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Abstract: An execution profiling attempts to provide feedback by reporting to the 
programmer information about inefficiencies within the program Instead of writing whole 
code highly optimized, the programmer can initially write simple maintainable code 
without much concern for efficiency. Profiling is an effective tool for finding hot spots in a 
program or sections of code that consumes most of the computing time and space. The 
paper presents already implemented execution profiler for process functional program. 
From the viewpoint of implementation, process functional language is between an impure 
eager functional language and a monadic lazy pure functional language. The key problem 
of execution profiling is to relate gathered information about an execution of the program 
back to the source code in well defined manner. The paper defines language constructs for 
monitoring resource utilization during the program execution. In our solution programmer 
can associate label with each expression in a program. All resources used during the 
evaluation of a labeled expression are mapped to the specified label. The paper is 
concerned with formal profiling model. Research results are presented on sample program 
illustrating different types of time and space profiles generated by already implemented 
profiler for process functional programs. 

Keywords. Functional programming, program profiling, process functional language, 
formal profiling model 

1 Introduction 
A purely functional language is concise, composable and extensible. The 
reasoning about the pure functional programs defined in terms of expressions and 
evaluated without side effects is simpler than the reasoning about the imperative 
programs describing the tasteful systems. From the viewpoint of systems design, it 
seems more appropriate (at least to most of programmers) to describe the systems 
using an imperative language, expressing the state explicitly by variables as 
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memory cells. Although the reliability of an imperative approach may be 
increased using object oriented paradigm, it solves neither the problem of 
reasoning about the functional correctness of fine grains of computation, since 
they are still affected by subsequent updating the cells in a sequence of 
assignments, nor the problem of profiling the program to obtain the execution 
satisfying the time requirements of a user. 

Using the today compilers, code generators and tools, programmer can define 
functionality of a program on a higher abstract level than anytime before. Many 
programmers write their programs without knowledge of resource utilization 
during the program execution what leads to inefficiencies within the code. Barry 
Boehm reports that he has measured that 20 percent of the routines consume 80 
percent of the execution time 0. Donald Knuth found that less than 4 percent of a 
program usually accounts for more than 50 percent of its run time 0. That is why 
the code optimization is so important. An execution profiling attempts to provide 
feedback by reporting to the programmer information about inefficiencies within 
the program 0. Informations about resource utilization are collected during the 
program execution. Instead of writing whole code highly optimized, the 
programmer can initially write simple, maintainable code without much concern 
for efficiency. Once completed the performance can be profiled, and effort spent 
improving the program where it is necessary 0. Profiling 00 is an effective tool for 
finding hot spots in a program, the functions or sections of code that consume 
most of the computing time. Profiles should be interpreted with care, however. 
Given the sophistication of compilers and the complexity of caching and memory 
effects, as well as the fact that profiling a program affects its performance, the 
statistics in a profile can be only approximate. 

Many of ideas for process functional program profiling come out a pure functional 
program profiling because of the same functional basis 00,000,0,0. Our previous 
work proved that all process functional programs can be easily transformed into 
pure functional programs 0 using state transformers and monads. The paper 
presents our approach to profiling of process functional program and formal 
model of process functional program profiling. It is simple to extend the approach 
to both imperative and functional language. 

2 Process Functional Language PFL 
From the viewpoint of implementation, PFL is between an impure eager 
functional language and a monadic lazy pure functional language. The main 
difference between a process functional language and a pure functional language 
is variable environment which is designed to fulfill the needs of easier state 
representation in a functional program 0. 
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Variable environment in PFL is a mapping from variable to its value. The variable 
environment are updated and accessed during the runtime implicitly applying the 
process to values. The process in the process functional language differs from a 
function in a purely functional language only by its type definition. Let us define 
process p as an example. 

p :: a Int → b Int → Int 

p x y = x + y 

Applying the process p to arguments, for example p 2 3, expression evaluates to 5, 
environment variable a is updated to value 2 and environment variable b is update 
to value 3. If the process is applied to a control value (), for example p () 4 than 
the process is evaluated using the current value of the environment variable a and 
variable b is updated to 4. 

