
Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 27 –

Time and Memory Profile of a Process
Functional Program

Ján Kollár, Jaroslav Porubän, Peter Václavík
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
Jan.Kollar@tuke.sk

Abstract: An execution profiling attempts to provide feedback by reporting to the
programmer information about inefficiencies within the program Instead of writing whole
code highly optimized, the programmer can initially write simple maintainable code
without much concern for efficiency. Profiling is an effective tool for finding hot spots in a
program or sections of code that consumes most of the computing time and space. The
paper presents already implemented execution profiler for process functional program.
From the viewpoint of implementation, process functional language is between an impure
eager functional language and a monadic lazy pure functional language. The key problem
of execution profiling is to relate gathered information about an execution of the program
back to the source code in well defined manner. The paper defines language constructs for
monitoring resource utilization during the program execution. In our solution programmer
can associate label with each expression in a program. All resources used during the
evaluation of a labeled expression are mapped to the specified label. The paper is
concerned with formal profiling model. Research results are presented on sample program
illustrating different types of time and space profiles generated by already implemented
profiler for process functional programs.

Keywords. Functional programming, program profiling, process functional language,
formal profiling model

1 Introduction
A purely functional language is concise, composable and extensible. The
reasoning about the pure functional programs defined in terms of expressions and
evaluated without side effects is simpler than the reasoning about the imperative
programs describing the tasteful systems. From the viewpoint of systems design, it
seems more appropriate (at least to most of programmers) to describe the systems
using an imperative language, expressing the state explicitly by variables as

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 28 –

memory cells. Although the reliability of an imperative approach may be
increased using object oriented paradigm, it solves neither the problem of
reasoning about the functional correctness of fine grains of computation, since
they are still affected by subsequent updating the cells in a sequence of
assignments, nor the problem of profiling the program to obtain the execution
satisfying the time requirements of a user.

Using the today compilers, code generators and tools, programmer can define
functionality of a program on a higher abstract level than anytime before. Many
programmers write their programs without knowledge of resource utilization
during the program execution what leads to inefficiencies within the code. Barry
Boehm reports that he has measured that 20 percent of the routines consume 80
percent of the execution time 0. Donald Knuth found that less than 4 percent of a
program usually accounts for more than 50 percent of its run time 0. That is why
the code optimization is so important. An execution profiling attempts to provide
feedback by reporting to the programmer information about inefficiencies within
the program 0. Informations about resource utilization are collected during the
program execution. Instead of writing whole code highly optimized, the
programmer can initially write simple, maintainable code without much concern
for efficiency. Once completed the performance can be profiled, and effort spent
improving the program where it is necessary 0. Profiling 00 is an effective tool for
finding hot spots in a program, the functions or sections of code that consume
most of the computing time. Profiles should be interpreted with care, however.
Given the sophistication of compilers and the complexity of caching and memory
effects, as well as the fact that profiling a program affects its performance, the
statistics in a profile can be only approximate.

Many of ideas for process functional program profiling come out a pure functional
program profiling because of the same functional basis 00,000,0,0. Our previous
work proved that all process functional programs can be easily transformed into
pure functional programs 0 using state transformers and monads. The paper
presents our approach to profiling of process functional program and formal
model of process functional program profiling. It is simple to extend the approach
to both imperative and functional language.

2 Process Functional Language PFL
From the viewpoint of implementation, PFL is between an impure eager
functional language and a monadic lazy pure functional language. The main
difference between a process functional language and a pure functional language
is variable environment which is designed to fulfill the needs of easier state
representation in a functional program 0.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 29 –

Variable environment in PFL is a mapping from variable to its value. The variable
environment are updated and accessed during the runtime implicitly applying the
process to values. The process in the process functional language differs from a
function in a purely functional language only by its type definition. Let us define
process p as an example.

p :: a Int → b Int → Int

p x y = x + y

Applying the process p to arguments, for example p 2 3, expression evaluates to 5,
environment variable a is updated to value 2 and environment variable b is update
to value 3. If the process is applied to a control value (), for example p () 4 than
the process is evaluated using the current value of the environment variable a and
variable b is updated to 4.

3 Execution Profiling
There are two main resources that are utilized in program and systems:
computation time and memory space. Although it would be better to minimize
both time and space, it is well understood that these two requirements are
contradictory and it is impossible to fulfill both at the same time. Before being
able to improve the efficiency of a program, a programmer must be able to 0:

• Identify execution bottlenecks of the program - parts of a program where
much of time and space is used.

