
Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 141 ‒ 

A Simplified Approach to Distributed Message 
Handling in a CQRS Architecture 

Munonye Kindson, Martinek Péter 
Faculty of Electrical Engineering and Informatics 
Budapest University of Technology and Economics 
H-1111 Budapest, XI. Egry Joszef u. 18, Budapest, Hungary 
Email: kindson.munonye@edu.bme.hu*; martinek@ett.bme.hu 

Abstract: Architecting distributed information system is not a trivial task. This is especially 
true when a relatively novel design pattern such as Command Query Responsibility 
Segregation and Event Sourcing is applied. This research aims to describe a simplified 
approach to the handling of three kinds of messages involved in a CQRS architecture: 
Commands, Events, and Queries. An evolutionary approach to microservices design was 
applied to study the information flow within the architecture and establish the reliability 
properties. Using this approach, a prototype of a Basic Order Fulfillment System was 
designed and software complexity analysis was applied. The results obtained showed a 
significant reduction in complexity. The metrics indicated that the approach proposed in this 
research not only simplifies the process of distributed message handling, but has lower 
overall complexity than conventional microservices design methods. Therefore, with further 
refinement, the model can be a standard for building Event Driven Systems. 

Keywords: CQRS; Event Sourcing; Command Handling; Aggregates; Event Handling; 
Microservices; Query Handling 

1 Introduction 
CQRS is a relatively new architectural pattern for software design based on 
Command Query Separation (CQS) This concept was proposed by Bertrand Meyer 
in the late 90s in the context of Object-Oriented Software Construction [1]. The idea 
of CQS is the separation of operations on application objects into two categories: 
(1) methods that modify the state of the object are called commands and (2) methods 
that retrieve the current state of the object are called queries. Naturally, such 
partitioning adds additional complexity relative to a single partition architecture 
since both the commands and the queries would have to be in sync to ensure the 
underlying data store remains in a consistent state. 

mailto:kindson.munonye@edu.bme.hu*


K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 142 ‒ 

Command Query Responsibility Segregation (CQRS) which derives from CQS is 
therefore a design pattern that partitions the commands and queries into separate 
services based on microservices. It is an Event Driven Architecture (EDA), where 
communication between the services is achieved via messages [2] [3]. This makes 
it possible to communicate state changes in an application to other parts of the 
application anytime when changes in the state occur. These changes occur as a result 
of a command modifying the read store. Such modification needs to be updated in 
tandem in the write store. Hence, Event Sourcing (ES) is used with CQRS to enable 
synchronization between the read data store and the write data store each time a 
change occurs [4]. Therefore, ES and CQRS are usually used together, though this 
is not a requirement [5]. However, some challenges need to be overcome. This 
includes the complexity of the CQRS/ES architecture, performance optimization 
[6], and managing data conversion across data stores [7]. This research focuses on 
mitigating complexity-related challenges by simplified message handling (SMH). 

The rest of this paper is arranged as follows: Chapter 2 covers the architectural 
details of the CQRS pattern including aggregates specification, commands, events, 
and queries. Related works are discussed in Chapter 2. The methodology applied 
for this research is explained in Chapter 3. In Chapter 4, the analysis, design, and 
implementation process of a prototype based on the CQRS is covered with a focus 
on commands, events, and query handling. Chapter 5 presents the results and 
discussion. Finally, the summary and conclusion sections provide a summary of 
achievements, limitations, and areas of further research. 

2 Theoretical Overview and Related Works 
This chapter provides a general detail of the CQRS pattern and establishes the need 
for efficient message handling. 

2.1 Aggregate and Entities 
An aggregate is the primary building block for implementing the command model 
(write-model) in a CQRS-based system. In the context of CQRS, aggregate has 
variously been defined as a group of entities or functional entities [8] grouped 
within a single ACID transaction [9]. But a more encompassing definition is: 

“an aggregate is a functional entity or group of functional entities in a specific 
domain and processed together within a consistent boundary such that it is always 
kept in the consistent state”. 

The concept of aggregates is generally understood by considering the relational 
entities in a conventional three-tier architecture. These entities are @Entity 
annotated classes that map to tables in a relational database. In CQRS, we can 
consider aggregates as @Aggregate annotated classes that map to aggregate in an 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 143 ‒ 

event store and as such, the state of the aggregate is derived (sourced) from the 
collection of events. Table 1 provides some differences between an entity used in 
relational systems and an aggregate used in CQRS applications. A summary would 
be that an aggregate is always made up of an entity (or some entities) but not vice 
versa. A key point is that aggregates are not instantiated by a ‘command-handling 
constructor’. This constructor publishes an event that is event-sourced by an event-
sourcing handler and the aggregate identifier must be set in the event-sourcing 
handler of the very first event published by the aggregate. 

