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Abstract: Nowadays Software Transactional Memories (STMs) are used in safety-critical 

software, such as computational-chemistry simulation programs. To the best of our 

knowledge, the existing STMs were not developed using rigorous model-driven 

development process, on the contrary, the majority of proposed STMs are directly 

implemented in a target programming language and formally verified STMs are proven 

against more general models. This may result in some key aspects of implementation being 

omitted or interpreted incorrectly. In this paper, we demonstrate an approach to the formal 

verification of one particular STM, for the Python language, named Python Software 

Transactional Memory (PSTM), which is based on a STM design and implementation 

details. Based on these details, faithful models of a PSTM based system, are developed and 

verified. The PSTM system components are modeled as timed automata utilizing UPPAAL 

tool. Finally, it is verified that PSTM satisfies deadlock-freeness, safety, liveness, and 

reachability properties. 

Keywords: formal verification; transactional memory; model checking; correctness, timed 

automata 

1 Introduction 

Transactional Memory (TM) is a programing paradigm [1, 2] which offers an 

alternative to traditional lock mechanisms based on mutual exclusion by replacing 

them with lock-free mechanism in order to harvest more performances on 

multicore architectures. It is considered to be a paradigm that simplifies writing 

and maintaining parallel programs as well. Due to the lack of hardware support 

Software Transactional Memory (STM) was born [3]. For a long time, STMs have 

been a playground for research in this area. Even today, it seems that hardware 

support is still not a standard feature in commercial architectures. 
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The correctness of a transactional memory plays a key role in a transactional 

based system. The common properties and correctness criteria with small 

variations of basic ideas [4, 5, 6, 7, 8] such as serializability, atomicity, deadlock 

etc., can be defined. Serializability and opacity are assumed as prevailing 

correctness criteria for the safety property, whereas different levels of 

progressiveness are commonly used for the liveness property. Predominantly, 

(S)TM verifications are applied on an abstract model which is drawn from 

specification and/or captured from transactional semantics rather than being 

developed directly from an implementation itself – a design and a source code 

details may be omitted despite the fact that a verification model is desired to be a 

faithful counterpart of the verified system. On the other hand, most of the formal 

verification models and approaches targeting STMs are general. They were 

created with the intention to be used as general frameworks, and not to target real 

implementations. In this paper we tried to overcome these shortcomings by using 

an approach that could be applied in an agile software development and which 

uses existing STM’s program code as its input. In our previous work [9] we tackle 

this problem and presented preliminary verification results. 

A motivating example which initially inspired us to search for a Python STM 

solution and to verify its correctness is the performance optimization of a Python 

application in the area of chemical and pharmacy calculation [10, 11]. The authors 

of these papers describe a computational-chemistry simulation program for the 

Protein Structure Prediction model. The aim of PSTM is to replace the existing 

barrier-based process synchronization in order to gain more performances. 

Although Python is one of the most widely used programming languages, it still 

lacks an applicable and reliable STM implementation. Some announcements for 

PyPy have been made [12], but until today, no final solution has been published. 

In this paper, a formal verification of Python Software Transactional Memory 

(PSTM) [13] using UPPAAL tool [14] is presented. The main aims are (1) to 

apply a formal verification process to a real STM solution in order to derive a 

faithful STM model based on a particular PSTM design and implementation rather 

than making a general model, and (2) to use the developed PSTM model for 

automated machine-checked formal verification of core system properties which 

ensures PSTM correctness, namely deadlock-freeness, safety, liveness, and 

reachability properties. In the contrast to general models, fine grained 

parameterized automata models are developed. As a type of transactions, aligned 

and drifted (time shifted) read-write transactions which share a common variable 

are considered. For the verification purpose, a formula for calculating commit 

time for a given arbitrary number of transactions was derived. 

This paper contributes to the related aspects of STM formal verification, in the 

following areas: (i) to the best of our knowledge, this is the first formal 

verification of an STM solution for Python language, (ii) it introduces an approach 

to modeling a real STM implementation by a tool based on a timed finite state 

machine model rather than modeling a high-level STM abstraction model, (iii) the 



Acta Polytechnica Hungarica Vol. 16, No. 7, 2019 

 – 199 – 

templates of fine grained automata models can be used as a starting point for 

verification of any PSTM based system, (iv) it develops a framework for 

calculating transactions execution times as a means for verifying system temporal 

behavior, and lastly, (v) it formally verifies that the STM solution for Python 

language, namely PSTM, conforms deadlock-freeness, safety, liveness, and 

reachability properties, and hence it is eligible to be a part of a real-world 

application. 

The paper is organized as follows. In Section 2 PSTM architecture is introduced. 

Formalization of PSTM using UPPAAL tool is presented in Section 3. In Section 

4 a framework for temporal behavior analysis is introduced. Verification 

properties and results are provided in Section 5 and Section 6, respectively. 

