics of the typical network topology of clusters, 

the representation of sample networks, which are the closest to the previously 

defined centroids, are presented. These networks with their identifier are shown in 

Figure 5, and their topology can be seen in Figures 6-9. 

In Cluster 1, there are 4 weakly looped networks. While the element number of 

the cluster is not too large (4) and the feeders are fairly similar, the sum of squares 

of distances within the cluster is approximately the quarter of the same value in 

Cluster 2. The distances from the centroids are in the same range for Clusters 1 

and 2, so it can be said that these clusters are compact. The graphical 

representation of feeder N9 is shown in Figure 6. 

 

Figure 6 

The topological representation of feeder N9 in Cluster 1 

Topology N9 is a medium-sized, weakly looped medium voltage (22 kV) 

overhead network, located in a suburban area. In Figure 6, the HV/MV            

(132 kV/22 kV) substation is marked with red. 

Cluster 2 is the highest element number cluster with 14 feeders. The networks in 

Cluster 2 are small and medium size and have throughout radial topology, located 

in a rural area. For the graphical representation of feeder N11, see Figure 7. 
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Figure 7 

The topological representation of feeder N11 in Cluster 2 

Topology N11 is a radial network, placed in the rural area. From the four 

reference networks, this is the smallest one (smallest node number and CPL 

value). In Figure 7, the HV/MV (132kV/22kV) substation is marked with cyan. 

Clusters 3 and 4 are single clusters. The networks in these clusters are fairly large, 

and the CCs are the biggest ones too. These networks are located in a suburban 

area (Cluster 3). These clusters cannot be as relevant as Clusters 1 and 2, because 

the element number is only 1. The graphical representation of feeder N6 can be 

seen in Figure 8. 

  

Figure 8 

The topological representation of feeder N6 in Cluster 3 
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Figure 9 

The topological representation of feeder N16 in Cluster 4 

Topology N6 is a large, and heavily looped medium voltage network, located near 

the suburban area of the capital city of the county. Out of the four reference 

networks, this is the biggest one (highest node number and CPL value). In Fig. 8, 

the HV/MV (132 kV/22 kV) substations are marked with red (the two substations 

are different). 

Topology N16 is similar to N9, but the node number is much higher. This 

topology is a large (not as large as N6), weakly looped medium voltage network, 

in a suburban area of a town. As in the case of N6 (Cluster 3), this topology also 

contains loops, but less. In Figure 9, the HV/MV (132 kV/22 kV) substations are 

marked with red (the two substations are different). 

Conclusions 

In this study, a network clustering method on Hungarian medium voltage 

distribution feeders has been displayed, which is suitable for the efficient 

processing of smaller or larger amounts of a data array. Found on the international 

studies published in the literature, at the formulation of network groups the 

agglomerative hierarchical clustering and PCA were used. With PCA, the number 

of the original variables space was reduced from four to two, and this two-

dimensional component space was clustered. At the first step, as an input 

parameter of the clustering algorithm, the optimal number of the clusters was 

described using the Davies-Bouldin and Silhouette criterions. Both methods led to 

the same result, the optimal cluster number is 4. The results of the clustering were 

presented in Section 4. As the topologies of feeders are fairly varied, distinct 

clusters have been formulated. Two of the clusters (Clusters 3 and 4) are single 

clusters because in each of these clusters the is only one feeder. 
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The data processing and clustering method presented in this paper can be well 

used for clustering networks that cover a physically large area (eg. a country), 

formulating network topologies specific to the examined area. 

Herein, a method has been created to generate Hungarian medium voltage 

distribution network models, which can be used to simulate the effects of the 

growing photovoltaic penetration within the Hungarian distribution network. In 

addition, these results can also help in modeling the voltage and power changing 

effects on these networks. On the reference networks the effects of growing 

electrical car numbers, the energy storage penetration and the opportunities for 

smart grid development can also be simulated. 
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