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Abstract: Based on the observation that it is very difficult to combine the mathematical frame-
works of the prevailing Lyapunov function-based adaptive controllers and the traditional,
optimal control-based “Model Predictive Controllers (MPC)”, a novel adaptive solution was
introduced to improve the operation of the “Receding Horizon Controllers (RHC)”. Because
at the local optima the gradient of the auxiliary function is zero, Lagrange’s original “Re-
duced Gradient Method (RGM)” was replaced by a “Fixed Point Iteration (FPI)”-based
algorithm that directly drove this gradient toward zero. According to “Banach’s Fixed Point
Theorem” the convergence of the method was guaranteed by a contractive function that gen-
erated the iterative sequence. The greatest modeling burden in this approach was the need
for the calculation of the Jacobian of the problem, i.e. the gradient of the gradient of the
auxiliary function. In the first simulations only a single “Degree of Freedom (DoF)” 2nd

order nonlinear system, a van der Pol oscillator was investigated. The attempts that were
made to evade the calculation of the Jacobian were finished with the conclusion that at least
a rough numerical approximation of this Jacobian generally must be utilized. Though the
MPC approach allows the use a great variety of cost functions and dynamical models, math-
ematically well established results are available only for quadratic cost functions and “Lin-
ear Time-invariant (LTI)” models. For other cost functions and models careful numerical
analysis is needed. In this paper the use of non-quadratic cost functions is numerically in-
vestigated in the FPI-based adaptive RHC control of 2 DoF 2nd order nonlinear system that
consists of two, nonlinearly coupled van der Pol oscillators, is considered. To guarantee lucid
calculations simple functions are introduced that map the active parts of the horizon under
consideration to the elements of the gradient of the auxiliary function that are calculated an-
alytically. For the calculation of the Jacobian only a rough numerical estimation is applied.
The simulation results reveal certain limitations of the suggested method.

Keywords: Optimal Control; Model Predictive Control; Receding Horizon Control; Adaptive
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1 Introduction

The “Optimal Controllers (OC)” mathematically can be formulated in strict anal-
ogy with finding the local extremum of the action functional in Classical Mechan-
ics. The implementation of the variational calculus leads to the Hamilton – Jacobi
– Bellman equations, that numerically can be carried out by “Dynamic Program-
ming (DP)” introduced by Bellman in the fifties of the past century [1, 2]. Though
the computational power of the computers has been tremendously increased by our
days, for control applications this approach means a great computational burden,
so alternative methods are in use, too. The most popular one is the heuristic RHC
introduced in the late seventies of the past century [3] in which the time domain is
approximated by a discrete grid, the optimization process is limited to consecutive
finite fragments of this grid that are referred to as “horizons”, and it is carried out by
Lagrange’s RGM method he invented for the use in Classical Mechanics about 1811
[4]. This approach is often referred to as “Nonlinear Programming (NP)”. It allows
the use of various cost functions and dynamic models e.g. in chemistry [5, 6], and
for its realization for “limited size problems” the professional “Solver” package of
Microsoft’s Excel is generally available. While its use in economic calculations is
very popular (e.g. [7, 8, 9]), in optimal control problems it is less frequent (e.g. [10]
also related to economic and educational issues). Based on these antecedents in [11]
the dynamic control of a 1st order single variable hypothetical system, and in [12]
its possible use in the model-based treatment of the illness type 1 diabetes mellitus
was investigated.

It was observed in the past century [13, 14] that in the case of LTI dynamic models
and quadratic cost functions considerable mathematical simplifications are gener-
ally available. In the so introduced “Linear Quadratic Regulator (LQR)” instead of
the original RGM either the differential or the algebraic form of the Riccati equation
has to be solved. (This special form can be achieved by seeking the solution of the
problem in a special product form so “decoupling” two variables in the first step.) In
1724 Riccati realized that the solution of a special scalar quadratic differential equa-
tion can be obtained by solving a linear one [15]. In the case of matrix equations
similar possibilities are available by the use of the method of “Schur complements”
introduced by Haynsworth in 1968 [16]. The solution of these linear matrix equa-
tions can be tackled by the method of “Linear Matrix Inequalities (LMI)” for the
realization of which efficient software packages are available [17]. For more com-
plicated cases “state-dependent Riccati equations” are in use (e.g. [18]). The LQR
method is widely used in nonlinear dynamic systems in which the available non-
linear models are often linearized for the sake of the use of this special formalism.
Furthermore, the quadratic structure of the cost functions also means significant
limitations.