3 Execution Profiling 
There are two main resources that are utilized in program and systems: 
computation time and memory space. Although it would be better to minimize 
both time and space, it is well understood that these two requirements are 
contradictory and it is impossible to fulfill both at the same time. Before being 
able to improve the efficiency of a program, a programmer must be able to 0: 

• Identify execution bottlenecks of the program - parts of a program where 
much of time and space is used. 

• Identify the cause of these bottlenecks 

The potential benefits of execution profiling were first highlighted by Knuth 0. A 
profiler must conform two main criteria: 

• must measure the distribution of the key program resources, 

• measurement data must be related to the source code of a program in 
understandable manner. 

Execution profile describes resource distribution during the program execution. 
Informations about resource distribution are gathered during the program 
execution. The profiling cycle describes the process of improving the program 
efficiency based on the program execution profile. The key problem of execution 
profiling is to relate gathered information about an execution of the program back 
to the source code in well defined manner. This is difficult when functional 
program is profiled since it provides higher level of abstractions than imperative 
one. Some features of a functional language, which makes program profiling more 
difficult than profiling an imperative program are: program transformation during 



J. Kollár et al. Time and Memory Profile of a Process Functional Program 

 – 30 – 

compilation, polymorphism, higher-order function, lazy evaluation, a lot of simple 
functions within code. 

4 Simple Program Profiling 
Since our aim is "to compute" resource utilization at any point of computation, we 
define special constructs to monitor the resource utilization during the PFL 
program execution. In our solution programmer can associate label with each 
expression in a program as follows: 

label name e 

All resources used during the evaluation of an expression e are mapped to the 
center specified with label name. Using this construct programmer can concentrate 
on a specific part (or parts) of a program. Expression label name e is evaluated to 
value of e. Construct label is useful for the profiling purposes only. Of course, it is 
necessary to preserve the semantics of the expressions labeling during the 
transformation of the program when it is compiled. To be more precise, constructs 
for conditional profiling were incorporated into the process functional language. 
The first one is as follows. 

label name e when ec 

If expression ec is evaluated to value True of the Bool type, then all resources used 
during the evaluation of e are associated with label name. Otherwise, all used 
resources are attributed to the parent center. Of course, evaluation of ec can not 
update the variable environment, because it is necessary to evaluate the program 
to the same value during the program profiling as during the program execution. 
On the other side, variable environment can be accessed during the evaluation of 
expression ec. Fulfillment of this is rule checked during the static analysis in the 
compiler. Resources used during the evaluation of the conditional expression ec 
are attributed to the special label profiling representing profiling overhead costs. 
All labeling inside the ec are ignored. 

It is clear, that conditional labeling is not the same as 

if ec then label name e else e  

because of two main reasons: 

• expression ec is evaluated only during the profiling not the program 
execution, 

• all resources used during the evaluation of ec are attributed to the center 
with label profiling regardless of labeling in ec. 
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Conditional profiling can enormously extend the time of profiling depending on 
the complexity of expressions ec. Using conditional profiling labeled center can be 
dynamically activated based on decision during the execution of a program. Next 
example presents conditional labeling. 

label "test" is_prime n when n > 100  

5 Inheritance Profiles 
Inheritance profiling can reduce the time spent with program profiling 
concentrating on smaller grains (pats of a program) than in simple profiling. 
Programmer can profile a part of program/function/expression depending on 
arguments and context. The usage of inheritance profile is explained on example. 
Usually the cost of function evaluation depends on arguments to which are 
function applied. Sometimes it is useful to consider the context of function in 
which it is called - parent. That is why the inheritance profiles are created. 

On Figure 1 call graph of a simple program is depicted. Function h is called from 
function f 10 times with total cost 500 and from function g 20 times with total cost 
100. Simple profile for the program is on Figure 2. Figure 3 presents inheritance 
profile for the presented call graph and function h. The first one is statistical 
profile which is generated from count and simple profile. The second one is 
measured accurate inheritance profile. 