Table 1 
Aggregate in CQRS vs Entity in RDBMS 

Aggregates in CQRS Entities in Three-Tier Architecture 
Annotated with @Aggregate annotation Annotated with @Entity annotation 
Persisted in an Event Store Could be stored in a Relational DB 
Contains Command Handlers Contains normal methods 
Part of the command model Implemented as part of the query model 
Contains only relevant attributes Contains all attributes 

2.2 Message Handling 
The CQRS pattern is a message-driven architecture that leverages the use of 
message objects. A message is a unit of information or an object that can be passed 
from one component to another. Therefore, messages have to be defined just like 
other classes in the application. Messaging-based architecture offers the following 
benefits: 

• maintainability is improved since explicit messaging focuses on message 
design, 

• Message objects can be stored and used subsequently for processing 
• Explicit messaging eases the transparent distribution of information to 

remote components 

In this research, the handling of three specific types of messages is considered with 
each playing a different role. Command messages are those that express an intent 
to mutate the application state and therefore are routed to a specific destination. 
Query messages just like queries in relational databases are requests for some data. 
Event messages are messages that provide some notification that an operation has 
been performed. Normally, events are generated when a command is carried out. 
Types of messages in a CQRS architecture are provided in Table 2. 

Table 2 
Types of Messages in a CQRS Architecture 

Message Type Details Method Handler 
Commands Changes state of the application CommandHandler handle() 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 144 ‒ 

Events Notification that some action 
occurred 

EventHandler on() 

Queries Request for data QueryHandler on() 

2.3 Related Works 
Some of the existing works in the area of CQRS/ES are provided in this section.  
In related research on Determining Critical Properties of the CQRS pattern, the 
authors of the thesis with the title ‘Correctness for CQRS Systems’ worked on 
determining the proof that a system is correctly implemented [10]. They applied a 
verification model to determine the critical properties of the system whose presence 
could determine a correct implementation thereby bridging the gap between system 
specification and actual implementation. So, the focus was not on mitigating 
complexity but on determining functionality and correctness. Another research is in 
the area of using CQRS and Event Sourcing to enhance transaction performance for 
distributed systems. This research covers the application of CQRS and Event 
Sourcing on distributed systems as a way to mitigate issues related to monolithic 
application design such as Create, Read, Update and Delete (CRUD) approach. 
Performance improvements were also highlighted via the creation of read-
optimized views from data denormalization [11]. Additionally, it was shown that 
persisting of prebuild aggregates could also improve performance. 
Research on the application of CQRS to Point Trading System highlights the 
specific techniques and tools for CQRS pattern in a point trading system [12]. This 
was achieved in combination with the Actor model and event sourcing to achieve 
scalability and performance. In this research, aggregates are encapsulated as actors 
with state and behaviour and therefore can be manipulated in a message-driven way 
via messages. The aggregates can then be reconstructed by events replay from an 
audit log which serves as an event source. 

2.3.1 Application to Medical Information System 

The authors in this research proposed an approach for handling the challenge of 
fragmented data from several tables which is the case in many medical information 
systems. Therefore, the CQRS is recommended as a method for denormalizing the 
read database to reduce data access time for frequent queries [13]. Model-driven 
approach was used for data modelling, mapping, and code generation. Finally, they 
proved how a synchronization component can be used for the migration of data from 
the main database to a read-database using an existing data replicator. 

2.3.2 Use of Distributed Command Bus 

The book ‘Practical Microservices Architectural Patterns’[2] shows how a 
distributed command bus can be used for relaying a command generated in one 
service to another service. Clustering event bus and other components including 
Advanced Message Queuing Protocol (AMQP) was used to route command and 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 145 ‒ 

event between 5 services. This, however, introduced some complexity to the 
architecture. 

Of the related works cited, a key limiting factor is the complexity of the CQRS 
architecture compared to the 3-tier architecture arising from the addition of more 
artifacts to ensure synchronization between the command and the query aspects of 
the system. This is what this research aims to solve. 

3 Methodology 
The methodology applied in this research follows the algorithm for the 
minimization of Finite State Machines (FSM) [14]. So, if the message handling 
within the CQRS architecture can be specified using an FSM, then a reduction 
algorithm can be applied to eliminate complexity. Therefore, an architecture with x 
components could be scaled down to y, where y < x without losing any functional 
requirements. 

3.1 Basic Message Handling Model 
Figure 1 indicates a general message-handling architecture for three-layer 
architecture (TLA) and CQRS architecture. Two message types are handled for the 
layered pattern: request message and response message. For the CQRS, the three 
messages handled are commands, events, and queries. For the TLA, messages are 
routed through 4 components while for the CQRS, 8 components are indicated. 
Therefore, the complexity of the CQRS is obvious from the added interfaces. 