2 Python Software Transactional Memory 

In general, a transactional memory system accommodates transactions and a 

component responsible to handle transactions requests, i.e. a (S)TM. In this paper, 

that component is PSTM [13]. A transaction may be considered as a sequence of 

instructions that are executed atomically over a given set of transactional variables 

(t-vars). The common behavior steps for a transaction are the following: (i) get a 

local set of t-vars from PSTM, also called a snapshot, (ii) perform a processing 

based on t-vars, and (iii) commit new values, if any. 

PSTM architecture is shown in Fig. 1. It consists of the two main components, a 

set of transactions and PSTM. Transactions are executed in the context of a 

transactional application while the PSTM is comprised of an API provided to the 

transactions, and a server which implements the API functionality. 

PSTM public API captures all requirements defined by the common transactions 

behavior. The API functions are accessible via Remote Procedure Call (RPC) 

interface. The RPC interface is a key part of PSTM which provides concurrent 

access to PSTM – it ensures transactional requests serialization. The RPC 

interface is implemented using Python Queue class. Transactions use a singleton 

queue to send requests towards PSTM. PSTM API is the following: 

 AddVars(q, keys) 

 GetVars(q, keys) 

 CommitVars(q, rw_sets) 

 PutVars(q, vars) 

 CmpVars(q, vars) 

Let us first introduce a dictionary and a t-var. A transactional variable, or t-var, 

denotes a variable stored in PSTM which can be accessed only through the API 



B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata 

 – 200 – 

functions. A t-var is uniquely determined by three attributes, namely a key, a 

version, and a value. A t-var’s key is an accessing identifier of a t-var, a version 

holds the t-var’s version, which is the most recent one at the read time, and a value 

represents data. The t-vars are kept in a dictionary. Only the PSTM server is 

allowed to read and write directly to the dictionary. The dictionary and t-vars are 

implemented as Python dictionary and tuple data structures, respectively. 

Transaction {

r=GetVars(q, keys)

w=DoWork(r)

CommitVars(q, [r,w])

}

Request (req):

GetVars(q, keys)

. . .

RPC Interface

Public API: 

+ AddVars(q, keys)

+ GetVars(q, keys)

+ CommitVars(q, rw_sets)

+ PutVars(q, vars)

+ CmpVars(q, vars)

PSTM Server

ServeLoop(){
process(req)

}

Response (rsp): r

req

rsp

PSTM

Dictionary

t-variable:

{key, ver, val}

Transaction {

r=GetVars(q, keys)

w=DoWork(r)

CommitVars(q, [r,w])

}

Request (req):

CommitVars(q, [r,w])

Response (rsp):

Commit

 

Figure 1 

Overview of PSTM architecture 

PSTM API functions share a mutual argument queue q. The queue is used as a 

communication channel between transactions and PSTM. The function AddVars 

introduces new t-vars to PSTM. The function GetVars returns the most recent 

version of t-vars which are currently stored in the dictionary. For both AddVars 

and GetVars functions a set of t-vars’ keys are expected as keys argument. The 

function CmpVars is a helper function used to compare (or validate) a set of t-

vars’ versions against the current versions of corresponding t-vars in the 

dictionary. The argument vars denotes a set of t-vars with all attributes included. 

The function CommitVars tries to commit a transaction to PSTM, i.e. tries to 

write (update) new value to a t-var. The function CommitVars takes the two sets 

of t-vars, a read set and a write set, as the argument rw_sets. The read set 

comprises of t-vars that were previously read, i.e. a local snapshot of transactions, 

while the write set carries changes (a set of t-vars values) which have to be applied 

to the t-vars in the dictionary. The function commits only if all t-vars’ versions in 

the local snapshot are equal to the t-vars’ versions in the dictionary, which means 

that the particular transaction has the most recent versions of t-vars. When a 

transaction successfully commits, a t-var version is changed. The function 

PutVars gives another way to commit. Its attempt will be successful only if all 

the t-vars are up to date. Usually, it is used for t-vars initialization. For the context 

of this paper GetVars and CommitVars functions are the most important. 
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A PSTM server is used to process transactions requests. It provides functionalities 

behind PSTM API. The PSTM server takes a request from the queue, executes it, 

and sends a response message to a client (i.e. a transaction). The backbone of 

PSTM architecture is based on the conventional client-server architecture and it 

relies on multipoint-to-point and point-to-point communication. Transactional 

requests are sent in multipoint-to-point fashion, while a request response is sent 

from the PSTM server directly to a transaction. 

In a PSTM execution model, a transaction starts with a read operation, then 

follows a processing operation, and finally, the transaction ends with a write 

operation. The mapping between PSTM API functions and transactional 

operations is illustrated in Fig. 2. The functions GetVars and CommitVars 

correspond to the operations read and write, respectively. The function DoWork is 

the processing operation and it is not a member of PSTM API. 