Since it is a special variant of the “Model Predictive Control (MPC)”, the applica-
bility of the RHC also depends on the reliability of the available system models.
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Figure 1
Schematic structure of the “Fixed Point Transformation-based Adaptive Controller” after [19] (the adap-
tive deformation can be realized by the use of various fixed point transformations, and the system’s re-
sponse r can be an arbitrary order time-derivative of the generalized coordinates of the controlled system)

The general difficulties of this approach consist in the lack of reliable system mod-
els, and limited possibilities for state observation. Illustrative examples related to
various subject areas as robotics (e.g. [20, 21]), turbojet engine modeling (i.e.
[22, 23, 24, 25]), life sciences as modeling the glucose-insulin system (e.g. [26,
27, 28, 29]), anaesthesia control (e.g. [30, 31, 32, 33, 34, 35]) can be mentioned.
To compensate the effect of modeling imprecisions a possibility is the application
of structurally precisely known analytical models with unknown parameters that
can be tuned via observations by “Adaptive Controllers (AC)”. All the prevailing
approaches are based on Lyapunov’s dissertation on the stability of motion he de-
fended in 1892 [36, 37] and appeared in the adaptive control in the nineties of the
past century (e.g. [38, 39]). It does not seem to be easy to combine the mathematical
framework of the Lyapunov function-based adaptive controllers with that of the cost
function-based optimal controllers.

An alternative approach to adaptive control design was suggested in 2009 in [40]
outlined in Fig. 1 where the controlled system’s response r(t) ≡ q(n)(t), n ∈ N,
i.e. it is an order n time-derivative of its generalized coordinate q, that is the state
variable consists of the components {q, q̇, q̈, . . . ,q(n−1)}. On the basis of purely
kinetic/kinematic considerations a “Desired Response” rDes(t) ≡ q(n)

Des
(t) can be

calculated that is able to drive the tracking error, i.e. the difference between the
“Nominal Trajectory” qN(t) and the realized trajectory q(t) to 0 as t → ∞ if it is
precisely realized. Such a strategy can be formulated e.g. by the use of the “Inte-
grated Tracking Error” with a positive constant Λ as in (1), in which t0 denotes the
starting time of the control:

eInt(t)
de f
=
∫ t

t0

[
qN(ξ )−q(ξ )

]
dξ , (1a)(

d
dt

+Λ
)n+1

eInt(t)≡ 0 ⇒ (1b)

q(n)
Des

(t) = qN(n)
(t)+

n+1

∑
ℓ=1

(
(n+1)!

ℓ!(n+1− ℓ)!

)
Λℓ

(
d
dt

)n+1−ℓ

eInt(t) . (1c)

In the special case of n = 2 (1) corresponds to a PID-type error-feedback with the
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proportional coefficient KP = 3Λ2, integral coefficient KI = Λ3, and derivative co-
efficient KD = 3Λ. By feeding back the integrated error, if it is precisely realized,
(1) makes the tracking error asymptotically converge to 0. However, if it is only
approximately realized, the integrated tracking error can diverge. In this case the
generalization of the PD-type feedback is more successful as defined in (2) as

e(t)
de f
= qN(t)−q(t) , (2a)(

d
dt

+Λ
)n

e(t)≡ 0 ⇒ (2b)

q(n)
Des

(t) = qN(n)
(t)+

n

∑
ℓ=1

(
n!

ℓ!(n− ℓ)!