 
Figure 1 

Simplified Message Mapping 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 146 ‒ 

To successfully model commands, events, and query handling in CQRS and ES-
based systems, it is necessary to first identify the building block of the architecture. 
Then, information flow across the fabric of the architecture could be formally 
represented. The following three sections outline the core components playing a 
role in CQRS and ES. Since events are just notifications of an occurrence of some 
operation, event handling overlaps with both commands, queries, and common 
components. 

3.2 Command/API Components Modelling 
The command components are architectural pieces involved in the execution of a 
command message from the instantiation throughout the life cycle of the command. 
These are presented in Figure 2. Codes have been assigned to enable representation 
using property graphs. 

 
Figure 2 

Command Handling Components 

Based on Figure 2, any system consisting of k commands, m events, and m 
aggregates can be represented using equations 1 to 3: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑘𝑘}     (1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒 = {𝑒𝑒𝑒𝑒1, 𝑒𝑒𝑒𝑒2, … , 𝑒𝑒𝑒𝑒𝑚𝑚}       (2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎 = {𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, … , 𝑎𝑎𝑎𝑎𝑛𝑛}     (3) 

If there are x commands and y command handlers, then x = y. Similarly, if there are 
x’ event and y’ event-sourcing handlers, then x’ = y’. It is also necessary to note that 
the first command in an aggregate is the ‘command handling constructor (CHC)’ 
since it instantiates the aggregate. Therefore, it has the name of the aggregates. 
Other command handlers have the name handle (). In Figure 2, the two CHCs 
include order () and product (). The set of event-sourcing handlers and command 
handlers is represented in Equations 4 and 5. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝑒𝑒 = {𝑒𝑒𝑒𝑒1, 𝑒𝑒𝑒𝑒2, … , 𝑒𝑒𝑒𝑒𝑚𝑚}     (4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  𝑐𝑐ℎ = {𝑐𝑐ℎ1, 𝑐𝑐ℎ2, … , 𝑐𝑐ℎ𝑛𝑛}    (5) 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 147 ‒ 

Both the event sourcing handlers and the command handlers are generally defined 
in the aggregates. The command handlers handle commands publishing events 
while the event sourcing handlers allow the aggregates to be sourced from their 
events [15]. Therefore, state changes must be set in the event sourcing handler. 

3.3 Query components Modelling 
These components are responsible for ensuring that queries originating from 
external interfaces are routed in an efficient manner and the resulting response is 
sent back to the user. These are shown in Figure 3 

 
Figure 3 

Query Handling Components 

The number of query handlers (qh) as can be seen from Figure 3 equals the number 
of queries. Also, the number of read models equals the number of repositories. 
These can be represented using the four equations below: 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑞𝑞𝑞𝑞 = {𝑞𝑞𝑞𝑞1, 𝑞𝑞𝑞𝑞2, … , 𝑞𝑞𝑞𝑞𝑛𝑛}      (6) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑞𝑞ℎ = {𝑞𝑞ℎ1, 𝑞𝑞ℎ2, … , 𝑞𝑞ℎ𝑛𝑛}     (7) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑟𝑟 = {𝑟𝑟𝑟𝑟1 , 𝑟𝑟𝑟𝑟2, … , 𝑟𝑟𝑟𝑟𝑚𝑚}     (8) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟 = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, … , 𝑟𝑟𝑟𝑟𝑚𝑚}     (9) 

3.4 Events/Common Components Modelling 
These are components involved in both commands and queries and general message 
routing. They include the gateways (gw), buses (bus), and controller endpoints (ce). 
Events have also been included in this section. They are simply a notification of 
some operations performed. These are given in Figure 4. 

The controller endpoints are the methods that get executed when an HTTP request 
is received based on a url pattern. The number of methods would vary based on the 
system requirement. 6 have been provided here. The event handlers are the actual 
methods that get executed when an event is emitted: either dispatched from an 
aggregate as a result of command handling or published from some other object. 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 148 ‒ 

 
Figure 4 

Common Components 

The gateways are used to send messages to the buses while the buses relay the 
messages between components. These artifacts are represented as follows: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑔𝑔𝑔𝑔 = {𝑒𝑒𝑔𝑔𝑔𝑔 , 𝑞𝑞𝑔𝑔𝑔𝑔 , 𝑐𝑐𝑔𝑔𝑔𝑔}    (10) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑏𝑏𝑏𝑏𝑏𝑏 = {𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏, 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏     (11) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐 = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, … , 𝑟𝑟𝑟𝑟𝑙𝑙}   (12) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒ℎ = {𝑒𝑒ℎ1, 𝑒𝑒ℎ2, … , 𝑒𝑒ℎ𝑚𝑚}    (13) 