• Identify the cause of these bottlenecks

The potential benefits of execution profiling were first highlighted by Knuth 0. A
profiler must conform two main criteria:

• must measure the distribution of the key program resources,

• measurement data must be related to the source code of a program in
understandable manner.

Execution profile describes resource distribution during the program execution.
Informations about resource distribution are gathered during the program
execution. The profiling cycle describes the process of improving the program
efficiency based on the program execution profile. The key problem of execution
profiling is to relate gathered information about an execution of the program back
to the source code in well defined manner. This is difficult when functional
program is profiled since it provides higher level of abstractions than imperative
one. Some features of a functional language, which makes program profiling more
difficult than profiling an imperative program are: program transformation during

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 30 –

compilation, polymorphism, higher-order function, lazy evaluation, a lot of simple
functions within code.

4 Simple Program Profiling
Since our aim is "to compute" resource utilization at any point of computation, we
define special constructs to monitor the resource utilization during the PFL
program execution. In our solution programmer can associate label with each
expression in a program as follows:

label name e

All resources used during the evaluation of an expression e are mapped to the
center specified with label name. Using this construct programmer can concentrate
on a specific part (or parts) of a program. Expression label name e is evaluated to
value of e. Construct label is useful for the profiling purposes only. Of course, it is
necessary to preserve the semantics of the expressions labeling during the
transformation of the program when it is compiled. To be more precise, constructs
for conditional profiling were incorporated into the process functional language.
The first one is as follows.

label name e when ec

If expression ec is evaluated to value True of the Bool type, then all resources used
during the evaluation of e are associated with label name. Otherwise, all used
resources are attributed to the parent center. Of course, evaluation of ec can not
update the variable environment, because it is necessary to evaluate the program
to the same value during the program profiling as during the program execution.
On the other side, variable environment can be accessed during the evaluation of
expression ec. Fulfillment of this is rule checked during the static analysis in the
compiler. Resources used during the evaluation of the conditional expression ec
are attributed to the special label profiling representing profiling overhead costs.
All labeling inside the ec are ignored.

It is clear, that conditional labeling is not the same as

if ec then label name e else e

because of two main reasons:

• expression ec is evaluated only during the profiling not the program
execution,

• all resources used during the evaluation of ec are attributed to the center
with label profiling regardless of labeling in ec.

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 31 –

Conditional profiling can enormously extend the time of profiling depending on
the complexity of expressions ec. Using conditional profiling labeled center can be
dynamically activated based on decision during the execution of a program. Next
example presents conditional labeling.

label "test" is_prime n when n > 100

5 Inheritance Profiles
Inheritance profiling can reduce the time spent with program profiling
concentrating on smaller grains (pats of a program) than in simple profiling.
Programmer can profile a part of program/function/expression depending on
arguments and context. The usage of inheritance profile is explained on example.
Usually the cost of function evaluation depends on arguments to which are
function applied. Sometimes it is useful to consider the context of function in
which it is called - parent. That is why the inheritance profiles are created.

On Figure 1 call graph of a simple program is depicted. Function h is called from
function f 10 times with total cost 500 and from function g 20 times with total cost
100. Simple profile for the program is on Figure 2. Figure 3 presents inheritance
profile for the presented call graph and function h. The first one is statistical
profile which is generated from count and simple profile. The second one is
measured accurate inheritance profile.

Figure 1

Call graph example

Function Called Cost
f 1 10
g 4 80
h 30 600

Figure 2
Simple profile

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 32 –

Parent→ Function Called
Total

Cost
Statistical Inheritance

Cost
Accurate Inheritance

f→h 10/30 200 500
g→h 20/30 400 100

Figure 3
Inheritance profile

In our profiler a few constructs for inheritance profile support have been
implemented. The first one construct defined for conditional labeling with regard
to parent context.

label name e when enclosed namec

Using this construction, labeled center can be activated if parent center is same as
specified. This construction can be used to create inheritance profiles. Resources
used during the evaluation of expression e are attributed to the center with label
name only if parent center is namec. Otherwise, resources are attributed to the
parent center. Next example presents usage of conditional enclosed labeling.

f = label "f" h 500

g = label "g" h 100

h n = label "f-h" (label "f-g" (p n)

 when enclosed "f") when enclosed "f"

For more flexible inheritance profiling two other constructions were defined.

label name inherits e

label name inherits e when ec

Parent context are automatically added to the current labeled center. Inheritance
profiling is not limited only to two levels parent/child.

