
Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 197 –

Formal Verification of Python Software

Transactional Memory Based on Timed

Automata

Branislav Kordic, Miroslav Popovic, Silvia Ghilezan

University of Novi Sad, Faculty of Technical Sciences

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

branislav.kordic@rt-rk.uns.ac.rs, miroslav.popovic@rt-rk.uns.ac.rs,

gsilvia@uns.ac.rs

Abstract: Nowadays Software Transactional Memories (STMs) are used in safety-critical

software, such as computational-chemistry simulation programs. To the best of our

knowledge, the existing STMs were not developed using rigorous model-driven

development process, on the contrary, the majority of proposed STMs are directly

implemented in a target programming language and formally verified STMs are proven

against more general models. This may result in some key aspects of implementation being

omitted or interpreted incorrectly. In this paper, we demonstrate an approach to the formal

verification of one particular STM, for the Python language, named Python Software

Transactional Memory (PSTM), which is based on a STM design and implementation

details. Based on these details, faithful models of a PSTM based system, are developed and

verified. The PSTM system components are modeled as timed automata utilizing UPPAAL

tool. Finally, it is verified that PSTM satisfies deadlock-freeness, safety, liveness, and

reachability properties.

Keywords: formal verification; transactional memory; model checking; correctness, timed

automata

1 Introduction

Transactional Memory (TM) is a programing paradigm [1, 2] which offers an

alternative to traditional lock mechanisms based on mutual exclusion by replacing

them with lock-free mechanism in order to harvest more performances on

multicore architectures. It is considered to be a paradigm that simplifies writing

and maintaining parallel programs as well. Due to the lack of hardware support

Software Transactional Memory (STM) was born [3]. For a long time, STMs have

been a playground for research in this area. Even today, it seems that hardware

support is still not a standard feature in commercial architectures.

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 198 –

The correctness of a transactional memory plays a key role in a transactional

based system. The common properties and correctness criteria with small

variations of basic ideas [4, 5, 6, 7, 8] such as serializability, atomicity, deadlock

etc., can be defined. Serializability and opacity are assumed as prevailing

correctness criteria for the safety property, whereas different levels of

progressiveness are commonly used for the liveness property. Predominantly,

(S)TM verifications are applied on an abstract model which is drawn from

specification and/or captured from transactional semantics rather than being

developed directly from an implementation itself – a design and a source code

details may be omitted despite the fact that a verification model is desired to be a

faithful counterpart of the verified system. On the other hand, most of the formal

verification models and approaches targeting STMs are general. They were

created with the intention to be used as general frameworks, and not to target real

implementations. In this paper we tried to overcome these shortcomings by using

an approach that could be applied in an agile software development and which

uses existing STM’s program code as its input. In our previous work [9] we tackle

this problem and presented preliminary verification results.

A motivating example which initially inspired us to search for a Python STM

solution and to verify its correctness is the performance optimization of a Python

application in the area of chemical and pharmacy calculation [10, 11]. The authors

of these papers describe a computational-chemistry simulation program for the

Protein Structure Prediction model. The aim of PSTM is to replace the existing

barrier-based process synchronization in order to gain more performances.

Although Python is one of the most widely used programming languages, it still

lacks an applicable and reliable STM implementation. Some announcements for

PyPy have been made [12], but until today, no final solution has been published.

In this paper, a formal verification of Python Software Transactional Memory

(PSTM) [13] using UPPAAL tool [14] is presented. The main aims are (1) to

apply a formal verification process to a real STM solution in order to derive a

faithful STM model based on a particular PSTM design and implementation rather

than making a general model, and (2) to use the developed PSTM model for

automated machine-checked formal verification of core system properties which

ensures PSTM correctness, namely deadlock-freeness, safety, liveness, and

reachability properties. In the contrast to general models, fine grained

parameterized automata models are developed. As a type of transactions, aligned

and drifted (time shifted) read-write transactions which share a common variable

are considered. For the verification purpose, a formula for calculating commit

time for a given arbitrary number of transactions was derived.