)
Λℓ

(
d
dt

)n−ℓ

e(t) . (2c)

According to [41, 42] this feedback strategy was successfully applied for the control
of ships in the first half of the past century. In the “Kinematic Block” of the FPI-
based adaptive controller described in Fig. 1 a combined application of (1) and (2)
can be successful: at the beginning, when the tracking error is still big, the controller
can use (2), and later it can turn to (1) when the use of the integrated term causes
more precise tracking instead of divergence.

Returning back to the scheme in Fig. 1, to compensate the effects of the modeling er-
rors, before using the available “Approximate Model” for the calculation of the force
or the other appropriate control signal that is necessary for producing q(n)

Des
(t), its

“deformed version” q(n)
De f

(t) is calculated in the block “Adaptive Deformation”.
In the case of digital controllers this calculation happens in discrete control cy-
cles, and the two “Delay” blocks correspond to a single control cycle: in the given
cycle the system “learns” from the deformed signal applied, and the system’s re-
sponse obtained in the previous cycle. It is important to see that in the case of an
order n physical system q(n) can have very fast variation because it is directly set
by the control force Q(t), but the “desired” value q(n)

Des
(t) varies only slowly for

moderate qN(n)
(t) because it is constructed of the integrated tracking error, and the

order {0,1, . . . ,n−1} time-derivatives of the tracking error. In the block “Adaptive

Deformation” a function of the form q(n)
De f

i+1 = G
(

q(n)
De f

i ,q(n)i ,q(n)
Des

i+1

)
is applied

(q(n)
De f

i is fed back at the input on the top) so that for constant q(n)
Des

it could gener-

ate a sequence of deformed signals as {q(n)
De f

1 ,q(n)
De f

2 = Φ
(

q(n)
De f

1

)
, . . . ,q(n)

De f

i+1 =

Φ
(

q(n)
De f

i

)
, . . .} since in a given state the controlled system’s response depends on

q(n)
De f

. With other words, during a digital control step only one step of the itera-
tion can be realized. The possible convergence of the iteration was investigated on
the basis of Banach’s “Fixed Point Theorem” [43] according to which in a linear,
normed, complete metric space a contractive map generates a sequence that con-
verges to the unique fixed point of this map. For this purpose the contractivity of
the function Φ

(
q(n)

De f
)

must be guaranteed. In [40, 44, 45] various solutions were
suggested for the function G.
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It must be emphasized that this approach may provide satisfactory results if the gen-
erated sequence has fast convergence and the slowly varying “desired” value q(n)

Des

“pulls with itself” the limit point of the convergence. The applicability of this ap-
proach in each particular case needs preliminary investigations via simulation be-
fore trying any real application. For instance, in the adaptive control of a brushless
electric DC motor the method was found to be successful via simulations and exper-
imental investigations [46]. In the case of an inverted pendulum-type electric cart
via simulations it was found that this approach may be successful for controlling the
tilting angle, but in the control of its linear displacement it could cause not tolerable,
tremendous spinning up [47].

Returning to the question of adaptive MPC or adaptive RHC in [11] a simple propo-
sition was done. While in the original version of the RHC the problem of the mod-
eling errors is tackled by the application of the available approximate system model
for the calculation of the control signals, and normally only a small part of the calcu-
lated horizon is actually utilized, furthermore, the control is frequently redesigned
by the introduction of novel horizons in the beginning of which the actually mea-
sured system variables are used as initial conditions, in [11] the following idea was
suggested: instead using the control forces generated by the RHC controller, the
controller can adaptively track the “optimized trajectory”. In this approach the math-
ematical frameworks of the optimal and the adaptive controllers can be integrated
without any technical difficulty.

A further step towards the FPI-based adaptive RHC was based on the observation
that Lagrange’s RGM may be replaced by a fixed point iteration in the optimization
phase of the calculations [48, 49]. The idea was generated by considering analogies
with the problem of solving the inverse kinematic task for redundant robot arms.