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

No Drift
Transaction 1

Transaction 2

Commit

Abort CommitRetry

Start

Start
Transaction 2

Drift

time

Drift

 

Figure 2 

An example execution of aligned (Transaction 1) and drifted (Transaction 2) transactions 

Let’s suppose that in the example (Fig. 2) both transactions share a common t-var. 

The start time of the second transaction is drifted (time shifted) to the start time of 

the first transaction. Because of the conflict only one of them commits. 

Specifically, the first transaction commits while the second aborts and retires. An 

execution set can be comprised of aligned (not shifted) and drifted transactions. 

Within a set of aligned transactions, all the transactions start at the same time and 

they retry immediately after an abort, while within a set of drifted transactions, all 

the transactions may start and retry in a non-deterministic fashion. 

3 PSTM Formalization 

In this section we describe PSTM modeling approach, sketch up building entities 

of a UPPAAL PSTM system model, and introduce its timed automata models. 

3.1 Modeling Approach 

Due to its expressiveness and convenience, finite state machine based formalisms 

such as Petri nets and Timed Automata (TA), are often used in the praxis for 
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modeling and machine verification of complex problems like scheduling [15] or 

synchronization problems [16]. PSTM is formalized and verified using UPPAAL 

tool. The UPPAAL tool [17, 18, 14] is based on TA and it is widely used by the 

researchers and in the industry too. In addition to the expressiveness inherited 

from TA, it provides powerful and user-friendly model checker tool. 

A model of a PSTM verification system is made in a compositional way from a set 

of nondeterministic finite state automata which are coupled through 

communication channels and shared variables. Three major automata are: 

 Transaction 

 Remote Procedure Call Queue 

 Transactional Memory 

A UPPAAL PSTM system design is shown in Fig. 3. The automata are depicted 

as functional blocks interconnected with channels. The automata are implemented 

as a template with local variables and functions. The channels and template 

attributes are defined relying on UPPAAL native data types and C-like features. 

Transaction 

Automaton

 id

 type
 read set
 write set
 processing time
 Rxpipe
 result

RPC Queue 

Automaton 

 queue[NUM_OF_TX]
 current
 Enqueue()
 Dequeue()

Channel:

ReqTxOp

Transactional Memory 

Automaton 

 dict[NUM_OF_TVAR]
 owner
 state
 read time
 write time
 CheckRSet()
 SetResult()
 UpdateVars()
 SendRsp()

Channel:

TxMemRsp

Channel:

TxMemReq

Channel:

Transaction.Rx pipe  

Figure 3 

UPPAAL PSTM system design 
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3.2 UPPAAL PSTM Model 

The automata Transaction, RPC Queue, and Transactional Memory are modeled 

as the templates Transaction, RPCQueue, and TxMemory, respectively. 

3.2.1 The Automaton Transaction 

An instance of the automaton Transaction (Fig. 4) starts with a transition 

from the state go to the state start_tx. Immediately after the start, the 

transaction instance requests a set of shared t-vars from the transactional memory. 

The read request is sent during the transition from the state start_tx to the 

state wait_rsp_TX_R issuing a send operation to the channel ReqTxOp. As a 

part of the channel operation, transaction data (or context data) are updated: First 

an operation type is set (TX_R), secondly the shared t-var SharedTvar is defined, 

and finally, the data are passed to the RPCQueue through a global variable 

RPCQueueMsg. The tx_id is defined as an input argument of each 

Transaction instance. When the request in sent, the instance moves to the 

state wait_rsp_TX_R and waits until the read operation is processed. 

The corresponding response is received during the transition from the state 

wait_rsp_TX_R to the state update_tvar. It is received by issuing a receive 

operation on the channel TxPipe[tx_id]. As in the case of a sending request, the 

response data are sent through a global variable TxMemRspMsg. 

In the state update_tvar the transaction’s read set Tx[tx_id].read contains the 

most recent version of the shared t-var. The transaction processing time is 

modeled using a time invariant. The time invariant associated to the state 

update_tvar defines the transaction processing duration. It ensures that the 

automaton holds in the state update_tvar exactly Tx_proc time units. For that 

purpose, a clock variable c is introduced. The clock variable c measures the time 

progress and it is local for each transaction instance. Using the time invariant and 

the clock variable c the channel ReqTxOp is invoked only when c is equal to 

Tx_proc. The variable Tr_proc’s value is defined as a template’s input argument. 