This paper contributes to the related aspects of STM formal verification, in the

following areas: (i) to the best of our knowledge, this is the first formal

verification of an STM solution for Python language, (ii) it introduces an approach

to modeling a real STM implementation by a tool based on a timed finite state

machine model rather than modeling a high-level STM abstraction model, (iii) the

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 199 –

templates of fine grained automata models can be used as a starting point for

verification of any PSTM based system, (iv) it develops a framework for

calculating transactions execution times as a means for verifying system temporal

behavior, and lastly, (v) it formally verifies that the STM solution for Python

language, namely PSTM, conforms deadlock-freeness, safety, liveness, and

reachability properties, and hence it is eligible to be a part of a real-world

application.

The paper is organized as follows. In Section 2 PSTM architecture is introduced.

Formalization of PSTM using UPPAAL tool is presented in Section 3. In Section

4 a framework for temporal behavior analysis is introduced. Verification

properties and results are provided in Section 5 and Section 6, respectively.

2 Python Software Transactional Memory

In general, a transactional memory system accommodates transactions and a

component responsible to handle transactions requests, i.e. a (S)TM. In this paper,

that component is PSTM [13]. A transaction may be considered as a sequence of

instructions that are executed atomically over a given set of transactional variables

(t-vars). The common behavior steps for a transaction are the following: (i) get a

local set of t-vars from PSTM, also called a snapshot, (ii) perform a processing

based on t-vars, and (iii) commit new values, if any.

PSTM architecture is shown in Fig. 1. It consists of the two main components, a

set of transactions and PSTM. Transactions are executed in the context of a

transactional application while the PSTM is comprised of an API provided to the

transactions, and a server which implements the API functionality.

PSTM public API captures all requirements defined by the common transactions

behavior. The API functions are accessible via Remote Procedure Call (RPC)

interface. The RPC interface is a key part of PSTM which provides concurrent

access to PSTM – it ensures transactional requests serialization. The RPC

interface is implemented using Python Queue class. Transactions use a singleton

queue to send requests towards PSTM. PSTM API is the following:

 AddVars(q, keys)

 GetVars(q, keys)

 CommitVars(q, rw_sets)

 PutVars(q, vars)

 CmpVars(q, vars)

Let us first introduce a dictionary and a t-var. A transactional variable, or t-var,

denotes a variable stored in PSTM which can be accessed only through the API

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 200 –

functions. A t-var is uniquely determined by three attributes, namely a key, a

version, and a value. A t-var’s key is an accessing identifier of a t-var, a version

holds the t-var’s version, which is the most recent one at the read time, and a value

represents data. The t-vars are kept in a dictionary. Only the PSTM server is

allowed to read and write directly to the dictionary. The dictionary and t-vars are

implemented as Python dictionary and tuple data structures, respectively.

Transaction {

r=GetVars(q, keys)

w=DoWork(r)

CommitVars(q, [r,w])

}

Request (req):

GetVars(q, keys)

. . .

RPC Interface

Public API:

+ AddVars(q, keys)

+ GetVars(q, keys)

+ CommitVars(q, rw_sets)

+ PutVars(q, vars)

+ CmpVars(q, vars)

PSTM Server

ServeLoop(){
process(req)

}

Response (rsp): r

req

rsp

PSTM

Dictionary

t-variable:

{key, ver, val}

Transaction {

r=GetVars(q, keys)

w=DoWork(r)

CommitVars(q, [r,w])

}

Request (req):

CommitVars(q, [r,w])

Response (rsp):

Commit

Figure 1

Overview of PSTM architecture

PSTM API functions share a mutual argument queue q. The queue is used as a

communication channel between transactions and PSTM. The function AddVars

introduces new t-vars to PSTM. The function GetVars returns the most recent

version of t-vars which are currently stored in the dictionary. For both AddVars

and GetVars functions a set of t-vars’ keys are expected as keys argument. The

function CmpVars is a helper function used to compare (or validate) a set of t-

vars’ versions against the current versions of corresponding t-vars in the

dictionary. The argument vars denotes a set of t-vars with all attributes included.

