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Abstract: By the development of artificial Intelligence – whether unintentionally – we are 

constantly trying to mimic the human senses. Biomimicry, as the starting point, is an 

engineering approach to emulate nature’s well working patterns and strategies. Our goal is 

to create a standalone artificial system which can respond adequately to various 

environmental impacts without human intervention. In order to detect these influences over 

the accuracy of human limitations, the most advanced sensors are needed both in software 

and hardware. The development in computing power highlights some forgotten algorithms, 

which were neglected because their complexity made them inefficient on early computers. 

One of these methods is the Wavelet-Transform Profilometry (WTP) of which successful 

application is demonstrated in this paper. WTP is a three-dimensional profilometric 

surface reconstruction algorithm in which orthogonal trajectories are used for high-level 

signal processing of huge datasets. Our goal was to find a high-precision solution for 

surface reconstruction by replacing the processing software with advanced mathematical 

methods rather than use more expensive optical systems. 

Keywords: profilometry; Wavelet; reconstruction; machine vision 

1 Introduction 

Accurate surface reconstruction plays an important role in the field of non-

destructive measurement technology that is why the concept of human eye can be 

only a starting point. There are two main parts of these systems, which can be 

improved: the optics and the processing algorithm. With the development of 

computing power the price gap between them became wider and wider. Therefore, 

we should focus on complex mathematical methods to reach higher-level 

precision, like Hilbert-, S-, Gábor-, Fourier- or Wavelet-transform. The industrial 

usage of three-dimensional scanners requires less noise sensitive methods because 

the machines are continuously vibrating in most places. The advantage of the 
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complex orthogonal methods is that the entire spatial analysis needs only one 

image and by increasing the number of the pixels of the image the function of 

frequency and the accuracy itself will be significantly improved. The first 

successful use of the one-dimensional Fourier-transformation was published in 

1982 by M. Takeda [1], [2] and in 1982 Bone applied the two-dimensional 

algorithm successfully as well [3]. The method evolved since then and its use of 

scale became wider, making it possible to be able to reconstruct three-dimensional 

surfaces with it. In this paper, you can read a short presentation of the field of 

structured light techniques and profilometry, then Fourier- and Wavelet-

transformations are presented as a sequel to our former research [4]. After, the 

main part Wavelet-transformation profilometry, the laboratory tests, the functional 

tests and the results will be presented. Finally, the conclusions and the 

development opportunities will follow. 

2 Imaging Methods with Structures Lights 

In machine vision the datasets are containing a two-dimensional matrix as an 

image. To obtain the depth value we can use density distribution (MRI, CT) or 

traditional surface analysis, in which the information is stored in given scaled 

scale values, or colour values by using vectors calculated with RGB (red-green-

blue). The most common method is to project structured light on the surface with 

a projector, modulated illuminant by spatial light or laser matrix and capture the 

reflection with a detector. Each pixel of the digitally processed image has a matrix 

element and {𝐼𝑖𝑗 = (𝑖, 𝑗), 𝑖 = 1,2, … , 𝐼; 𝑗 = 1,2, … , 𝐽} is characterizing the 

intensity, where (i, j) is the (x, y) coordinate of the projected pattern. The distorted 

image contains deformed patterns, which from; we can extract the depth 

information. Two main groups of methods can be distinguished by their dynamics, 

depending on the number of images the algorithm needs. The first one is a 

sequential, so called multi-shot method, in which we capture multiple images and 

the additional information can be calculated from the differences between them. 

We can use binary- and Graycode, phase shift method or a hybrid one. The more 

images means higher amount of data. Therefore, the method is very precise, but 

can be only used on static objects. Thanks to the colour information or the specific 

encoding schemes we can use single-shot methods to reconstruct surfaces from 

only one image. For this we can use constantly changing patterns like the 3D 

rainbow camera, band indexing procedures like colour codes, grayscale patterns, 

De Brujin series or special 2D grid indexing with pseudo-random binary array and 

colour-coded grids [5]. 
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Figure1 

De Brujin series 

 

Figure 2 

Binary and Gray coding [5] 

3 Profilometry 

Profilometry is one of the most researched fields of the last decade, although it has 

relatively short existence and it is also called Fringe Projection Technique. The 

name came from the fact that the base of this method is to create a specific 

projection pattern, which is projected and deforms on the surface. The layout is 

similar to the deflectometric and the triangulation methods, the main units are: 