 

Figure 4 

UPPAAL model of a transaction, i.e. the automaton Transaction 
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Each transaction process the shared t-var in the same way – it increments the t-

var’s current data value. Once the shared t-var is processed, it is ready for a 

commit. The commit operation is performed in the same two-steps as the read 

operation, except that the write operation is applied. When the corresponding 

request is ready, the transaction gets the response, and moves to the state 

commit_result. In that state, a result of the commit operation is known, so the 

transaction finally ends in committed or aborted state. 

For the verification purposes, the two variations of the automaton Transaction 

are defined. The automaton depicted in Fig. 4 is also named cyclic transaction. 

After the abort, the cyclic transaction models the retry operation. A transaction 

model which does not retry is named a linear transaction. The difference between 

the two transaction models is in a single transition connecting the state aborted 

and the state start_tx, which is removed in the linear transaction. 

Both the cyclic and the linear transactions may be aligned or drifted. A 

transaction’s drift behavior is modeled with different type of the two states, 

namely the state go and the state aborted. The aligned transactions are modeled 

with a pair of committed states (time delay is not allowed), thus, the transactions 

start execution immediately. The drifted transactions are modeled with a pair of 

normal states (time can progress), which enables transactions to drift. 

Based on the former descriptions, in a PSTM system verification, the four types of 

transactions may be used: (i) cyclic drifted transaction, (ii) cyclic aligned 

transaction, (iii) linear drifted transaction, and (iv) linear aligned transaction. 

 

Figure 5 

UPPAAL model of RPC Queue, i.e. the automaton RPCQueue 

3.2.2 The Automaton RPC Queue 

An instance of the automaton RPCQueue (Fig. 5) starts from the state wait. It 

waits to be notified by some of the transactions or by the transactional memory. At 

the beginning, the RPCQueue is empty, and no pending request exists. The new 
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incoming request is received during the transition from the state wait to the state 

forward_tr_req. The request is stored in a local array of pending requests 

using the function Enqueue(). There are the two possibilities and both of them 

depends on the current state of the automaton TxMemory. If the TxMemory is 

not busy then the RPCQueue forwards to it the current pending request, which 

has to be processed. After that, the RPCQueue advances to the state wait where 

it waits for new incoming requests or to be notified by the TxMemory. If the 

TxMemory is busy than the RPCQueue immediately advances to the state wait. 

The received requests wait until the TxMemory is available. 

By moving from the state wait to the state tr_req_processed the 

TxMemory notifies the RPCQueue that the current request is served. In that state 

the two possibilities exist too, but in this case, both of them depend on the number 

of pending requests. If the RPCQueue is empty, i.e. no pending requests exist, it 

moves to state wait. If the RPCQueue holds any pending request, it forwards the 

current request to the TxMemory by moving to the state forward_tr_req. 

3.2.3 The Automaton Transactional Memory 

An instance of the automaton TxMemory (Fig. 6) may be either available or busy. 

The TxMemory instance starts from the state wait. As long as it resides in the 

state wait it is available, otherwise it is busy and it serves a particular request. 

In the state wait, it may be notified by the RPCQueue. Right after being 

notified, it moves from the state wait to the state processing. The variable 

TxMemState denotes whether the TxMemory is available or busy. 

When the state processing is reached, the type of requested operation needs to 

be checked. Based on the operation type, the TxMemory switches either to a path 

that models the read or to a path for the write functionality. 

 

Figure 6 

UPPAAL model of transactional memory, i.e. the automaton TxMemory 
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The read operation is served by moving from the state process to the state 

read. An additional time invariant is stitched to the state read defining the 

operation duration. Applying the same modeling approach as in the case of 

transaction processing duration, a clock variable c is introduced. The clock 

variable c ensures that a transition is taken immediately as it becomes enabled. 

Particularly, read and write operations are enabled after R_proc and W_proc time 

units, respectively. The variables R_proc and W_proc denote transactional 

memory operation duration and they are defined as a template argument, as well. 

The transaction response is generated on the transition from the state read to the 

state done. The function SetResult() updates the transaction’s read set with the 

specified t-vars from the dictionary. Also, it updates the result of the requested 

operation. The result of the read operation is always successful – the internal value 

TX_RSP_READ_OK sets an execution result value to TX_RSP_COMMITTED. 

Once the response data are prepared, the transaction and the RPCQueue have to 

be notified. The particular transaction and the transactional memory are 

synchronized on the transition from the state done to the state send_rsp. Along 

the transition, SendRsp() function is executed. The function SendRsp() sends the 

response to the transaction by moving the response data to the variable 

TxMemRspMbx. Finally, on the transition from the state send_rsp to the state 

wait, the RPCQueue is notified that the transactional memory is now available. 

The write operation is served in two steps. The first step is to check the t-vars in 

the read set. For this purpose, the function CheckRSet() is used. It loops through 

the t-vars in the read set and checks if each t-var from the set matches the most 

recent version of the corresponding t-var in the dictionary. Like the state read, 

the state write models the write operation. An additional time invariant ensures 

that the automaton stays in the state write exactly W_proc time units simulating 

the processing duration. 