Next example presents labeling for inheritance profiling of a simple process
functional program.

f = label "f" h 500

g = label "g" h 100

h n= label "h" inherits (p n)

Function h can be evaluated from function f or h. Using the inheritance profiling
label "h" is always connected with context of evaluation (function "f" or "g").

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 33 –

6 Formally Based Program Profiling
This section presents formal model of process functional program profiling. Our
approach is presented on subset of PFL with constructs for profiling - simplified
PFL. All PFL constructions are transformed to simplified PFL during the program
compile time. This approach can be extended to all PFL language constructs. The
meta-variables and categories for simplified PFL language are as follows:

Label
rConstructoEnvVarPrimitiveFncName

VExpressionDefinitionProgram

∈
∈∈∈⊕∈

∈∈∈∈

labelname,
Cyf

arxeDefPrg

The meta-variables can be primed or subscripted. The syntactic category Primitive
defines strict primitive operations like elementary arithmetic operations. The
syntactic category Var represents variable identifiers and syntactic category
EnvVar represents environment variable identifiers. The syntactic category
Constructor comprises constructors of algebraic types. Primitive types, such as Int
and Real, are included in the syntactic category Constructor as zero arity
constructors. Syntactic category Label comprises label names. Program in
simplified PFL consists of processes, functions and main expression which are
evaluated during the program execution. Abstract syntax of simplified PFL is as
follows.

{ }

1 2

1 2

1 2

1

:: Variable
| Function
| Primitive
| () Access
| Update
| Constructor
| Aplication

| case of Case

| label Label
| label when CondLabel
| label when enclosed EncLabel
| lab

i

n
i i m i i

c

c

e x
f
e e
y
y e
C e e
e e

e C x x e

name e
name e e
name e name

=

=

⊕

→

K

K

el inherits InhLabel
| label when when InhCondLabelc

name e e
name e e e

The value v of an expression is either a lambda abstraction or a value of an
algebraic type

ex
vvCv n

.|
:: 1

λ
K=

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 34 –

where n≥0.

The runtime state is defined by environments envv, enve. Environment envf is
created during the compilation. Environment envv represents the heap for the
values of lambda variables and enve is a set of memory cells for storing values of
environment variables.

()

f

v

e

v e

Env FncName Expr

Env Var Value
Env EnvVar Value

, State Env Env

f

v

e

v e

env

env
env
env env s

∈ = →

∈ = →

∈ = →

= ∈ = ×

The semantic rules for simplified PFL expressions are defined on Figure 4. Figure
Figure 5 presents semantic rules for label expressions. All rules are named
corresponding to abstract syntax rule names. The predicate matches for pattern
matching and operator extract for extracting i-th item value of the structure
constructed by C v1 ... vi ... vn are defined as follows.

nivivvvCextract
vvvCvxxxCvmatches

ini

nini

≤≤=
=⇔

1 where,1

11

KK

KKKK

The notation

()',,:, svselabelenv f μ→

defines that expression e is evaluated in environment envf considering the state s
and current label label and produces the value v, new state s' and resource
environment μ. Resource environment maps label to resources used during the
evaluation of labeled expression with specified label.

[] []
lll

ll

nil

nn

i

2121

11

i

)(

ResourcesLabelpResourceMa
1 Resources,Label,

μμμμ
ρρμ

μ
ρ

+=∪
→→=

→=∈
≤≤∈∈

K

The costs of elementary operation such as variable access or function application
are defined as follows.

 V cost of variable access

 F cost of closure creation

 P cost of primitive operation evaluation

 Ea cost of environment variable access

 Eu cost of environment variable access

 C cost of constructor creation

 A cost of function application

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 35 –

 D cost of case evaluation

 L cost of lambda abstraction evaluation

7 Implementation
Implemented process functional program profiler nowadays supports five types of
profiles:

1 frequency count profile

2 time profile

3 heap profile

4 maximum requirements heap profile

5 variable access/update profile

Program profile is created during the execution using the sampling method.
Execution is interrupted in specified time intervals (predefined value is 10
milliseconds) and information about used resources are collected and attributed to
the current labeled center. Program profiling increases execution time
approximately from 5 to 10% depending on the concrete program and labeling.
Formal semantics of the execution profiling is out of the scope of this paper and
can be found in 0.