3.5 Basic Query Message Handling 
To be able to derive the state transitions for the message handling, a very basic 
message handling is defined: Query Messages for the CQRS which correspond to a 
normal GET request for TLA. The steps are represented as si where i is the number 
of the specific states as follows: 

• A request is sent from a UI service to the controller endpoint (s1) 

• The controller interprets this request as a GET operation and routes it to the 
business service (s2) 

• The Service receives the request and executes a specific method (s3) 

• The request reaches the repository interface (s4) 

• The repository loads the database driver and connects to the database (s5) 

• Data is retrieved from the database by executing an SQL Select statement (s6) 

• The retrieved payload is sent back to the UI as an HTTP response (s7) 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 149 ‒ 

The equivalent FSM is given in Figure 5. The five states are represented using the 
components of the architecture. 

 
Figure 5 

Query Handling in CQRS 

3.6 Commands and Events Message Handling 
Having considered query handling, this section now models the handling of the two 
other message types: commands and events. Figure 6 shows, the state machine for 
the order fulfilment process. The request for new order creation originates from the 
browser/UI and hits the controller endpoint (cm1). The command cm1 is sent 
through the command gateway (gw1) into the command bus (c_bus). Since the 
command handler (ch1) is defined in the order aggregate (ag1), the command bus 
sends the command to ch1. The command is executed and a new event ev2 is 
published to the event bus. At the same time, the event-sourcing handler es2 
receives the event and updates the state of the aggregate. The event handler (eh2) 
for ev2 is defined in OrderProjector and therefore gets fired. The eh2 uses rpo1 to 
save the new order to the read datastore. Then a stock-updated event ev3 is fired 
which is handled by eh3. The eh3 uses rpo2 to find the entity, update the state end 
save it back to the read data store. Figure 6 provides the message routing for this 
process. The detailed use case algorithm is provided in the next section. 

Additional operations could be easily modelled using this simple approach. CRUD 
operations such as the addition of a new product and deleting and updating an order 
all follow the same approach. Requirements such as customized queries (QR), could 
simply be designed by defining more query classes in the projector files and adding 
the relevant rest endpoints (ce) to the controller file. This approach simplifies the 
CQRS/ES design and eliminates the associated complexity as would be shown in 
the implementation. 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 150 ‒ 

 
Figure 6 

Command and Events Handling 

3.7 Use Case Algorithm for Simple Order Processing 
In this section, a scenario for message handling which combines all three types of 
messages is presented. The process is given for CQRS and then analysed and 
simplified using the FSM minimization algorithm. 

The steps are given as: 

A user places an order by clicking a link in the User Interface (UI). The request gets 
to the order controller (OrderController.java). 

The order controller interprets this request as a post request and instantiates a 
CreateOrderCommand using the request MultiValueMap request parameter. This 
new command is sent through the command gateway to the command bus using the 
send () async method of the command gateway. 

The command is delivered via the command bus to the command handler in the 
aggregate (Order.java). 

The command handler, which is a command-handling constructor, is called after 
that. It invokes the aggregate life,cycle apply () method. This method is used when 
an event message needs to be published. Hence, a new OrderCreatedEvent is 
created using the details provided in the command and passed to the apply method. 
The event is published within the scope of the Order aggregate. 

Then the event sourcing handler is called to ‘event-source’ the aggregate, i.e. to set 
the state of the new aggregate instance. 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 151 ‒ 

The event sourcing of the Order fires the event handler for the OrderCreatedEvent 
defined in the OrderProjector (OrderProjector.java). A new OrderView(read 
model) object is instantiated and saved to the database using the repository’s save 
() method. 

With this, a StockUpdatedEvent object is instantiated using the details for the 
OrderCreatedEvent. This object is published through the event gateway to the event 
bus. 

The event handler for StockUpdatedEvent defined in the ProductProjector 
(ProductProjector.java) receives the event from the event bus. Based on the events 
data, it finds the ProductView (read model) by calling the repository’s findById () 
method. It updates its stock and saves back the changes using the repositories save 
() method. 

Also, the event sourcing handler for the StockUpdatedEvent defined in the product 
aggregate (Product.java) gets fired to set the new state of the particular product 
aggregate 

4 Analysis and Design 
This chapter details the design and analysis process and techniques in the 
prototyping of an e-commerce order fulfilment process. The use case is an example 
of distributed command and event handling using Axon Framework [2]. We first 
design a basic CQRS architecture based on a single microservice. Next, it is 
extended by adding distributed command handling functionality. But first, here is a 
brief highlight of the key design and implementation tools used. 