The second step of the write operation is to try to commit the transaction. A 

commit decision is made, based on the return value of the function CheckRSet(). 

Intuitively, if the result is true, the transaction commits, otherwise it aborts. Both 

paths are modeled on the transitions from the state write to the state done. The 

actual t-var(s) update is done by the function UpdateVars(). In the case of an 

abort, the t-vars in the dictionary are unchanged. 

4. Transactions Execution Time Analysis 

Driven by the desire to make a more faithful transaction model, the drift behavior 

is modeled as a normal (non-deterministic) state without a time invariant. The fact 

that a system can behave non-deterministically prevents transactions execution to 



Acta Polytechnica Hungarica Vol. 16, No. 7, 2019 

 – 207 – 

be handled in a unified way. This significantly impacts the temporal behavior 

analysis of a PSTM system and brings us closer to the area of transaction 

scheduling, which, however, is not the focus of this work. 

In order to verify the temporal behavior of the PSTM system for the worst case 

execution scenario, i.e. the scenario in which all the transactions are started 

simultaneously, we refine the assumptions regarding the transaction processing 

duration and the durations of read and write operations. The aim of this theoretical 

analysis is to make a framework for PSTM temporal behavior verification in the 

worst case scenario. 

Particularly, three assumptions are made. The first assumption is that the 

processing operation duration 
ipt  takes the same amount of time, 

1 2p pt t 
Np pt t   for all transactions. An index i  denotes i –th transaction 

in the set of N  transactions. This assumption is based on the fact that all 

transactions in a set, typically execute rather short functions that take similar 

amounts of time – for instance we can consider a banking system, some kind of an 

online system such as airline ticketing system, etc. For example, ATM 

(Automated Teller Machine) functions, such as cash withdrawals, deposits, 

transfer funds, or obtaining account information, all take similar amounts of time, 

i.e. approximately the same time 
pt . The second assumption is that the 

transactions processing operations take the same time as the transactional read and 

write operations, 
p r wt t t  . In hardware transactional memories, rt  and wt  may 

differ, but since in PSTM t-var read and write operations perform on Python 

dictionary data structure it is realistic to assume that r wt t . Further on, we 

assumed 
p r wt t t   because processing operations usually are a lightweight task 

(money transfer, ticket reservation, etc.) rather than being compute intensive. The 

third assumption is that an aborted transaction immediately retries to commit, until 

it succeeds (aligned cyclic transaction behavior). This way a run-time execution 

overhead needed to restart a transaction in a real system is neglected. For the 

comparable overhead values, the results of the analysis would remain unchanged, 

otherwise the analysis would be unnecessary complicated and unrealistic for a 

genuine system. Hence, these assumptions enable us to handle the transactions 

execution times in a unified way without loss of generality of the results of the 

analysis. 

For 2N   a transactions set execution may evolve through three characteristic 

phases. These execution phases are used to derive a formula for the transaction 

commit times. Before the analysis of the execution phases, let us first introduce 

preliminaries. 

Lemma 1. An execution time of the single transaction set takes exactly 

r p wt t t t   . 
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Proof. The single transaction is executed sequentially, thus its execution time is 

equal to the duration of all executed operations. □ 

Lemma 2. In each execution attempt the maximum queue delay 
MAXqd  is equal to 

the number of pending transactions p . 

Proof. The proof is rather intuitive. If all pending transactions p  request a 

transactional memory operation at the same time, then the lastly enqueued request, 

is actually the p th transactional request. Further, if a transactional memory 

operation takes some time 
pt , then p th transactional request in the queue will be 

processed after exactly the p  times of the time 
pt . □ 

Claim 1. The first transaction which requests the read operation commits at time 

c r wt p t t   . 

Proof. Obviously, the transaction which requested the read operation first is ahead 

of all the others, thus it will also be the first to request the write operation. The 

write request will be executed just after the last read request in the queue, i.e. after 

reaching the maximum queue delay 
MAXqd . Since the queue delay 

MAXqd  depends 

on the number of pending transactions p , the commit time ct  is equal to p  read 

operation times rt  and one write operation time wt . 

Claim 2. A transactions commit attempt terminates at time ( )ter r wt p t t   . 

Proof. All read operation requests are served at time rp t . The number of 

pending transaction in the current attempt is unchanged, therefore wp t  time is 

needed for all write operation requests to be served. A commit attempt is 

terminated at the time when the last write operation is served, ter r wt p t p t    . 