1.) Test object 

2.) Projector 

3.) Image capture unit (Camera) 

4.) Image processing unit (Computer) 
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Figure 3 

Fringe Projection Technique layout [6] 

The method comprises the following steps: First, we select a periodically 

structured signal, project it on the object and record the distorted image from the 

surface. This signal is usually a sinusoidal pattern with known phase, the 

recording device is a camera, but in special cases we can use a system with image 

capture card. We read the image and process it with a chosen algorithm, then 

calculate the phase modulation and unwrap the phase. To manage this, we used 

MATLAB to store the scanned image in a three-dimensional colour matrix, which 

was reduced to two-dimensional with black and white transformation. The 

algorithm is mostly a Fourier-transformation or its modification, like the 

interpolating- or regressive Fourier-transformation, dilated Gabor-transformation, 

discrete cosine-transformation, S-transformation and Hilbert-transformation, or 

what we used is one- and two-dimensional Wavelet transformation. Finally, we 

are mapping the unwrapped values and perform phase- and depth conversion. The 

unwrapping is performed with a built-in unwrapping algorithm that we present in 

Sec. 6. 

4 Fourier-Transform Analysis 

Image processing is just one of the many options that Fourier-transform algorithm 

is capable of [7]. The three-dimensional surface reconstruction needs to capture of 

the deformed surface(𝑔(𝑥, 𝑦)), and a reference sample(𝑔0(𝑥, 𝑦)) in the following 

ways: 

𝑔(𝑥, 𝑦) = 𝑟(𝑥, 𝑦) ∑ 𝐴𝑛𝑒𝑗(2𝜋𝑓0𝑥+𝑛𝜑(𝑥,𝑦))∞
𝑛=−∞                 (1a) 

𝑔0(𝑥, 𝑦) = 𝑟0(𝑥, 𝑦) ∑ 𝐴𝑛𝑒𝑗(2𝜋𝑓0𝑥+𝑛𝜑(𝑥,𝑦))∞
𝑛=−∞                (1b) 
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where r(x, y) and r0(x, y) are the concurrent components of the non-uniform 

reflections, An is the weighting factor, 𝑓0 is the carrier frequency, 𝜑(𝑥, 𝑦) and 

𝜑0(𝑥, 𝑦) are the value of the phase. The spectrum is the Fourier-transform of the 

sum, which from we can filter and define the required components. The difference 

between the modulated signal and the reference signal can be calculated with 

inverse Fourier-transform: 

�̅�(𝑥, 𝑦) = 𝐴1𝑟(𝑥, 𝑦)𝑒𝑗(2𝜋𝑓0𝑥+𝜑(𝑥,𝑦))                 (2a) 

�̅�0(𝑥, 𝑦) = 𝐴1𝑟0(𝑥, 𝑦)𝑒𝑗(2𝜋𝑓0𝑥+𝜑(𝑥,𝑦))                (2b) 

The disadvantage of the procedure is that only frequency domain analysis is 

performable with it because it approximates the signal with sinusoidal harmonics. 

Therefore, the analysis does not have temporal localization properties and the time 

function cannot determine the examined frequency components. Due to the 

breakdown of the signal into plane waves, if the signal changes in one coordinate 

its Fourier-transform will change as well, that is why we cannot define the place 

of change. On the other hand, the overlapping can occur signal analysis errors 

because the sinusoidal signals cannot be ended in the block borders. We can 

eliminate these errors by using Wavelet-transform analysis [8]. 

 

Figure 4 

a) square wave approximation, b) Saw wave approximation, c) Triangle wave approximation 

5 Wavelet-Transform Analysis 

This spectral resolution method has been known since the beginning of the 20
th

 

Century, but became internationally known from the late 1980s thanks to Y. 