4.1 Axon Platform 
Axon is a platform (Axon Framework + Axon Server) that enables the application 
of the CQRS and ES architectural style in developing modular, microservices-based 
solutions. Java 8+ was used for this research and the implementation was done using 
Maven. Axon abstracts all asynchronous behaviour via the use of executors, which 
decouple task submission from the internal process of how each task is run. 

4.2 Scenario 1 – Basic Message Handling Design 
A single CQRS-based microservices is described based on an e-commerce 
application. The service allows users to place an order. When this happens, a new 
order is created, and the product stock is depreciated based on the quantity in the 
order. 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 152 ‒ 

Based on the model outlined in Chapter 3, an evolutionary design approach is 
adopted which begins with the design of a single structured monolithic service. 
Then, it is partitioned based on the specification. 

The message handling architecture in Figure 7 corresponds to the algorithm in 
section 3.7 of Chapter 3 and therefore would not be repeated. However, the actual 
implementation structure of the application is presented here. 

The structured monolith consists of three packages: controllers, coreapi, 
read_model(command), write_model, and query. These packages are then later 
taken apart into separate microservices to form a distributed system. 

 
Figure 7 

Message Handling Implementation with Axon 4.3 

coreapi: The command and events are defined in this package under two respective 
Kotlin files, commands.kt and events.kt. These files contain data classes specifying 
the commands and the events. 

write_model: The package contains the implementation of the aggregates. In this 
use case, two aggregates are identified: Product and Order defined in the 
product.java and order.java files respectively. 

read_model: This is what is stored in the read database. In this case, it is a relational 
database. 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 153 ‒ 

query: The query package contains the api.kt file which has a definition of the 
queries and repositories. This package also contains the projectors. This is a 
component where the event handlers and query handlers are defined. 

controller: This package contains all the rest controller classes annotated with 
@RestControllers. Methods available to HTTP endpoints are defined in the 
controller files. 

4.3 Scenario 2 – Distributed Message Handling 
In this scenario, the order processing is extended to distribute across JVMs and 
nodes. The processes are split into six different microservices as shown in Figure 8. 

 
Figure 8 

Distributed Command and Event Handling Implementation 

The design of the distributed message handling follows from the structured 
monolithic design. For the distributed architecture, the contents of different 
packages are then built into an independent service. 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 154 ‒ 

UI-App µ-service: This is a UI service built with Angular. 

Controller µ-service: This service is similar to the structured monolith except that 
this sends the CreateOrder command to a distributed command bus. 

HandleCommand µ-service: This service receives commands coming from the 
Controller service. Also, it creates and sends out events to the distributed event bus. 

HandleEvent µ-service: This service handles events published by the 
CreateCommand service 

Audit µ-service: This service also gets notified when a StockUpdated event is 
published by the HandleCommand service 

Common µ-service: Contains common configuration used by all the other services. 

4.4 Measuring Complexity 
As a proof of concept for the model used in this research, we adopt a formal strategy 
for the measurement of system complexity. Complexity in application development 
is defined as a measure of the resources expended by a system while interacting 
with a piece of software to execute a specified task [16]. There are also other 
variations of this definition, but the basic idea remains the same: a measure of the 
resources (time and efforts) expended to carry out some operation. The following 
two methods are used: 

First, we use the weighted methods per class (WMC) which is part of the McCabe 
structure complexity metrics as defined in [17]. The second complexity measure 
used is known as software science [18] which provides a metric based on the 
program controls structure, program size, and the nature of the module interfaces. 

4.4.1 McCabe Structure Complexity Metric 

This approach to complexity measurement considers the program as a directed 
graph where the edges are lines of control flow while vertices are the linear 
segments of the program code. This is a computation of the WMC for each of the 
classes that make up the application. For each class C, there are M1, M2, … Mn 
methods defined, where each of the methods has complexity C1, C2, … Cn 
respectively. The WMC is given by 

  𝑊𝑊𝑊𝑊𝑊𝑊 =  ∑𝐶𝐶𝑖𝑖(𝑖𝑖 = 1, … 𝑛𝑛)                (14) 

The complexity C of method M is calculated based on the flow graph derived from 
the business logic. With the flow graph, a complexity metric V(G) is calculated 
using the number of edges e, number of nodes n, and number of connected graphs 
p. The metric is given as: 

𝑉𝑉(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 2𝑝𝑝                (15) 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 155 ‒ 

For our prototype services, the flowchart is presented in Figure 8 in Chapter 3.  
To be able to calculate the required metrics, we need to transform the flowchart into 
a data flow diagram (DFD). The corresponding data flow diagram is modelled 
according to the Gane and Sarson notations [19] which represents processes using 
rounded-corners squares. 

4.4.2 Halstead Software Science Metric 

This is a measurement of software complexity based on the code structure making 
up the modules. The Halstead approach computes three complexity metrics: the 
program Volume (V), the program difficulty (D), and the effort (E). 