Claim 3. In a commit attempt at, where 2at  , a transaction commits at time 
1

1
i

at

c ter r w

i

t t p t t





     

Proof. A new commit attempt starts when a read operation request from the first 

transaction in a set of aborted transactions is received by the transactional 

memory. The aborted transactions immediately retry, i.e. they send a new read 

operation request, but it can be served only after the termination of the previous 

commit attempt(s) – all p  write operation requests from the previous attempt are 

served first. A set comprised of aborted transactions is the new pending 

transactions set, therefore the first transaction from the set commits at time 

1atc ter r wt t p t t


     
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Claim 4. The last transaction commits at time 

1

1
i

at

c ter r p w

i

t t t t t





     

Proof. In the last commit attempt ( at N ), only one transaction is running, thus 

it is executed sequentially (Lemma 1). Like to the former case, the last commit 

attempt starts execution after the previous commit attempt is terminated. 

Based on the conducted analysis, the following formula for calculating commit 

times for a set of N  transactions in the worst case scenario is derived: 

 
1

1

1

1

, 1

, 1

.

i

i

r w

at

c ter r w

i

at

ter r p w

i

N t t c

t c t p t t c and c N

t t t t c N










   



     



   






 (1) 

The formula gives the commit time ct  as the function of the number of occurred 

commits. The number of transactions in a set is denoted as N. The number of 

committed and pending transactions are denoted as c  and p , respectively. For 

0c   no committed transaction exists. A linear function N c p   models the 

relation between the total, committed, and pending number of transactions in the 

system. The termination time of i th commit attempt 
itert  is given by Claim 1. The 

formula (1) defines a framework for transactions temporal analysis. 

5 PSTM Verification 

As mandatory properties of almost any system, the correctness criteria include 

safety, liveness, deadlock freeness, and reachability properties. PSTM system is 

not the exception, therefore, all the former properties are checked. 

An execution scenario used to verify a property may vary for each property. 

Namely, some properties may be verified using all types of transactions while for 

the others an execution scenario restricted to only one type of transactions may be 

more suitable. However, the property statements are formulated in such manner 

that they could be applied to any PSTM-based system with arbitrary number of 

transactions, t-vars, and read, write, and processing duration values. The given 

properties are generalized and formulated as statements accompanied with the 

equivalent CTL formulas expressed in UPPAAL query language [17]. 
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5.1 Deadlock Freeness 

The property deadlock freeness can be verified with the following query: 

A[] not deadlock 

Let us name the former query as Deadlock Freenees. It verifies that a system is 

deadlock free. A remark about this property is related to terminal states and how 

UPPAAL tool defines a deadlock state. In UPPAAL tool, a state is a deadlock 

state if there are no outgoing action transitions either from the state itself or any of 

its delay successors [17]. This is important for both linear and cyclic transactions. 

Namely, the linear transactions finally end up either in the state aborted or the 

state committed whereas the cyclic transactions end up in the state 

committed. Due to the lack of terminal states this may be considered as a 

deadlock. In order adapt the transaction automation to the deadlock definition, a 

self-loop transition is added to the final state(s) of an automaton – aborted and 

committed states in the case of linear transactions, and only committed state 

in the case of cyclic transactions. 

5.2 Safety 

Commonly, in a transactional memory environment, safety property is reduced to 

atomicity property. In order to get a clear picture of the problem, we need to 

consider a set of transactions in the PSTM system and analyze a relevant 

verification scenario. The safety property is verified from the two complementary 

angles, the perspective of transactional memory operations execution and the 

perspective of transactions execution in the case of the highest concurrency. 

The first safety property, named Safety I, claims that in any execution scenario a 

transactional memory operation is executed atomically, i.e. the transactional 

memory always serves only one transaction’s request at the time, and, more 

precisely, the currently front request in the RPC queue. The property can be 

verified with the following CTL query: 

A[] TxMemory.processing imply queue[current].id == 

owner.id 

It brings to the focus the components which are fundamental for safety. It verifies 

that always when the automaton TxMemory is in the state processing, the 

current request in the queue is actually the same request which is the owner 

of the transactional memory. 

The second, stronger safety property, named Safety II, claims that in the case of 

the highest concurrency, in which all the transactions are in the conflict, only one 

transaction may commit at the time. It is stated as follows: from a set of N 

conflicted transactions, only one transaction may commit – a transaction whose 
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commit request is received first – while remaining 1N   transactions aborts: 

;commit id firstTr Tr  0 1{ } { , ,abort id first id idTr Tr Tr Tr    1, } { }id N id firstTr Tr   . The 

execution scenario for this property is composed of aligned linear transactions 

only. The property can be verified with the following CTL query: 

A[] forall (i:IDs) ((i == first imply S1) and (i != 

first imply S2)) 

S1 := Tx[i].result != TX_RSP_ABORTED 

S2 := Tx[i].result != TX_RSP_COMMITTED 

The auxiliary statements S1 and S2 do not affect the logic behind the query, they 

are used to relax a query expression. The statement S1 limits a transaction result 

to the two possible values, TX_RSP_NONE and TX_RSP_COMMITTED. The 

statement S2 limits a transaction result to TX_RSP_NONE and 

TX_RSP_ABORTED. The value TX_RSP_NONE is used for initialization 

purposes, which means that the transaction did not request any operation yet. 