Meyer’s and Stephane Mallatt’s work [7], [9]. The advantage of this algorithm is 

that WTA divides the signals into so-called mother wavelets instead of sinusoidal, 

which have limited length and zero mean value. These properties eliminate the 

errors of FTA because the sharp changes in the frequency spectrum and their 

coordinates can be determined at the same time. So, time analysis – in our case 

spatial analysis – is also feasible with it. 
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Correspondingly to the Fourier-transform the additional information can be 

obtained from the difference between the signal under test (u) and the test function 

(v) using internal multiplying mathematical tools: 

< 𝑢, 𝑣 ≥ |u||v| cos(θ)                    (3) 

If u and v is a unit, then the cosine of the angle between them determines the 

result, so it is limited into the [−1, 1] interval. The harmonics of the sine function 

are regular and smooth while in case of Wavelet-transform analysis they are 

irregular and asymmetric, that is why the sharp and sudden changes can be 

detected easier. [10] 

 

Figure 5 

Wavelet signals 

5.1 Mother Wavelets 

Scale is one of the main properties of the wavelet groups; it declares the 

compression and stretching of the function. To obtain the depth value we need to 

use complex mother wavelets when the wavelet transform is a complex function 

of the scale and position. We can create countless mother wavelet types, but all of 

them need to fulfill the following correlation: 

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
                     (4) 

where𝜓(𝑡) is the wavelet function and if 𝜔 = 0 then 𝜓(𝜔) = 0, which is the 

Fourier transform of the wavelet function. For the study we used the MATLAB 

provided complex mother wavelets: 

 Complex Gaussian: 
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𝜓𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥) =
𝑑(𝐶𝑝 exp(−𝑖𝑥) exp(−𝑥2))𝑝

𝑑𝑥𝑝      (5) 

 Complex Shannon: 

𝜓𝑆ℎ𝑎𝑛𝑛𝑜𝑛(𝑥) = √𝑓𝑏 exp(2𝜋𝑖𝑓𝑐𝑥) (𝑠𝑖𝑛𝑐(𝑓𝑏𝑥))    (6) 

 Complex Frequency B-spline: 

𝜓𝑏−𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) = √𝑓𝑏 exp(2𝜋𝑖𝑓𝑐𝑥) [𝑠𝑖𝑛𝑐 (
𝑓𝑏𝑥

𝑚
)]

𝑚

    (7) 

 Complex Morlet: 

𝜓𝑀𝑜𝑟𝑙𝑒𝑡(𝑥) =
1

(𝑓𝑏
2𝜋)

1
4

exp(2𝜋𝑖𝑓𝑐𝑥) exp (
−𝑥2

2𝑓𝑏
2)     (8) 

5.2 Continuous Wavelet Transformation 

The compression value (a) and the offset value (𝜏)of the base function defines a 

binary function 

F(a, τ) =
1

√𝑎
∫ 𝑓(𝑡)𝜓 (

𝑡−𝜏

𝑎
) 𝑑𝑡      (9) 

where 𝜓(𝑡) is the basic wavelet function, 𝜓 (
𝑡−𝜏

𝑎
) is the base function of the 

transformation, F(a, τ) is the wavelet transformation itself. The two variables and 

the wavelet function declare the coefficients of the continuous wavelet 

transformation, but we need to concrete the parameters. Therefore, we can use a 

discrete equation as 

𝐹[𝑚, 𝑛] =
1

√𝑎0
−𝑚

∫ 𝑓(𝑡)𝜓(𝑎0
𝑚𝑡 − 𝑛𝜏0)𝑑𝑡                (10) 

where 𝑎0 is the base power of the compression and 𝜏0 determine the offsets value. 

It can be seen that the offset and the compression have to be given powers of the 

invariants to reach optional values. We can manage this by reducing the offset by 

half, if the compression is reduced by half as well, in this case we will not miss 

any part of the function and there will be no overlapping over and above the 

counting. 

The transformation gives good time-resolution and bad frequency-resolution by 

high-frequency base functions and the opposite by low-frequency base function. 

The connection between the scale and frequency is clear: the higher scale 

parameter results higher strain of the mother-wavelet, so the correlation will be 

over a bigger part of the signal and the accuracy will drop. This means that we can 

use small values to perceive fast changes and slow ones for slow changes. The 

continuity comes from the fact that it is interpretable in every scale and the mother 

wavelets offset is continuous in the whole range of interpretation.  
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Figure 6 