The prevalent literature in robotics applies an augmented Jacobian for obstacle
avoidance (e.g. [50, 51]) and uses the Moore-Penrose pseudoinverse [52, 53] for
the disambiguation of the otherwise ambiguous solution of this task. To utilize the
advantages of the ambiguity of the solution to this special choice some elements
of the null space of the Jacobian are added later (e.g. [54, 55, 56]) that makes the
problem of the continuity of the so obtained solution arise. Furthermore, this pseu-
doinverse is calculated by the utilization of the traditional inverse of a quadratic
matrix that is not invertible in the singular configurations, and is ill conditioned in
their vicinity. To treat this problem the singular matrix is completed by an adden-
dum that makes it invertible, that corresponds to a “deformation” of the original
task: “Damped Least Squares (DLS)” [57, 58]. Desperate attempts were invented
in the early nineties of the past century to tackle the problem of singularities as con-
sidering 2nd order differential inverse kinematics [59] or the complex extension of
the real generalizes coordinates in [60]. In [61] D. Drexler suggested a witty idea of
“action point transformation” for the regularization of the Jacobian, and in [62] an
implicit 2nd order integration was suggested.

Realizing the fact that the Moore-Penrose pseudoinverse can simply be generalized
by the use of different weights for the quadratic cost function contributions that play
similar role as the “joint activation factors” when certain elements of the null space
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of the Jacobian are mixed into the solution after computing the pseudoinverse, a
matrix inversion-free, FPI-based solution of the inverse kinematic task was proposed
by Csanádi et al. in [63]. The forward kinematic task is expressed by the function
f : Rn 7→ Rm in which n, m ∈ N, and n > m. The “initial position” xini = f (qini) is
known, and a function of the scalar variable t ∈ R, q(t) has to be found for which
x(t) = f (q(t)), x(tini) = xini, and q(tini) = qini. The differential form of this task is

ẋ(t) =
∂x(q(t))

∂q
q̇(t)≡ J(q(t))q̇(t) . (3)

Instead of computing the generalized inverse of J(q), Csanádi introduced a finite
time grid with the resolution ∆t, considered a given configuration at time i as x(ti),q(ti),
computed the next position as x(ti +∆t), and commenced an “internal iteration” be-
tween the neighboring grid points as

q(ti +∆t,s+1) = G(q(ti +∆t,s), f (q(ti +∆t,s)) ,x(ti +∆t)) ,

q(ti +∆t,1) = q(ti)
(4)

that is inserted the task of finding the differential solution into the FPI-based adap-
tive control scheme depicted in Fig. 1. It soon became clear that a common Jacobian
generally will not produce convergent sequence, so the task was modified as

JT (q(t))x(t) = JT (q(t)) f (q(t)) , or on the grid (5a)

JT (q(ti))x(ti+1)≈ JT (q(ti))

[
f (q(ti))+

∂ f
∂q

∣∣∣∣
q(ti)

(q(t)−q(ti))

]
, (5b)

in which a 1st order Taylor series approximation of function f (q) was taken in q(ti).
This task corresponds to the iteration

JT (q(ti)) [x(ti+1)− f (q(ti))]≈ JT (q(ti))J(q(ti))(q−q(ti)) . (6)

In a nonsingular configuration the positive definiteness of the matrix JT (q(ti))J(q(ti))
guaranteed the convergence of the internal iteration, while in and in the vicinity of
the singular configurations it automatically caused the “stagnation” of the appro-
priate axles until the vicinity of the singularity was left. That is, this approach
automatically treated the problem of the singular configurations without the use of
any complementary trick or task deformation, and it yielded nice solutions without
risking the application of big joint coordinate time-derivatives.

If the same task is tackled on the basis of Lagrange’s RGM method, the optimization
under constraints can be formulated in (7)

Φ de f
= ∑

i
Piq̇2

i = extremum under the constraints (7a)

ẋk −∑
ℓ

Jkℓ(q)q̇ℓ = 0 ∀k , (7b)
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in which the weights Pi > 0 express the “penalty” for rotating the axle i in the solu-
tion. As is well known, the auxiliary function of the above problem is

Ψ(q̇,λ ) = ∑
i

Piq̇2
i +∑

k
λk

(
ẋk −∑

ℓ

Jkℓq̇ℓ

)
, (8)

in which the symbols λk denote the Lagrange multipliers, and in the local optima
∀i, j it holds that ∂Ψ

∂ q̇i
= 0 and ∂Ψ

∂λ j
= 0.