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 36 –

() [] ()()evvlabelevf envenvxenvenvenvxlabelenv ,,,,:, Va→ Variable

()

[] ()',,:,

',,:,

svsflabelenv

svsfenvlabelenv

Flabelf

ff

a∪→

→

μ

μ
 Function

()
()

[] ()22121

2212

111

,,:,

,,:,

,,:,

21

2

1

svvseelabelenv

svselabelenv

svselabelenv

Plabelf

f

f

⊕→⊕

→

→

⊕∪∪ aμμ

μ

μ

 Primitive

() [] ()()evelabelevf envenvyenvenvenvylabelenv

a
,,,(),:, Ea→ Access

() ()()
() [] []()()vyenvenvvenvenveylabelenv

envenvvenvenvelabelenv

evlabelevf

evevf

u
aa ',',,,:,

',',,,:,

E∪→

→

μ

μ
 Update

()

()

()

[] ()nnilabelnif

nnnnf

iiiif

f

svvvCseeeClabelenv

svselabelenv

svselabelenv

svselabelenv

ni

n

i

,,:,

,,:,

,,:,

,,:,

1C1

1

1

111

1

1

KKKK

K

K

aKK ∪∪∪∪∪

−

−

→

→

→

→

μμμ

μ

μ

μ

 Constructor

()

()()
[] []() ()

[] ()'',,:,

'',,,/:,

,,',:,

',.,:,

A21

2

22

1

321

3

2

1

svseelabelenv

svenvvxenvxxelabelenv

envenvvselabelenv

sexselabelenv

labelf

evf

evf

f

a

a

∪∪∪→

→

→

→

μμμ

μ

μ

μ λ

 Application

()()

()
[](

[] ()

{ } [] ()'','',ofcase:,

'','','

1',:,

'

,,',:,

D11

'

1
'

1

''

svsexxCelabelenv

svenvmvextractx

vextractxenvelabelenv

xxCvmatches

envenvvselabelenv

label
n

iimif

ejm

vjf

mj

evf

ji

jj

j

aK

aK

Ka

K

∪∪=
→→

→

→

μμ

μ

μ

 Case

[] ()sexsexlabelenv labelf ,.,.:, L λλ a→ Lambda

Figure 4
The semantics of expressions

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 37 –

()
()',,label:,

',,:,

svsenamelabelenv

svsenameenv

f

f

μ

μ

→

→
 Label

()

()
()',,whenlabel:,

',,:,

,,:profiling,

svseenamelabelenv

svsenameenv
Truevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 CondLabeltt

()

()
()',,whenlabel:,

',,:,

,,:profiling,

svseenamelabelenv

svselabelenv
Falsevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 CondLabelff

()
()',,enclosedwhenlabel:,

',,:,

svsnameenamelabelenv

svsenameenv
labelname

cf

f

c

μ

μ

→

→

=

 EncLabeltt

()
()',,enclosedwhenlabel:,

',,:,

svsnameenamelabelenv

svselabelenv
labelname

cf

f

c

μ

μ

→

→

≠

 EncLabelff

()

()',,inheritslabel:,

',,:),(,

svsenamelabelenv

svsenamelabelcontextenv

f

f

μ

μ

→

→
 InhLabel

()

()
()',,wheninheritslabel:,

',,:),(,

,,:profiling,

svseenamelabelenv

svsenamelabelcontextenv
Truevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 InhCondLabeltt

()

()
()',,wheninheritslabel:,

',,:,

,,:profiling,

svseenamelabelenv

svselabelenv
Falsevmatches

svseenv

cf

f

c

cccf c

μ

μ

μ

→

→

→

 InhCondLabelff

Figure 5

The semantics of label expressions

The next section presents simple example with profiling outputs from the
implemented profiler for process functional language. The problem solved by the
program is to

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 38 –

1 generate prime numbers from 1 to 100 (label prime),

2 sum prime number from 1 to 100 (label sum),

3 calculate dividers of the sum (label dividers),

4 generate list of values from 1 to 1000 (without any label).