Frequency-time resolution of STFT and WT 

6 Wavelet-Transform Profilomtery 

The base of this method is to use Wavelet-transformation to determine the phase 

of the band-pattern. It is possible to use one-dimensional and two-dimensional 

transformation, however experience shows that the former one gives more 

accurate and faster results. In this case, one row of pixels is being analysed and 

repeated for each line. Since the generated patterns can be constructed from 

adequate modification of sinusoidal signals, the following equation can be used 

𝑓(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) cos(2𝜋𝑓0𝑥 + 𝜑(𝑥, 𝑦))               (11) 

where 𝑎(𝑥, 𝑦) is the backlight, 𝑏(𝑥, 𝑦) is the bands amplitude, 𝑓0 is the spatial 

carriers frequency, 𝜑(𝑥, 𝑦) is the phase modulation of the bands. The obtaining of 

the depth values requires the phase and modulus, which can be calculated from the 

complex results of the one-dimensional continuous wavelet transformation on the 

examined signal: 
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𝜑(𝑎, 𝜏) = 𝑡𝑎𝑛−1 (
𝐼𝑚(𝑊(𝑎,𝜏))

𝑅𝑒(𝑊(𝑎,𝜏))
)                 (12) 

𝑎𝑏𝑠(𝑎, 𝜏) = |𝑊(𝑎, 𝜏)|                  (13) 

where 𝐼𝑚(𝑊(𝑎, 𝜏)) is the imaginary part, 𝑅𝑒(𝑊(𝑎, 𝜏)) is the real part. The 

optimal values of each pixel are calculated with a direct maximum method [11], 

because in case of high signal-noise proportion it gives very accurate results.  

The calculated phase has values in a limited range, as the inverse of trigonometric 

functions they can be only in the [−𝜋, +𝜋) interval. The greater values than 2𝜋 

cause artificial discontinuities, that is why we need a phase extractor, so called 

phase unwrap method [12]. The most common way is to examine the 

neighbouring pixels and regarding if the difference exceeds a given value then it 

add or subtract multiple of 2𝜋, so the relative phase distance between the two 

pixels will be in the [−𝜋, +𝜋] interval. The proper choice of the limits is very 

important, so we can filter out the noise components of the carrier and determine 

the three-dimensional shape of the object. 

 

Figure 7 

a) and c) Wrapped phase; b) and d) Unwrapped phase 

The three-dimensional surface reconstruction is now achievable and it is 

performable in two different ways. With absolute coordinates we determine the 

position of the pixels with triangulation, which gives accurate results if we know 

the precise geometric parameters of the camera and the projector. The adequate 

calibration is time-consuming. Therefore, we can use relative coordinates, when 

we determine the depth values of the pixels ℎ(𝑥, 𝑦) compared to a reference plane. 

The projected signal can be calculated as  

∆Φ(𝑥) = Φ(𝑥) − 2𝜋𝑓0𝑥,                  (14) 

which we can further modify to get ℎ(𝑥, 𝑦) as well [13]: 
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∆Φ(𝑥, 𝑦) = −
2𝜋𝑓0ℎ(𝑥,𝑦)𝑑

𝑙0−ℎ(𝑥,𝑦)
                  (15) 

If we take the presumption that the distance between the camera and the projector 

is negligibly small, compared to their distance from the surface,(𝑙0 ≫ 𝑑) then we 

can calculate the depth information easily [14]: 

ℎ(𝑥, 𝑦) = −
ΔΦ(𝑥,𝑦)𝑙0

2𝜋𝑓0𝑑
                  (16) 

7 Test Frameworks with Lens 

The previous experiments showed, the algorithm is working well on digitally 

created surfaces, but to measure its accuracy we needed a real object with 

measurable values. For this we chose a lens, painted it white and measured its 

radius with a three-ball spherometer. The painting was necessary even though it 

can affect the results because the method works only on non-reflecting surfaces. 

We used a digital projector to illuminate the object with structured sinusoidal 

light, which frequency was controlled by software. The image was captured with a 

Canon 350D DS126071 (No.1130601174) digital camera with Canon Zoom Lens 

EF-S 18-55.  

The captured image was processed with MATLAB, because it has corresponding 

built-in complex Wavelet-transformations and one of the highest speeds in 

mathematical calculations. 