 
Figure 1 

Call graph example 

Function Called Cost 
f 1 10 
g 4 80 
h 30 600 

Figure 2 
Simple profile 
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Parent→ Function Called 
Total 

Cost 
Statistical Inheritance 

Cost 
Accurate Inheritance 

f→h 10/30 200 500 
g→h 20/30 400 100 

Figure 3 
Inheritance profile 

In our profiler a few constructs for inheritance profile support have been 
implemented. The first one construct defined for conditional labeling with regard 
to parent context. 

label name e when enclosed namec 

Using this construction, labeled center can be activated if parent center is same as 
specified. This construction can be used to create inheritance profiles. Resources 
used during the evaluation of expression e are attributed to the center with label 
name only if parent center is namec. Otherwise, resources are attributed to the 
parent center. Next example presents usage of conditional enclosed labeling. 

f = label "f" h 500 

g = label "g" h 100 

h n = label "f-h" (label "f-g" (p n)  

    when enclosed "f") when enclosed "f" 

For more flexible inheritance profiling two other constructions were defined. 

label name inherits e 

label name inherits e when ec 

Parent context are automatically added to the current labeled center. Inheritance 
profiling is not limited only to two levels parent/child. 

Next example presents labeling for inheritance profiling of a simple process 
functional program. 

f = label "f" h 500 

g = label "g" h 100 

h n= label "h" inherits (p n) 

Function h can be evaluated from function f or h. Using the inheritance profiling 
label "h" is always connected with context of evaluation (function "f" or "g"). 
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6 Formally Based Program Profiling 
This section presents formal model of process functional program profiling. Our 
approach is presented on subset of PFL with constructs for profiling - simplified 
PFL. All PFL constructions are transformed to simplified PFL during the program 
compile time. This approach can be extended to all PFL language constructs. The 
meta-variables and categories for simplified PFL language are as follows: 

Label
rConstructoEnvVarPrimitiveFncName

VExpressionDefinitionProgram

∈
∈∈∈⊕∈

∈∈∈∈

labelname,
Cyf

arxeDefPrg
 

The meta-variables can be primed or subscripted. The syntactic category Primitive 
defines strict primitive operations like elementary arithmetic operations. The 
syntactic category Var represents variable identifiers and syntactic category 
EnvVar represents environment variable identifiers. The syntactic category 
Constructor comprises constructors of algebraic types. Primitive types, such as Int 
and Real, are included in the syntactic category Constructor as zero arity 
constructors. Syntactic category Label comprises label names. Program in 
simplified PFL consists of processes, functions and main expression which are 
evaluated during the program execution. Abstract syntax of simplified PFL is as 
follows. 

{ }

1 2

1 2

1 2

1

:: Variable
| Function
| Primitive
| () Access
| Update
| Constructor
| Aplication

| case of Case

| label Label
| label when CondLabel
| label when enclosed EncLabel
| lab

i

n
i i m i i

c

c

e x
f
e e
y
y e
C e e
e e

e C x x e

name e
name e e
name e name

=

=

⊕

→

K

K

el inherits InhLabel
| label when when InhCondLabelc

name e e
name e e e

 

The value v of an expression is either a lambda abstraction or a value of an 
algebraic type 

ex
vvCv n

.|
:: 1

λ
K=  
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where n≥0. 

The runtime state is defined by environments envv, enve. Environment envf is 
created during the compilation. Environment envv represents the heap for the 
values of lambda variables and enve is a set of memory cells for storing values of 
environment variables. 

( )

f

v

e

v e

Env FncName Expr

Env Var Value
Env EnvVar Value

, State Env Env

f

v

e

v e

env

env
env
env env s

∈ = →

∈ = →

∈ = →

= ∈ = ×

 

The semantic rules for simplified PFL expressions are defined on Figure 4. Figure 
Figure 5 presents semantic rules for label expressions. All rules are named 
corresponding to abstract syntax rule names. The predicate matches for pattern 
matching and operator extract for extracting i-th item value of the structure 
constructed by C v1 ... vi ... vn are defined as follows. 

nivivvvCextract
vvvCvxxxCvmatches

ini

nini

≤≤=
=⇔

1 where,1

11

KK

KKKK  

The notation 

( )',,:, svselabelenv f μ→  

defines that expression e is evaluated in environment envf considering the state s 
and current label label and produces the value v, new state s' and resource 
environment μ. Resource environment maps label to resources used during the 
evaluation of labeled expression with specified label. 