The function CommitVars tries to commit a transaction to PSTM, i.e. tries to

write (update) new value to a t-var. The function CommitVars takes the two sets

of t-vars, a read set and a write set, as the argument rw_sets. The read set

comprises of t-vars that were previously read, i.e. a local snapshot of transactions,

while the write set carries changes (a set of t-vars values) which have to be applied

to the t-vars in the dictionary. The function commits only if all t-vars’ versions in

the local snapshot are equal to the t-vars’ versions in the dictionary, which means

that the particular transaction has the most recent versions of t-vars. When a

transaction successfully commits, a t-var version is changed. The function

PutVars gives another way to commit. Its attempt will be successful only if all

the t-vars are up to date. Usually, it is used for t-vars initialization. For the context

of this paper GetVars and CommitVars functions are the most important.

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 201 –

A PSTM server is used to process transactions requests. It provides functionalities

behind PSTM API. The PSTM server takes a request from the queue, executes it,

and sends a response message to a client (i.e. a transaction). The backbone of

PSTM architecture is based on the conventional client-server architecture and it

relies on multipoint-to-point and point-to-point communication. Transactional

requests are sent in multipoint-to-point fashion, while a request response is sent

from the PSTM server directly to a transaction.

In a PSTM execution model, a transaction starts with a read operation, then

follows a processing operation, and finally, the transaction ends with a write

operation. The mapping between PSTM API functions and transactional

operations is illustrated in Fig. 2. The functions GetVars and CommitVars

correspond to the operations read and write, respectively. The function DoWork is

the processing operation and it is not a member of PSTM API.

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

GetVars(...)

Read Operation

DoWork(...)

Process Operation

CommitVars(...)

Write Operation

No Drift
Transaction 1

Transaction 2

Commit

Abort CommitRetry

Start

Start
Transaction 2

Drift

time

Drift

Figure 2

An example execution of aligned (Transaction 1) and drifted (Transaction 2) transactions

Let’s suppose that in the example (Fig. 2) both transactions share a common t-var.

The start time of the second transaction is drifted (time shifted) to the start time of

the first transaction. Because of the conflict only one of them commits.

Specifically, the first transaction commits while the second aborts and retires. An

execution set can be comprised of aligned (not shifted) and drifted transactions.

Within a set of aligned transactions, all the transactions start at the same time and

they retry immediately after an abort, while within a set of drifted transactions, all

the transactions may start and retry in a non-deterministic fashion.

3 PSTM Formalization

In this section we describe PSTM modeling approach, sketch up building entities

of a UPPAAL PSTM system model, and introduce its timed automata models.

3.1 Modeling Approach

Due to its expressiveness and convenience, finite state machine based formalisms

such as Petri nets and Timed Automata (TA), are often used in the praxis for

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 202 –

modeling and machine verification of complex problems like scheduling [15] or

synchronization problems [16]. PSTM is formalized and verified using UPPAAL

tool. The UPPAAL tool [17, 18, 14] is based on TA and it is widely used by the

researchers and in the industry too. In addition to the expressiveness inherited

from TA, it provides powerful and user-friendly model checker tool.

A model of a PSTM verification system is made in a compositional way from a set

of nondeterministic finite state automata which are coupled through

communication channels and shared variables. Three major automata are:

 Transaction

 Remote Procedure Call Queue

 Transactional Memory

A UPPAAL PSTM system design is shown in Fig. 3. The automata are depicted

as functional blocks interconnected with channels. The automata are implemented

as a template with local variables and functions. The channels and template

attributes are defined relying on UPPAAL native data types and C-like features.

Transaction

Automaton

 id

 type
 read set
 write set
 processing time
 Rxpipe
 result

RPC Queue

Automaton

 queue[NUM_OF_TX]
 current
 Enqueue()
 Dequeue()

Channel:

ReqTxOp

Transactional Memory

Automaton

 dict[NUM_OF_TVAR]
 owner
 state
 read time
 write time
 CheckRSet()
 SetResult()
 UpdateVars()
 SendRsp()

Channel:

TxMemRsp

Channel:

TxMemReq

Channel:

Transaction.Rx pipe

Figure 3

UPPAAL PSTM system design

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 203 –

3.2 UPPAAL PSTM Model

The automata Transaction, RPC Queue, and Transactional Memory are modeled

as the templates Transaction, RPCQueue, and TxMemory, respectively.