7.1 Image Processing 

One of the main sources of the inaccuracy is the high noise-signal ratio that is why 

we have to ensure that the picture is ready for arithmetical progressions by using 

filters and black-white-transformation. Thereafter. we choose a mother wavelet 

and the level of the Wavelet-transformation; transform each row of the picture; 

use a maximum ridge search and unwrap the phase. The depth values can be 

obtained by extracting a reference plane from the generated surface. It is possible 

to use a physical plane and process it in the same way, but this can cause more 

noise, so we decided to create an artificial one because in this case we have strict 

control over the parameters. The main properties of the pixels are the frequency 

and the position, so we needed to declare that: 

1. The frequency of the projected pattern is known 

2. The center of the loupe must be in the center of the cut picture. 

As you can see in Sec. 6 we need to use a 
𝑙0

2𝜋𝑓0𝑑
 multiplier on the generated surface 

to get the depth values and set the X and Y direction multiplier for the artificial 
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one, so the parallel edges of the reconstructed surface will have the same values. 

For the evaluation we cut the middle line and searched its radius. 

 

Figure 8 

Captured image 

 

Figure 9 

Ready for process image 

7.2 Results 

The three-ball spherometer measurement gave 390,418 mm for the radius of the 

lens. If the manufacturing errors were neglected we can assume that the lens has 

the same radius in every direction, because of its symmetry. We used the 

following mother wavelets with different tuning parameters: Complex Morlet, 
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Complex Frequency B-spline, Complex Shannon and Complex Gaussian. After 

the reconstruction of the surface we measured the vertical (𝑅𝑦) and the horizontal 

(𝑅𝑥) radius. The results can be seen in Table 1-4. 

7.2.1 Complex Morlet Wavelets 

When the tuning parameters (𝑓𝑏 , 𝑓𝑐) are set to equally 1 respectively, this method 

gives the best results, but it is only accurate in the vertical (𝑅𝑥) direction. 

Table 1 

Radius of X and Y directions with Complex Morlet wavelets 

 fb – fc 

CMOR 1-0.1 1-0.5 1-1 1-1.5 

Rx [mm] 402.5 421.3 386.6 106.9 

Ry [mm] 9.7 100 206.4 46.7 

7.2.2 Complex Frequency B-spline Wavelets 

The lowest error was 1,2% with 385,7 mm radius in vertical (𝑅𝑥) direction. The 

parameters were set in this case to 𝑓𝑏 = 2, 𝑚 = 1, 𝑓𝑐 = 1. The results were 

acceptable only in vertical direction, similar to the Morlet wavelets.  

Table 2 

Radius of X and Y directions with Complex Frequency B-spline wavelets 

 fb – m – fc 

FBSP 1-1-0.5 1-1-1 1-1-1.5 2-1-0.1 2-1-0.5 2-1-1 2-1-1.5 

Rx [mm] 673.1 375.4 153.5 44125.3 302.7 385.7 107.4 

Ry [mm] 19.7 231.4 25.7 103.7 219.9 223.8 39.9 

7.2.3 Complex Shannon Wavelets 

The complex Shannon wavelets produced the highest error in the radius in both 

directions. The only assessable result was 3,14% error with 375,4 mm radius in 

the case of 𝑓𝑏 = 1, 𝑓𝑐 = 1. 

Table 3 

Radius of X and Y directions with Complex Shannon wavelets 

 fb – fc 

SHAN 1-0.1 1-0.5 1-1 1-1.5 2-3 

Rx [mm] 450.4 673.2 375.4 153.3 64.2 

Ry [mm] 53.2 19.7 231.4 25.7 12.3 
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7.2.4 Complex Gaussian Wavelets 

The Complex Gaussian algorithm provided the best results both in vertical (𝑅𝑥) 

and horizontal (𝑅𝑦) direction. However, the latter ones error was still intolerably 

high. The equation contains only one settable parameter, which gives the order of 

the Gauss-transformation. If we set p=3 (a third ordered Gauss-transformation) we 

can get the most accurate results, with 0,28% error with 393,0 mm radius. 

Table 4 

Radius of X and Y directions with Complex Gaussian Wavelets 

 p 

CGAU 1 2 3 4 5 6 7 8 

Rx [mm] 353.1 277.8 393 339.9 378.4 346.6 376.8 346.5 

Ry [mm] 204.5 209.6 215.3 222.5 227.8 229.9 225.2 217 

7.2.5 Evaluation 

The projected pattern carries its waves through the transformation. Therefore. the 

waviness and disturbance of the reconstructed surface are making the operation 

less accurate. We can apply different kind of filters to eliminate this error, but they 

are so small that a filtering can cause relevant information loss as well.  