In [48, 49] it was recognized that driving the array ∇Ψ toward 0 is a task very similar
to that formulated in (4) and (5). It was also recognized that for the validity of this
structure it is not necessary to have quadratic contributions in the cost function. The
question that ∇Ψ = 0 in both the local minima and maxima of the cost function was
evaded by the following argumentations:

1. In the calculation of the Moore-Penrose generalized inverse, as well as in the
case of the modified version in (7), immediately matrix equations are provided
after computing ∇Ψ. These equations can be solved without minding if the
solution belongs to a local minimum or maximum of Φ. However, it is known
that the global minimum of Φ is zero that belongs to q̇ = 0 that generally does
not satisfy the constraint equations in (7b). Also, it is clear that Φ does not
have local maximum, it can diverge to ∞ for infinitely large q̇ components.
Therefore the iteration that is commenced from a low ∥q̇∥ will increase this
norm until the reduced gradient of the problem, i.e. ∇Ψ achieves 0.

2. In Classical Thermodynamics (e.g. [64]) in the state of the thermal equi-
librium the entropy of an isolated system must have its maximum under the
constraint of fixed internal energy, and all the other constraints determined
by the internal thermodynamic walls that partly isolate the subsystems of the
big isolated system under consideration (the “Entropy Maximum Principle”).
The entropy is monotonic increasing, unbounded function of the internal en-
ergy. Again, in finding the thermal equilibrium the zero value of the appro-
priate ∇Ψ is found, in which the Lagrange multipliers have definite physical
interpretation.

3. Again, in Classical Thermodynamics, the “Energy Minimum Principle” states
that in the state of thermal equilibrium the internal energy of the big isolated
system takes its minimum value under the main constraint of the fixed entropy
and all the other constraints determined by the internal thermodynamic walls
that partly isolate the subsystems of the big isolated system under considera-
tion. Again, the fixed entropy does not allow to reach the absolute minimum
of the energy that in principle is allowed by Classical Physics. The internal
energy does not have upper bound. In the solution the Lagrange multipliers
have definite physical interpretation, and if a certain subsystem behaves as a
reservoir, i.e. it keeps the values of certain Lagrange multipliers constant, in
the formalism automatically appear the appropriate Legendre transform of the
internal energy that offers the introduction of the thermodynamic potentials
as the enthalpy, the Helmholtz or the Gibbs potentials. Again, the question of
local minima or maxima generally is not pondered.
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In the field of Optimal Control the tracking errors at the internal points of the hori-
zon, and at the last point of the horizon, the control force components, and the
constraint equations that express the dynamic properties of the controlled system
together with the Lagrange multipliers provide the components of the gradient of
the appropriate auxiliary function. The norm of the tracking error does not have
theoretical upper bound, but it has the value 0 as the theoretical lower limit. In
principle the control force components can have infinite values, so the situation is
similar to that of the above considered general examples.

In [48, 49] the components of ∇Ψ and that of the Jacobian, i.e. ∇∇Ψ were analyt-
ically computed for single DoF systems that was found to be a great programming
burden. In [65] an attempt was made to evade the calculation of the Jacobian but it
lead to the conclusion that at least some numerical estimation of this matrix practi-
cally is needed to achieve convergence.

In the present paper the method is further investigated by numerical simulations for
a strongly nonlinear, 2nd order, 2 DoF dynamical system and non-quadratic cost
functions. Only the components of ∇Ψ are analytically calculated, the Jacobian is
obtained by rough numerical approximations, due to the complexity of the program-
ming task. In the sequel the dynamic model of the controlled system, the generation
of the nominal trajectory, the cost functions, and the FPI-based adaptive RHC are
investigated via numerical simulations.