This measurement is based on the size of the program, the program module 
interfaces, and the control structure regardless of program comments on the stylistic 
components making up the code such as naming conventions and indentations. 

The first step to evaluating the Software Science metric is to determine the functions 
making up the program. Then, the number of operators and operands is then 
determined. With these, we can then compute the volume of the program V and the 
program difficulty D. The SS metric are defined as follows. Let 

• n1 be the count of distinct operators 
• n2 be the count of distinct operands 
• N1 is the total number of operators 
• N2 is the total number of operands 

Then the volume of the program, V is given by: 

    𝑉𝑉 = (𝑁𝑁1 + 𝑁𝑁2) log2(𝑛𝑛1 + 𝑛𝑛2)                   (16) 

And the program difficulty D is given by: 

𝐷𝐷 = 𝑛𝑛1+𝑁𝑁2
2𝑛𝑛2

               (17) 

The value of D describes the complexity of the program and therefore a higher value 
of D indicates a higher complexity and vice versa. For this research, we first 
evaluate the complexity measures for each of the six object services. Then, we 
compute the parameters also for the combined microservices architecture.  
The detailed results are presented in Chapter 5. 

5 Results and Discussion 
This chapter presents the results in terms of complexity reduction achieved using 
the methodology proposed in this research. Complexity in applications is a measure 
of the resources consumed by a system while interacting with a piece of software in 
the execution of a specific task [18]. We focus on two: 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 156 ‒ 

• Structured complexity metrics 
• Software Science metrics 

The results of our methods relative to the existing approach for CQRS/ES are 
presented. The existing scenario for order fulfilment service can be found on the 
GitHub repository [20]. 

5.1 Structured Complexity (SC) Metrics 
In this section, the values of the complexity metrics are presented based on the data 
flow diagram (dfg), G of each approach. The three values needed to determine the 
overall complexity are number of edges (e), number of nodes (n), and number of 
connected graphs (c). Based on these variables, the overall complexity V is 
calculated as V(G) = n – e + c. Table 3 shows the structured complexity metric 
values as calculated for the three approaches: structured monolith, existing 
microservice, and simple message handling. It could be observed that the structured 
monolith gave a value of 3 while the microservices architecture has a value of 12 
which means a 4-fold increase in complexity. The approach in this research 
indicates a complexity value of 10, which is an improvement over the existing 
microservices design. However, thins the SC metrics are largely based on dfg.  
The next experiment provides a more complete result which includes program 
volume, difficulty, and effort as well. 

Table 3 
SC metrics for design approaches 

Metrics for complete microservice 
Metrics 
Monolithic Existing  Our Approach 

Number of edges, e 12 21 17 
Number of nodes, n 9 16 13 
Number of connected graphs, c 6 17 14 
Overall Complexity 3 12 10 

5.2 Software Science (SS) Metrics 
For the first part, the primary components of SS metrics for distributed messaging 
are tabulated and evaluated. Table 4 provides N, n, D, V, and E metrics for both 
approaches: the existing approach and the simplified message handling approach. 
Table 4 indicates that our simplified approach required more effort (540.9) than the 
monolithic approach (525.43) but less than the Microservices (MS). However, our 
approach provides the least difficulty (D) value of 1.03 against 1.2 and 1.14 for 
monolith and MS. The reduction in the program volume and difficulty is likely as a 
result of autoconfiguration provided by Spring and Axon which abstracts certain 
aspects of the application that would have required addition coding efforts.  



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 157 ‒ 

An example is the CommandGateway’s send () method which uses the 
CommandBus underneath to perform the actual dispatching of commands. 

Table 4 
SS Metrics comparison 

Metrics for complete microservice Metrics 
Monolithic Microservices  SMH 

Number of unique operators – n1 14.00 17.00 15.00 
Number of unique operands – n2 25.00 29.00 33.00 
Total number of operators – N1 37.00 38.00 41.00 
Total number of operands – N2 46.00 49.00 53.00 
Volume of program – V 438.69 480.55 524.99 
Program difficulty – D 1.20 1.14 1.03 
Effort – E  526.43 546.83 540.90 

Table 4 indicates the SS metrics for individual services. In the case of the UI 
Service, the key difference is that it has been built with JavaScript based on 
AngularJS for the existing architecture. As for the SMH approach, Angular 9 has 
been used with the actual HTTP requests placed in a different HttpClient service 
file written in TypeScript. Table 5 shows the SS metrics computed by individual 
services. An important aspect of Table 5 is the Common microservices. This 
microservice becomes optional in our simplified approach due to autoconfiguration 
provided by the Spring Framework and therefore reduces the efforts and difficulty. 
Additionally, it could be noted that the metrics for the Controller MS remain the 
same in both Table 5 and Table 6 due to having to use the same endpoints and 
request methods in both approaches. 