PFL program source code for the problem with profile labeling is as follows.

gen_list m n = if m > n then [] else m : gen_list (m + 1) n

can_be_divided n m = (n % m) == 0

is_prime_number n = not (foldl (or) False (map (can_be_divided n)

 (gen_list 2 (n - 1))))

prime_numbers from to = filter (is_prime_number) (gen_list from to)

dividers n = filter (can_be_divided n) (gen_list 1 n)

main = (toUnit (label "dividers" dividers (

 label "sum" sum

 (label "prime" primeNumbers 1 100))))

 `bl` (toUnit (generateIntegerList 1 1000))

Time and memory profile for example program produced by the profiler is on
Figure 6.

Figure 6

Time and memory profile

Conclusions

Using the execution profile of a program a programmer had to answer next two
questions:

• How are resources distributed during the program execution?

• What is the effect of a particular modification of a program?

Acta Polytechnica Hungarica Vol. 3, No. 2, 2006

 – 39 –

Our solution to process functional program execution profiling was presented in
this paper. Using our method every expression in the PFL program can be
separately profiled. The definition of profiling grains is up to the programmer.
Suggested formal model can be used for reasoning about program profiling.

This work is based on our previous research of profiling and static evaluation of
process functional programs 0. As a result, the static evaluation method is strongly
associated with the source specification. This may help to a programmer while
program development considering not just the function but also the behavior,
represented by resources used. Combining execution profiling with static analysis
look very promising in gathering information about resource utilization during
program execution.

In the past, we have PFL-to-Java and PFL-to-Haskell generators developed. The
subject of our current research is integrating aspect and process functional
paradigm of programming. Our future plan is to extend profiling tools to object
oriented PFL and to formal specification of a program profiling for parallel
environment.

References

[1] B. W. Boehm: Improving Software Productivity. IEEE Computer 20, Vol.
9, 1987, pp. 43-57

[2] Ch. D. Clack, S. Clayman, D. Parrott: Lexical Profiling: Theory and
Practice. Journal of Functional Programming Vol. 5, No. 2, 1993, pp. 225-
277

[3] D. Hamlet: On subdomains: Testing, profiles, and components, Proceedings
of the International Symposium on Software Testing and Analysis,
Portland, Oregon, United States, August 21-24, 2000, pp.71-76

[4] J. Kollár: Partial Monadic Approach in Process Functional Language. Acta
Electrotechnica et Informatica No. 1, Vol. 3, Košice, Slovak Republic,
2003, pp. 36-42

[5] J. Kollár, J. Porubän, P. Václavík, M. Vidiščák: Lazy State Evaluation of
Process Functional Program. Proceding of 5th International Conference
ISM 2002, Rožnov pod Radhoštem, Czech Republic, April 22-24, 2002

[6] D. E. Knuth: An Empirical Study of FORTRAN Programs. Software -
Practice and Experience 1, 1971, pp. 105-133

[7] J. Porubän: Time and space profiling for process functional language.
Proceeding of the 7th Scientific Conference with International Participation
EMES '03, Felix Spa-Oradea, May 29-31, 2003, pp. 167-172

[8] N. Rojemo: nhc - Nearly a Haskell compiler, in Proceedings of La
Wintermote, Dept of Computer Science, Chlamers University, Sweden,
January 1994

J. Kollár et al. Time and Memory Profile of a Process Functional Program

 – 40 –

[9] C. Runciman, D. Wakeling: Heap Profiling of Lazy Functional Programs.
Journal of Functional Programming, Vol. 3, No. 2, pp. 217-245, 1993

[10] P. M. Sansom: Execution profiling for non-strict functional languages.
Research Report FP-1994-09, Dept. of Computing Science, University of
Glasgow, September 1994

[11] P. M. Sansom, S. L. Peyton Jones: Profiling lazy functional programs.
Functional Programming, Glasgow 1992, Springer Verlag, Workshops in
Computing, 1992

[12] P. M. Sansom, S. L. Peyton Jones: Time and space profiling for non-strict,
higher-order functional languages, Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
San Francisco, California, United States, January 23-25, 1995, pp. 355-366

[13] P. M. Sansom , S. L. Peyton Jones: Formally based profiling for higher-
order functional languages, ACM Transactions on Programming Languages
and Systems (TOPLAS), Vol. 19, No. 2, March 1997, pp. 334-385

[14] S. Rubin, R. Bodík , T. Chilimbi: An efficient profile-analysis framework
for data-layout optimizations, Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Portland,
Oregon, January 16-18, 2002, pp. 140-153

[15] P. Wadler, P. Thiemann: The marriage of effects and monads. ACM
Transactions on Computational Logic, Volume 4, Issue 1, 2003, pp. 1-32