3.2.1 The Automaton Transaction

An instance of the automaton Transaction (Fig. 4) starts with a transition

from the state go to the state start_tx. Immediately after the start, the

transaction instance requests a set of shared t-vars from the transactional memory.

The read request is sent during the transition from the state start_tx to the

state wait_rsp_TX_R issuing a send operation to the channel ReqTxOp. As a

part of the channel operation, transaction data (or context data) are updated: First

an operation type is set (TX_R), secondly the shared t-var SharedTvar is defined,

and finally, the data are passed to the RPCQueue through a global variable

RPCQueueMsg. The tx_id is defined as an input argument of each

Transaction instance. When the request in sent, the instance moves to the

state wait_rsp_TX_R and waits until the read operation is processed.

The corresponding response is received during the transition from the state

wait_rsp_TX_R to the state update_tvar. It is received by issuing a receive

operation on the channel TxPipe[tx_id]. As in the case of a sending request, the

response data are sent through a global variable TxMemRspMsg.

In the state update_tvar the transaction’s read set Tx[tx_id].read contains the

most recent version of the shared t-var. The transaction processing time is

modeled using a time invariant. The time invariant associated to the state

update_tvar defines the transaction processing duration. It ensures that the

automaton holds in the state update_tvar exactly Tx_proc time units. For that

purpose, a clock variable c is introduced. The clock variable c measures the time

progress and it is local for each transaction instance. Using the time invariant and

the clock variable c the channel ReqTxOp is invoked only when c is equal to

Tx_proc. The variable Tr_proc’s value is defined as a template’s input argument.

Figure 4

UPPAAL model of a transaction, i.e. the automaton Transaction

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 204 –

Each transaction process the shared t-var in the same way – it increments the t-

var’s current data value. Once the shared t-var is processed, it is ready for a

commit. The commit operation is performed in the same two-steps as the read

operation, except that the write operation is applied. When the corresponding

request is ready, the transaction gets the response, and moves to the state

commit_result. In that state, a result of the commit operation is known, so the

transaction finally ends in committed or aborted state.

For the verification purposes, the two variations of the automaton Transaction

are defined. The automaton depicted in Fig. 4 is also named cyclic transaction.

After the abort, the cyclic transaction models the retry operation. A transaction

model which does not retry is named a linear transaction. The difference between

the two transaction models is in a single transition connecting the state aborted

and the state start_tx, which is removed in the linear transaction.

Both the cyclic and the linear transactions may be aligned or drifted. A

transaction’s drift behavior is modeled with different type of the two states,

namely the state go and the state aborted. The aligned transactions are modeled

with a pair of committed states (time delay is not allowed), thus, the transactions

start execution immediately. The drifted transactions are modeled with a pair of

normal states (time can progress), which enables transactions to drift.

Based on the former descriptions, in a PSTM system verification, the four types of

transactions may be used: (i) cyclic drifted transaction, (ii) cyclic aligned

transaction, (iii) linear drifted transaction, and (iv) linear aligned transaction.

Figure 5

UPPAAL model of RPC Queue, i.e. the automaton RPCQueue

3.2.2 The Automaton RPC Queue

An instance of the automaton RPCQueue (Fig. 5) starts from the state wait. It

waits to be notified by some of the transactions or by the transactional memory. At

the beginning, the RPCQueue is empty, and no pending request exists. The new

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 205 –

incoming request is received during the transition from the state wait to the state

forward_tr_req. The request is stored in a local array of pending requests

using the function Enqueue(). There are the two possibilities and both of them

depends on the current state of the automaton TxMemory. If the TxMemory is

not busy then the RPCQueue forwards to it the current pending request, which

has to be processed. After that, the RPCQueue advances to the state wait where

it waits for new incoming requests or to be notified by the TxMemory. If the

TxMemory is busy than the RPCQueue immediately advances to the state wait.

The received requests wait until the TxMemory is available.

By moving from the state wait to the state tr_req_processed the

TxMemory notifies the RPCQueue that the current request is served. In that state

the two possibilities exist too, but in this case, both of them depend on the number

of pending requests. If the RPCQueue is empty, i.e. no pending requests exist, it

moves to state wait. If the RPCQueue holds any pending request, it forwards the

current request to the TxMemory by moving to the state forward_tr_req.