From our goals of view we can say that the reconstruction of the object were 

successful, we were able to recover the radius value of the lens with small error. 

The Fig. 9 shows on of the best matched reconstructed surface and its middle 

segment which from we calculated the radius. To show the mentioned waviness 

we enlarged the values. 

 

Figure 10 

Enlarged reconstruction of the object with third-ordered Complex Gaussian wavelet 
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Figure 11 

Middle segment to measure the radius (enlarged) 

For industrial usage the method is still too slow, but the accuracy is high enough 

for quality control applications. That is why we choose the field of 

biomechatronics to create a three-dimensional reconstruction of a human back to 

detect spine-abnormalities. 

8 Test Framework with Mannequin 

A real human’s back can contain many types of physical disorders, like 

outgrowths and birthmarks, which can cause discontinuity on the surface. 

Therefore, we need a “perfect” subject to widen the range of parameters and find 

the suitable ones. The method is following the same path: project the structured 

light, capture the image, cut and filter the relevant part and use Wavelet-transform 

analysis, but in this case with wider range of tuning parameters. The waving that 

can be seen in Fig. 9 is less dominant in some case, so our goal was to find an 

algorithm with which we can avoid this waving while keeping a level of high 

accuracy. We used the {𝑓𝑏|0.5 ≤ 𝑓𝑏 ≤ 3, 𝑓𝑏 = 0.5𝑘, 𝑘 ∊ ℤ} and {𝑓𝑐|0.5 ≤ 𝑓𝑐 ≤
3, 𝑓𝑐 = 0.5𝑘, 𝑘 ∊ ℤ} intervals for the tuning parameters in the case of Complex 

Morlet, Complex Shannon and Complex Frequency B-spline wavelets, for the 

latter we used {0.5 ≤ 𝑚 ≤ 2 ∶ 0.5 | 𝑚}, and the Complex Gaussian transformation 

remained the same. To obtain the best reconstruction of the highest frequency 

needed by the projection because in this case the number of lines is the highest too 

and tested 152 different mother wavelets. 

8.1 Evaluation 

In the first step we picked the ones without errors which could have been seen 

with naked eyes, then cut a horizontal segment and multiplied the values, so we 

could have seen if they containedany waving in their minima or maxima. We then 
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can take this measurement as an ideal back reconstruction and choose 8 mother 

wavelets which can be used for later usage: 

 Complex Morlet(𝑓𝑏 = 0,5; 𝑓𝑐 = 1,5) 

 Complex Morlet(𝑓𝑏 = 1; 𝑓𝑐 = 1) 

 Complex Morlet(𝑓𝑏 = 1,5; 𝑓𝑐 = 1) 

 Complex Morlet(𝑓𝑏 = 2; 𝑓𝑐 = 1) 

 Complex Frequency B-spline (𝑓𝑏 = 2; 𝑚 = 0,5; 𝑓𝑐 = 0,5) 

 Complex Frequency B-spline (𝑓𝑏 = 2; 𝑚 = 1,5; 𝑓𝑐 = 1) 

 Complex Frequency B-spline (𝑓𝑏 = 2; 𝑚 = 1; 𝑓𝑐 = 1) 

 Complex Gaussian (𝑝 = 8) 

Fig. 11 and Fig. 12 shows that the reconstruction can be implemented with good 

approximation, but this is measured by shaping the function and selected with 

naked human eyes, so we need more experiments with measurable test subjects. 

To do this we used a real human body with spine-disorder, called scoliosis, and 

calculated the correlation between the digitally reconstructed spine shape and a 

radiogram. 

 

Figure 12 

Reconstructed mannequin back with 8th order Complex Gaussian Wavelet 
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Figure 13 

Horizontal segment of the reconstructed surface without equal axis 

9 Test Framework with Living Subject 

9.1 Spine Deformation Types 

The human spine contains 33 small bones called vertebrae, and their connection 

creates a natural curve, which runs straight down from the back and located in the 

middle of the back. It can absorb the stress from external impacts like movements 

and weight, therefore, its deformation has huge physiological effect [15]. We can 

distinguish three main type of the deformations: 

 Scoliosis: The spine has a sideway curve so it becomes S- or C-shaped 

(Fig. 13a).  