2 The Dynamic Model of the Two Coupled van der Pol
Oscillators

The model of the van der Pol oscillator [66] originally was developed to describe
the nonlinear oscillations of an externally excited triode in 1927. For the sake of
simplicity in this paper it is interpreted as a “mechanical system” with the equations
of motion given in (9)

q̈1 = (−k1(q1 −L10)−b1((q1 −L10)
2 −a2

1)q̇1 + k12 g(q1,q2)+F1)/m1 , (9a)

q̈2 = (−k2(q2 −L20)−b2((q2 −L20)
2 −a2

2)q̇2 − k12 g(q1,q2)+F2)/m2 , (9b)
g(q1,q2) = |q2 −q1 −L12|σ sign(q2 −q1 −L12) , (9c)

with the parameter values given in Table 1. The generalized coordinates are q1 [m]
and q2 [m], and F1 [N] and F2 [N] denote the control forces. The different signs of
the coupling forces in (9a) and (9b) expresses the fact that they are each other’s
reaction forces. The “excitation/damping separator” parameters separate from each
other the excited and the damped regions. If no interaction occurs between the
oscillators (i.e. k12 = 0) the q1 = L10, q2 = L20, q̇1 = 0, and q̇2 = 0 state corresponds
to an unstable equilibrium point of these oscillators. Even an infinitesimally small
perturbation that kicks the system out of this equilibrium point causes nonlinear
oscillations that are bounded because for too big amplitudes the excitation terms
turn into damping factors. The motion of the free oscillators is depicted in Figs. 2
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and 3. In the control simulation the trajectory depicted in Fig. 2 was in use as the
“Nominal Trajectory”.

Table 1
The applied exact and approximate model parameters

Parameter Exact Approximate
m1 [kg] mass 1.0 0.5 ·m1
m2 [kg] mass 2.0 1.2 ·m2
k1
[
N ·m−1

]
spring constant 10.0 1.2 · k1

k2
[
N ·m−1

]
spring constant 15.0 0.8 · k2

L10 [m] zero force position −5.0 1.3 ·L10
L20 [m] zero force position 3.0 0.9 ·L20
b1
[
N · s ·m−1

]
viscous damping/excitation coeff. 1.2 1.2 ·b1

b2
[
N · s ·m−1

]
viscous damping/excitation coeff. 1.3 1.2 ·b2

a1 [m] excitation/damping separator
√

0.4 0.5 ·a1

a2 [m] excitation/damping separator
√

0.5 1.2 ·a2
σ [nondim.] nonlinearity exponent 1.2 1.2 ·σ
k12 [N ·m−σ ] nonlinear stiffness 16.0 1.1 · k12
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2
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Figure 2
The trajectories of the free motion (F1 ≡ F2 ≡ 0)) of the decoupled oscillators (i.e. the k12 = 0 case)
(LHS) and that of the coupled one obtained by Euler integration of (9) using the “Exact” parameters and
a fixed time-step δ t = 10−3 [s]

3 The Adaptive RHC Controller

In the numerical simulations in a horizon 6 grid points were applied of which the
1st and the 2nd one determined the initial conditions of the 2nd order dynamical
system. The constraints within the horizon were formulated by the approxima-
tion as (qH(i+2)−2qH(i+1)+qH(i))/δ t2 − q̈H(i) = 0, i.e. the optimization task
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Figure 3
The phase trajectories of the free motion (F1 ≡ F2 ≡ 0)) of the decoupled (LHS) and the coupled (RHS)
oscillators (i.e. when k12 takes the “Exact” value in Table 1) obtained by Euler integration of (9) using
the “Exact” parameters and a fixed time-step δ t = 10−3 [s]

had 24 variables within a horizon as from x1 to x4 as qH1(3), . . . ,qH1(6), from x5
to x8 as qH2(3), . . . ,qH2(6), from x9 to x12 as FH1(1), . . . ,FH1(4), from x13 to x16
as FH2(1), . . . ,FH2(4), from x17 to x20 as λH1(1), . . . ,λH1(4), and finally from x21
to x24 as λH2(1), . . . ,λH2(4). For feeding the input of the model in (9) the nu-
merical differentiator functions as der1(qH(i+1),qH(i)) = (qH(i+1)−qH(i))/δ t
were introduced in a Julia [67] code. The cost functions were defined for the hori-
zon points i = 3,4,5 as C(qN ,qO) = log