5.3 Liveness 

Liveness property is used as a warrant of a system progress. It guaranties that all 

transactions will finish eventually. The three liveness properties are introduced: 

Liveness I, Liveness II, and Liveness III. Each definition of the liveness property 

aims to verify a system progress. The difference between them is the number of 

details which they comprehend. These properties are defined in the increasing 

order of their respective power (from the weakest to the strongest). The strongest 

property Liveness III, introduces the timings of the system evolution. The 

properties are defined in a context of N cyclic transactions. 

The liveness property Liveness I is used as a basic (sanity) functional correctness 

test. It checks if it is possible for a system to reach a state in which all the 

transactions are committed. The liveness property Liveness I ensures the 

following: for a set of N cyclic transactions, there is a path to a state in which all 

the transactions will commit eventually, in any transactions schedule. The 

property can be verified with the following CTL query: 

E<> forall (i:N) TxW(i).committed 

The liveness property Liveness II is stronger than the former in the sense that it 

includes pending transactions. It verifies that a specific relation between the 

committed, pending, and total number of transactions holds in any state. This 

relation defines the total number of transactions in a system as the sum of already 

committed and still running (pending) transactions. The property can be verified 

with the following CTL query: 

A[] forall (i:N) ((i == pending) imply (L >= (NUM_OF_TX 

- i)) 
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L := Tx(0).committed +  + Tx(N-1).committed 

An auxiliary statement L defines the total number of transactions instances 

Tx(i), which are in the state committed. Clearly, if a transaction is not in the 

state committed, then it is still running (trying to commit). 

Liveness property named Liveness III, as a warrant of a system progress enforces 

the strict timing of the system. It utilizes the formula (1) to define an upper bound 

of a time window along which the system advances. For the kind of property such 

like liveness, the timings of the system progress are critical. The example of a 

negative and undesired timing is a system livelock. In order to verify that a system 

progress is positive, a number of committed transactions must be analyzed, too. 

A system progresses in a positive way as long as some of the transactions 

commits. This can be interpreted as the definition of the property Liveness I. 

Indeed, the property Liveness III may be viewed as a timed version of the property 

Liveness I. It is defined in the similar way, but with an additional criterion which 

defines an upper bound of time up to which a particular number of transactions 

must commit. Each time window with higher lower and upper bounds, increases 

the number of committed transactions – it increases the number of commits. With 

this approach, the property Liveness III can be considered as a proof that the 

PSTM system is livelock free as well. The property can be verified with the 

following CTL query: 

E<> now == tcommitt and (L == num_of_committed) 

L := Tx(0).committed +  + Tx(N-1).committed  

num_of_committed {1, ,N}  

tcommit = commit_time(num_of_committed, N) 

An auxiliary statement L defines a number of transaction instances Tx(i) that 

are in the state committed while the value of num_of_committed is the 

expected number of committed transactions. In order to verify the commits of a 

set of N transactions, the same number N of verification queries has to be defined. 

The value of num_of_committed is the parameter which denotes a particular 

number of transaction commits which is the subject of verification. The value 

tcommitt is calculated by function commit_time() which actually is an 

implementation of the formula (1). 

5.4 Reachability 

The reachability property is included as additional proof of the liveness property. 

It is exploited to verify the system termination, i.e. the system state after all the 

transactions have been finished. We use the reachability to verify that the system 

terminates correctly in any execution scenario. The property Reachability can be 

verified with the following CTL query: 
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R --> ((TxMemory.wait and TxMemState == AVAILABLE) and 

(RPCQueue.wait and RPCQueueState == EMPTY)) 

R := (Tx(0).committed or Tx(0).aborted) and … and 

(Tx(N-1).committed or Tx(N-1).aborted 

An auxiliary statement R claims that N Transaction instances are either in the 

state committed or in the state aborted, i.e. that all transactions are finished. 

6 Verification Results 

The property verification queries can be applied to a system with an arbitrary 

number of transactions and arbitrary duration of read, write and processing time. 

Despite of model’s generic nature, it was not feasible to conduct verificaion for all 

arbitrary sets of parameters, so for all verification properties the operations read, 

write and processing take one time unit, 1p r wt t t   . These particular values 

make the verification process viable, without losing anything from the generality 

of the applied method. 

Increasing the number of transactions influences the verification time required by 

a model checker to explore a state space and make a verdict about the property. 