 Kyphosis: The back is abnormally rounded, the curvature has more than 

50 degrees in it (Fig. 13b) 

 Lordosis: Also called as swayback, because it has a significant inward 

curving of the spine at the lower back (Fig. 13c) 
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Figure 14 

Types of spine deformations: a) Scoliosis, b) Kyphosis, c) Lordosis [16] 

9.2 Examination of the Spine Shape from WTP 

The procedure was the same as before: project the pattern, capture the image, cut 

and filter, then reconstruct the surface – in this case her back - with Wavelet-

transform profilometry. Our subject was a 24 year old girl with slight scoliosis. To 

measure the accuracy we needed to determine the spine curving and fit a 

polynomial on it. 

 

Figure 15 

a) Tested back with slight scoliosis, b) Ready to process image, c) Reconstructed surface with 8th order 

Complex Gaussian Wavelet, d) Radiogram from the spine 
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As it can be seen in Fig. 13a the scoliosis causes a sideway curve so it forms a S- 

or C-shape that is why we approximated this curve with a cubic polynomial. We 

tried to find the deepest point of each line of the reconstructed surface and fit a 

polynomial on the points. We had an assumption that the deepest point of the row 

must be in a certain interval, if not then it would break the spine continuity. 

Therefore, that point cannot be on the spine. 

9.3 Examination of the Spine Shape from Radiogram 

To calculate the inaccuracy we needed an etalon, which was a radiogram from the 

subject’s back. Although the radiogram was taken 6 years ago, our subject did not 

participate in any kind of treatment, so her back did not change a lot since then. 

After considering this information, we set a goal to reach of less than 30% 

difference between the x-dependent coefficients.  

The scanned radiogram (Fig. 14d) is not clear enough to detect the vertebra easily 

with image processing techniques. So, we decided to use markers on it by sticking 

red dots on the middle of the vertebra and read their coordinates. For better results 

we did not use all the markers to fit polynomial on, only the ones which are part of 

the S-shape. 

9.4 Evaluation of the Results 

Some of the polynomials were far-out of the acceptable limits, it could be seen 

even with naked eyes. The Complex Morlet Wavelet gave the lowest difference 

between the coefficients, 26,64% with 𝑓𝑏 = 1,5, 𝑓𝑐 = 1 and 29,47% with 𝑓𝑏 =
2 𝑓𝑐 = 1. In the case of 8

th
 order Complex Gaussian Wavelet the differences were 

50,8%, which is not suitable anymore. 

 

Figure 16 

Reconstructed spine shape with a) CMOR (1,5-1) and b) CMOR (2-1) blue: polynomial from WTP; 

red: polynomial from the radiogram 
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10 Development Opportunities 

First of all we would like to terminate the waving hereby reach higher accuracy in 

the horizontal direction. There are some methods for this, but all of them reduce 

the vertical direction accuracy. The other development opportunity is to use a 

higher resolution camera to capture the image, but the higher amount of pixel 

results higher processing time as well. Further development opportunity is to use 

machine learning algorithm to set the variables of this method with an advanced 

controller [17] to create embedded systems. 

Conclusions 

In this paper we presented the well-known Fringe Projection Technique solutions. 

We also did some measurements, where this technique was tested on a lens, and a 

human body. In the first case the best solution was chosen from the used 

Wavelets, we got the closest result using Complex Gaussian Wavelets. The best 

solution happened with the third ordered Gauss transformation. The measured 

radius of the examined lens was 390.42 mm, using this CGAU Wavelet we got a 

very close 393.00 mm result. 

On a real human we also tried this profilometric technique, the used Wavelets 

were the Complex Morlet (with 4 different settings), the Complex Frequency B-

Spline (with 3 different settings), and the Complex Gaussian (p=8). The best 

solution originated from the Complex Morlet Wavelet, where 𝑓𝑏 = 1,5, 𝑓𝑐 = 1. 

The Complex Gaussian gave us a huge inaccuracy. It can be stated that in this case 

the Complex Gaussian Wavelet is not the right choice.  

In this work we successfully applied the Wavelet-transform profilometry in 

surface identification. By lower noise-signal ratio the Complex Gaussian wavelet 

provided the best results, but as we enlarged this ratio by scanning a real human 

back the Complex Morlet Wavelet had higher accuracy. As the research shows the 

WTP can be adapted well for the current environment by using different mother 

wavelets, so it could be applied in many other industrial fields as well. 
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