(
1+M

∣∣∣ qN−qO

AC

∣∣∣αC
)

, for the terminal point

i = 6 as T (qN ,qO) = log
(

1+M
∣∣∣ qN−qO

AT

∣∣∣αT
)

(the superscript N denotes the nominal
trajectory, while O belongs to the optimized trajectory), and for the control force

components for i = 1,2,3,4 the cost function is P(FO) = Bu log
(

1+M
∣∣∣FO

AF

∣∣∣αF
)

in
which the parameters have lucid geometric interpretations as AC is responsible for
the “strictness” of tracking: if αC > 1 the penalty is small for |qN −qO|< AC, and
strongly increases for |qN − qO| > AC. The parameter αC determines the “sharp-
ness” of the increase of the penalty function. Similar interpretation can be given
to the parameters that limit the applicable control force components. The role of
parameter M > 0 is “softening” the penalty function for the too big error or force
components within the function log(·).

In the simulations different adaptive deformation functions were applied in the ap-
propriate block of Fig. 1. Both versions were introduced by Dineva in [44, 45] as

F : R 7→ R defined as F(x) = atanh(tanh(x+Dad)/2) ,

F(x⋆) = x⋆ , hn
de f
= rn − rDes

n+1 ,

rDe f
n+1 = (F(x⋆+Ac∥hn∥)− x⋆)

hn

∥hn∥+ ε
+ rDe f

n

(10)
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that was used for the optimization of the horizon, and a similar one in which in the
role of the scalar function F(x) = x

2 +Dad was applied for the adaptive tracking.
In both functions Dad = 0.3 was set. For the optimization, a very cautious value
Ac = −10−3, and for the adaptive trajectory tracking Ac = −1.0 was chosen. The
role of the small parameter ε = 10−10 was the evasion of division by zero in the
calculation of the unit vector in (10). In the sequel simulation results are presented.
The Jacobian was approximated by separately increasing the components of x with
δx = 10−10 and the partial derivatives were estimated accordingly. The last two
points of a given horizon were used as the first two initial points of the next horizon.
In the optimization process the Lagrange multipliers and the control forces started
from the 0 values, and the optimized trajectories were initiated with the nominal
ones.

4 Simulation Results

In the 1st step it is investigated that how the cost functions can cooperate with the
finite element approximation of the constraints, i.e. the dynamic model of the con-
trolled system. The tracking parameters were AC = AT = 10−2, αC = αT = 6.0, the
penalization of the control forces was switched off by Bu = 0, the “Approximate”
model parameters were identical with the “Exact” ones an in both of them k12 = 0
was set. Only one step was made in the internal iteration, and the adaptive dy-
namic tracking was switched off. In the cost functions M = 10−1 taming parameter
was used. In this case it was expected that the tracking of the nominal trajectory
could be possible. The tracking results in Fig. 4 reveal that an accumulated delay
was produced in the tracking of the nominal trajectory that partly might be caused
by the finite element approximation of the 2nd time-derivatives in the constraints,
and partly by the taming parameter in the cost function. Following the removal of

“cost function taming” (i.e. directly using the form C(qN ,qO) =
∣∣∣ qN−qO

AC

∣∣∣αC
) prac-

tically the same result were obtained. This fact reveals a significant weak point of
the RHC-based approach in the case of higher order dynamical systems, because it
roots in the finite element approximation of the higher order time-derivatives.

Observing that the “optimized” trajectories remain in the vicinity of the “realized
ones” since the optimization is initiated from the actual initial values, in the adap-
tive tracking control instead of the “optimized” ones the trajectories estimated by
the dynamic model of the optimization (denoted in the figures as qRealEst) can be
adaptively tracked. These signals are far smoother than the “optimized” trajectory.