Considering PSTM architecture design, the correctness properties can be verified 

using only two transactions, which are required for minimal level of contingency 

that may provoke undesired system behavior. A system can be verified against an 

arbitrary number of transactions N, if it is necessary. In the conducted verification, 

the number of transaction instances is increased as long as the verification 

execution time was reasonable. Actually, at some point, due to the expanded state 

space, the model checker may consume all of the operating memory of the host 

machine. In such a case, the tool is capable of utilizing more memory by using 

swapping mechanism, although this causes very long verification time. However, 

this bottleneck is related to the host’s hardware capabilities. 

The summary results are given in Table 1. The results confirmed that PSTM 

satisfies all the previously defined properties. Although the correctness property 

results are the main objective of the conducted verification they are accompanied 

with additional data, namely the number of transactions, the verification execution 

time, and the number of explored states, which may be beneficial for other 

researchers who want to get insight into verification process statistics. 

The system complexity is elevated by increasing the number of transaction 

instances. In addition to the number of transaction instances, transactions type is 

relevant as well. For example, property verification for a set of cyclic transactions 

is more demanding than the verification of the same property against a set of 

linear transactions. Further, verifying a property against drifted cyclic transactions 
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is certainly more demanding than verifying the same property against aligned 

cyclic transactions. The same can be concluded for linear transactions. The reason 

is rooted in the automata structure – firstly, the model of linear transaction is 

lighter than the model of cyclic transaction, and secondly, for the model checker it 

is easier to deal with a committed state (aligned transaction) than with a non-

deterministic state (drifted transactions). 

Unquestionably, the number of time invariants, i.e. clock variables, significantly 

impacts a state space which has to be explored. UPPAAL tool is very sensitive to 

clock variables which causes state space to expand faster. Generally, relaxing the 

number of clock variables would reduce the state space size. 

Table 1 

Summary of verification results and performance statistics 

Property 
Number of 

Transactions 

Type of 

Transactions 
Time 

States 

Explored 

Deadlock 

Freeness 

6 Linear Drift 1m 2s 110ms 9 045 757 

5 Cyclic Drift 1m 2s 440ms 10 140 401 

8 Linear Aligned 1m 2s 90ms 8 014 336 

7 Cyclic Aligned 24s 930ms 3 597 232 

Safety I 

6 Linear Drift 32s 180ms 9 045 757 

5 Cyclic Drift 34s 670ms 10 140 401 

8 Linear Aligned 34s 790ms 8 014 336 

7 Cyclic Aligned 12s 950ms 3 597 232 

Safety II 8 Linear Aligned 38s 740ms 8 014 336 

Liveness I 
5 Cyclic Drift 1m 0s 20ms 17 489 881 

7 Cyclic Aligned 13s 450ms 3 597 232 

Liveness II 
5 Cyclic Drift 5s 510ms 1 690 633 

7 Cyclic Aligned 12s 420ms 3 577 073 

Liveness III 7 Cyclic Aligned 13s 680ms 3 577 073 

Reachability 

6 Linear Drift 32s 500ms 9 186 157 

5 Cyclic Drift 52s 620ms 14 008 901 

8 Linear Aligned 34s 650ms 8 094 976 

7 Cyclic Aligned 13s 500ms 3 662 752 

The experiments are conducted using Ubuntu 14.04 64bit OS, which is running on 

Intel i7-3770 CPU with 16 GB of RAM, and UPPAAL 64-4.1.19 (rev. 5648). 

Conclusions 

In this paper we tried to overcome the shortcomings of existing STM formal 

verification approaches by introducing an approach based on timed automata 

formalism which uses existing STM’s program code as its input. Our verification 

approach respects a STM solution implementation details aiming to make 

verification models as faithful counterparts of the implementation rather than 
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developing a generalized verification framework to cover more transaction 

execution models and semantics. Particularly, we demonstrated our approach to 

formal verification of one STM, written in the Python language, named Python 

Software Transactional Memory (PSTM) [13], utilizing UPPAAL tool [17, 14]. 

Based on the PSTM architecture and implementation details, we derived a model 

of a PSTM system which is formally verified by the UPPAAL model checker. 

The verification of the system correctness includes checking deadlock-freeness, 

safety, liveness, and reachability properties. We analyzed the system execution 

against the types of aligned and drifted read-write transactions which share a 

common transactional variable. The system temporal behavior is analyzed, too. 

For the purpose of the system temporal behavior verification a framework for 

calculating transactions execution times in the worst case scenario is developed. 

By applying generalized property queries to a verification system based on a 

different number and type of transactions, we successfully verified that our PSTM 

system model satisfies all the formerly mentioned properties. The results 

presented in the paper may be useful for the academia and the industry researches 

as well. 

The direction of future work is oriented towards development and formal 

verification of a distributed (P)STM for the Internet of Things. 
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