[ ] [ ]
lll

ll

nil

nn

i

2121

11

i

)(

ResourcesLabelpResourceMa
1 Resources,Label,

μμμμ
ρρμ

μ
ρ

+=∪
→→=

→=∈
≤≤∈∈

K

 

The costs of elementary operation such as variable access or function application 
are defined as follows. 

 V cost of variable access 

 F cost of closure creation 

 P cost of primitive operation evaluation 

 Ea cost of environment variable access 

 Eu cost of environment variable access 

 C cost of constructor creation 

 A   cost of function application 



Acta Polytechnica Hungarica Vol. 3, No. 2, 2006 

 – 35 – 

 D   cost of case evaluation 

 L cost of lambda abstraction evaluation 

7 Implementation 
Implemented process functional program profiler nowadays supports five types of 
profiles: 

1 frequency count profile 

2 time profile 

3 heap profile 

4 maximum requirements heap profile 

5 variable access/update profile 

Program profile is created during the execution using the sampling method. 
Execution is interrupted in specified time intervals (predefined value is 10 
milliseconds) and information about used resources are collected and attributed to 
the current labeled center. Program profiling increases execution time 
approximately from 5 to 10% depending on the concrete program and labeling. 
Formal semantics of the execution profiling is out of the scope of this paper and 
can be found in 0. 
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( ) [ ] ( )( )evvlabelevf envenvxenvenvenvxlabelenv ,,,,:, Va→    Variable 
 

( )
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μ
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a
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n
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[ ] ( )sexsexlabelenv labelf ,.,.:, L λλ a→      Lambda 
  

Figure 4 
The semantics of expressions 
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Figure 5 

The semantics of label expressions 

The next section presents simple example with profiling outputs from the 
implemented profiler for process functional language. The problem solved by the 
program is to 
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1 generate prime numbers from 1 to 100 (label prime), 

2 sum prime number from 1 to 100  (label sum), 

3 calculate dividers of the sum (label dividers), 

4 generate list of values from 1 to 1000 (without any label). 

PFL program source code for the problem with profile labeling is as follows. 

gen_list m n = if m > n then [] else m : gen_list (m + 1) n 

can_be_divided n m = (n % m) == 0 

is_prime_number n = not (foldl (or) False (map (can_be_divided n)  

                         (gen_list 2 (n - 1)))) 

prime_numbers from to = filter (is_prime_number) (gen_list from to) 

dividers n = filter (can_be_divided n) (gen_list 1 n) 

main = (toUnit (label "dividers" dividers ( 

         label "sum" sum  

           (label "prime" primeNumbers 1 100)))) 

  `bl` (toUnit (generateIntegerList 1 1000)) 

Time and memory profile for example program produced by the profiler is on 
Figure 6. 

 
Figure 6 

Time and memory profile 

Conclusions 

Using the execution profile of a program a programmer had to answer next two 
questions: 

• How are resources distributed during the program execution? 

• What is the effect of a particular modification of a program? 



Acta Polytechnica Hungarica Vol. 3, No. 2, 2006 

 – 39 – 

Our solution to process functional program execution profiling was presented in 
this paper. Using our method every expression in the PFL program can be 
separately profiled. The definition of profiling grains is up to the programmer. 
Suggested formal model can be used for reasoning about program profiling. 

This work is based on our previous research of profiling and static evaluation of 
process functional programs 0. As a result, the static evaluation method is strongly 
associated with the source specification. This may help to a programmer while 
program development considering not just the function but also the behavior, 
represented by resources used. Combining execution profiling with static analysis 
look very promising in gathering information about resource utilization during 
program execution. 

In the past, we have PFL-to-Java and PFL-to-Haskell generators developed. The 
subject of our current research is integrating aspect and process functional 
paradigm of programming. Our future plan is to extend profiling tools to object 
oriented PFL and to formal specification of a program profiling for parallel 
environment. 
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