Table 5 
Complexity metrics for Microservice 

Microservices Complexity Metrics 
n1 n2 N1 N2 V D E 

UI-App 8 12 14 14 121.01 0.92 110.93 
Controller 4 7 11 8 65.73 0.86 56.34 
HandleCommand 9 8 15 14 118.54 1.44 170.40 
HandleEvent 10 8 13 13 108.42 1.44 155.85 
Audit 6 3 6 9 47.55 2.50 118.87 
Common 8 9 12 12 98.10 1.11 109.00 

The same complexity metrics were calculated for the simplified message handling. 
Lower values of D and E have a slightly higher value of V indicated in Table 6.  
The UI-App with a volume of 116.76, a difficulty of 0.83, and an effort of 97.2 
perform better than the MS and monolithic approaches since the UI was based on 
Angular 9 with Node Package Manager (npm) which used TypeScript instead of 
JavaScript. TypeScript is regarded as an extension of JavaScript and enables large-



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 158 ‒ 

scale development while addressing the failures of JavaScript [21]. Similar 
improvement was obtained for other services as well. It could also be noted that the 
highest program volume is recorded for the UI-App but has the least difficulty.  
The Audit microservice provides the highest difficulty (2.00) but the least volume 
(51.89) due to being based on three preceding services and required classes already 
defined. 

Table 6 
Complexity metrics for a simplified approach 

Microservices Complexity Metrics 
n1 n2 N1 N2 V D E 

UI-App 6 12 14 14 116.76 0.83 97.30 
Controller 4 7 11 8 65.73 0.86 56.34 
HandleCommand 9 8 14 13 110.36 1.38 151.75 
HandleEvent 10 7 11 10 85.84 1.43 122.62 
Audit 7 4 6 9 51.89 2.00 103.78 
Common 0 0 0 0 0.00 0.00 0.00 

Comparing the results of Table 5 and Table 6 (simplified approach), it could be 
observed that our approach not only simplifies the design process but abstracts some 
of the complexities via autoconfiguration. 

Conclusion and future work 

This research has provided a realistic approach to managing the complexity 
associated with the design of a CQRS and ES-based architecture. This was 
achieved, by first adopting a formal model to represent the components of a CQRS 
system. The data flow within the architecture was simplified by isolating the 
commands, events, and query components. The message handling was represented 
using a generic notation which can be extended to cover more complex systems. 
Implementation was achieved via an evolutionary approach from a structure 
monolithic system to a full-fledged microservices architecture. The novel approach 
of this research was also successfully tested with a use case of the order fulfilment 
application. 

With respect to the CQRS and ES pattern, there are still more areas of further work. 
For instance, while this approach provided interesting results in a controlled lab-
scale network environment, it would also be necessary to evaluate its performance 
in a cloud-based environment. 

Additionally, a key area of interest for CQRS is the management of transactions 
distributed across services as in a Saga pattern. It is believed that the simplified 
approach of this research would also mitigate such challenges. However, this is 
currently being researched and the results would be provided subsequently as well. 

 



Acta Polytechnica Hungarica Vol. 20, No. 4, 2023 

‒ 159 ‒ 

References 

[1] B. Meyer, “Object-Oriented Software Construction SECOND EDITION.” 
Accessed: Jul. 09, 2020. [Online]. Available: http://www.tools.com 

[2] B. Christudas, Practical Microservices Architectural Patterns. 2019 

[3] K. Machado, R. Kank, J. Sonawane, and S. Maitra, “A Comparative Study 
of ACID and BASE in Database Transaction Processing,” Vol. 8, No. 5, 
2017, [Online]. Available: http://www.ijser.org 

[4] “State Machine Design, Persistence and Code Generation using a Visual 
Workbench, Event Sourcing, and CQRS MSc Dissertation Author : Se ´ an 
Fitzgerald A thesis submitted in part fulfilment of the degree of MSc 
Advanced Software Engineering in Computer Sci,” 2012 

[5] P. L. Meena, S. P. Sarmah, and A. Sarkar, “Sourcing decisions under risks 
of catastrophic event disruptions,” Transp. Res. Part E Logist. Transp. Rev., 
Vol. 47, No. 6, pp. 1058-1074, 2011, doi: 10.1016/j.tre.2011.03.003 

[6] Z. Long, “Improvement and Implementation of a High Performance CQRS 
Architecture,” Proc. - 2017 Int. Conf. Robot. Intell. Syst. ICRIS 2017, pp. 
170-173, 2017, doi: 10.1109/ICRIS.2017.49 