The effect of adaptivity in the dynamic trajectory tracking is revealed by Fig. 5. In
this case the “Approximate Model Values” were restored, as well as the exact and
approximate values of k12. (It has to be remarked that in the beginning a PD-type
tracking defined in (2) was applied that later was switched to a PID-type tracking
defined in (1) with Λ = 6.0

[
s−1
]
, because in the initial part the PID-type strategy

always caused divergence.) The significance of the coupling force and the modeling
errors as well as that of the adaptive dynamic tracking are well illustrated by these
figures. Figure 6 shows that the iteration reduced the norm of ∥∇Ψ∥, and quite con-
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siderable difference can be revealed between the “optimized” and the “adaptively
set” control forces.
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Figure 4
The test trajectory tracking for the decoupled oscillators with (LHS) and without (RHS) showing the
optimized trajectory
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Figure 5
Tracking of the trajectories estimated by the dynamic model of the optimization without (LHS) and with
(RHS) adaptivity

In Fig. 7 simulation results are given for Bu = 104, AF = 1.0, αF = 6.0, and 100 steps
in the internal iteration (in which after 10 steps the Jacobian was re-estimated). It
can well be seen that the adaptive RHC controller’s parameters behave according
to the qualitative expectations. Figure 8 testifies that the adaptive deformation of
the 2nd time-derivatives worked correctly, and that the eigenvalues of the estimated
JT J matrix vary over a huge range that results in slow convergence for the smaller
eigenvalues.

Finally the adaptive tracking with the modified parameters AC = 10−3, αC = 8.0,
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The “optimized” and the adaptively set control forces (LHS), and ∥∇Ψ∥ before and after the optimizing
iteration
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Figure 7
The “optimized” and the adaptively set control forces (LHS), and ∥∇Ψ∥ before and after 100 steps of the
optimizing iteration

AT = 10−3, αT = 8.0, AF = 102, αF = 6.0, Bu = 104 and 21 internal steps in the
iteration were investigated. Figure 9 reveals that ∥∇Ψ∥ can be reduced essentially
during 21 steps, and good adaptive tracking can be achieved. Figure 10 provides
information on the Lagrange multipliers, the “optimized” and the adaptive force
components.

Conclusions

In this paper the operation of a novel, fixed point iteration-based adaptive RHC was
investigated for a 2 DoF 2nd order dynamical system consisting of two, nonlinearly
coupled van der Pol oscillators. The method uses essentially the same iteration (with
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The 2nd time-derivatives of the adaptive tracking (LHS), and the 24 eigenvalues of the estimated JT J
matrix
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Figure 9
Adaptive trajectory tracking (LHS), and ∥∇Ψ∥ before and after 21 steps of the optimizing iteration

different parameters) for the calculation of the “optimized” trajectory and for the
adaptive tracking of the trajectory that was calculated by the approximate dynamic
model also used in the optimization.

In the simulations only the gradient of the auxiliary function of the problem was
analytically calculated by the use of simple internal functions that map the active
(i.e. variable) quantities of the horizon to the elements of this gradient and vice
versa. To evade programming complications the Jacobian of the problem was only
“roughly”, numerically estimated.

It was found via simulations that the main limitation of the present approach roots
in the finite element approximation of the 2nd time-derivatives of the optimized tra-
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Figure 10
The Lagrange multipliers of the adaptive trajectory tracking (LHS), and the control forces (RHS) using
21 steps in the optimizing iteration

jectory used in the constraint terms of the optimization. With the exception of this
problem the simulations supported the qualitative expectations based on the mathe-
matical structure of the suggested method.

The present simulations were restricted to a relatively “short” horizon consisting
of 6 grid points of which only 4 points were “active”. It can be assumed that by
increasing the horizon length the optimization gets more possibility for improving
the “delay” caused by the applied numerical tackling of the constraints. The method
deserves more numerical investigations.
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