[7] M. Overeem, M. Spoor, and S. Jansen, “The dark side of event sourcing: 
Managing data conversion,” in SANER 2017 - 24th IEEE International 
Conference on Software Analysis, Evolution, and Reengineering, Mar. 2017, 
pp. 193-204, doi: 10.1109/SANER.2017.7884621 

[8] G. Maddodi, S. Jansen, and M. Overeem, “Aggregate architecture simulation 
in event-sourcing applications using layered queuing networks,” ICPE 2020 
- Proc. ACM/SPEC Int. Conf. Perform. Eng., No. 1, pp. 238-245, 2020, doi: 
10.1145/3358960.3375797 

[9] “Introduction - Axon Reference Guide.” https://docs.axoniq.io/reference-
guide/ (accessed Jul. 03, 2020) 

[10] H. Kamil, “Correctness for CQRS Systems: Elicitation and validation,” 
2012, [Online]. Available: www.kth.se/csc 

[11] S. O. Diakov, T. E. Zubrei, and A. S. Samoidiuk, “Application of Event 
Sourcing and CQRS in Distributed Systems,” No. 34, pp. 16-22, 2019 

[12] Y. Zhong, W. Li, and J. Wang, “Using event sourcing and CQRS to build a 
high performance point trading system,” ACM Int. Conf. Proceeding Ser., 
pp. 16-19, 2019, doi: 10.1145/3317614.3317632 

[13] P. Rajković, D. Janković, and A. Milenković, “Using CQRS pattern for 
improving performances in medical information systems,” CEUR Workshop 
Proc., Vol. 1036, pp. 86-91, 2013 

[14] J. M. Pena and A. L. Oliveira, “Incompletely Specified Finite State 
Machines,” Comput. Des., Vol. 18, No. 11, pp. 1619-1632, 1999 



K. Munonye et al. A Simplified Approach to Distributed Message Handling in CQRS Architecture 

‒ 160 ‒ 

[15] “Aggregate - Axon Reference Guide.” https://docs.axoniq.io/reference-
guide/implementing-domain-logic/command-handling/aggregate (accessed 
Jul. 14, 2020) 

[16] T. Mens, “Research trends in structural software complexity,” Semant. Sch., 
2016, [Online]. Available: http://arxiv.org/abs/1608.01533 

[17] H. Tu, W. Sun, and Y. Zhang, “The research on software metrics and 
software complexity metrics,” IFCSTA 2009 Proc. - 2009 Int. Forum 
Comput. Sci. Appl., Vol. 1, pp. 131-136, 2009, doi: 
10.1109/IFCSTA.2009.39 

[18] J. P. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A. 
Adler, “Software complexity measurement,” Commun. ACM, Vol. 29, No. 
11, pp. 1044-1050, 1986, doi: 10.1145/7538.7540 

[19] D. Moody, “The physics of notations: Toward a scientific basis for 
constructing visual notations in software engineering,” IEEE Trans. Softw. 
Eng., Vol. 35, No. 6, pp. 756-779, 2009, doi: 10.1109/TSE.2009.67 

[20] “practical-microservices-architectural-
patterns/Christudas_Ch12_Source/ch12/ch12-02/Ax2-Commands-Multi-
Event-Handler-Distributed at master Apress/practical-microservices-
architectural-patterns GitHub.” https://github.com/Apress/practical-
microservices-architectural-
patterns/tree/master/Christudas_Ch12_Source/ch12/ch12-02/Ax2-
Commands-Multi-Event-Handler-Distributed (accessed Jul. 13, 2020) 

[21] G. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in 
Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, Vol. 8586 
LNCS, pp. 257-281, doi: 10.1007/978-3-662-44202-9_11 

 


	1 Introduction
	2 Theoretical Overview and Related Works
	2.1 Aggregate and Entities
	1.1
	2.2 Message Handling
	2.3 Related Works
	2.3.1 Application to Medical Information System
	2.3.2 Use of Distributed Command Bus


	3 Methodology
	3.1 Basic Message Handling Model
	3.2 Command/API Components Modelling
	3.3 Query components Modelling
	3.4 Events/Common Components Modelling
	3.5 Basic Query Message Handling
	3.6 Commands and Events Message Handling
	3.7 Use Case Algorithm for Simple Order Processing

	4 Analysis and Design
	4.1 Axon Platform
	4.2 Scenario 1 – Basic Message Handling Design
	4.3 Scenario 2 – Distributed Message Handling
	1.1
	1.1
	1.1
	1.1
	4.4 Measuring Complexity
	4.4.1 McCabe Structure Complexity Metric
	4.4.2 Halstead Software Science Metric


	5 Results and Discussion
	5.1 Structured Complexity (SC) Metrics
	5.2 Software Science (SS) Metrics