3.2.3 The Automaton Transactional Memory

An instance of the automaton TxMemory (Fig. 6) may be either available or busy.

The TxMemory instance starts from the state wait. As long as it resides in the

state wait it is available, otherwise it is busy and it serves a particular request.

In the state wait, it may be notified by the RPCQueue. Right after being

notified, it moves from the state wait to the state processing. The variable

TxMemState denotes whether the TxMemory is available or busy.

When the state processing is reached, the type of requested operation needs to

be checked. Based on the operation type, the TxMemory switches either to a path

that models the read or to a path for the write functionality.

Figure 6

UPPAAL model of transactional memory, i.e. the automaton TxMemory

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 206 –

The read operation is served by moving from the state process to the state

read. An additional time invariant is stitched to the state read defining the

operation duration. Applying the same modeling approach as in the case of

transaction processing duration, a clock variable c is introduced. The clock

variable c ensures that a transition is taken immediately as it becomes enabled.

Particularly, read and write operations are enabled after R_proc and W_proc time

units, respectively. The variables R_proc and W_proc denote transactional

memory operation duration and they are defined as a template argument, as well.

The transaction response is generated on the transition from the state read to the

state done. The function SetResult() updates the transaction’s read set with the

specified t-vars from the dictionary. Also, it updates the result of the requested

operation. The result of the read operation is always successful – the internal value

TX_RSP_READ_OK sets an execution result value to TX_RSP_COMMITTED.

Once the response data are prepared, the transaction and the RPCQueue have to

be notified. The particular transaction and the transactional memory are

synchronized on the transition from the state done to the state send_rsp. Along

the transition, SendRsp() function is executed. The function SendRsp() sends the

response to the transaction by moving the response data to the variable

TxMemRspMbx. Finally, on the transition from the state send_rsp to the state

wait, the RPCQueue is notified that the transactional memory is now available.

The write operation is served in two steps. The first step is to check the t-vars in

the read set. For this purpose, the function CheckRSet() is used. It loops through

the t-vars in the read set and checks if each t-var from the set matches the most

recent version of the corresponding t-var in the dictionary. Like the state read,

the state write models the write operation. An additional time invariant ensures

that the automaton stays in the state write exactly W_proc time units simulating

the processing duration.

The second step of the write operation is to try to commit the transaction. A

commit decision is made, based on the return value of the function CheckRSet().

Intuitively, if the result is true, the transaction commits, otherwise it aborts. Both

paths are modeled on the transitions from the state write to the state done. The

actual t-var(s) update is done by the function UpdateVars(). In the case of an

abort, the t-vars in the dictionary are unchanged.

4. Transactions Execution Time Analysis

Driven by the desire to make a more faithful transaction model, the drift behavior

is modeled as a normal (non-deterministic) state without a time invariant. The fact

that a system can behave non-deterministically prevents transactions execution to

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 207 –

be handled in a unified way. This significantly impacts the temporal behavior

analysis of a PSTM system and brings us closer to the area of transaction

scheduling, which, however, is not the focus of this work.

In order to verify the temporal behavior of the PSTM system for the worst case

execution scenario, i.e. the scenario in which all the transactions are started

simultaneously, we refine the assumptions regarding the transaction processing

duration and the durations of read and write operations. The aim of this theoretical

analysis is to make a framework for PSTM temporal behavior verification in the

worst case scenario.

Particularly, three assumptions are made. The first assumption is that the

processing operation duration
ipt takes the same amount of time,

1 2p pt t 
Np pt t  for all transactions. An index i denotes i –th transaction

in the set of N transactions. This assumption is based on the fact that all

transactions in a set, typically execute rather short functions that take similar

amounts of time – for instance we can consider a banking system, some kind of an

online system such as airline ticketing system, etc. For example, ATM

(Automated Teller Machine) functions, such as cash withdrawals, deposits,

transfer funds, or obtaining account information, all take similar amounts of time,

i.e. approximately the same time
pt . The second assumption is that the

transactions processing operations take the same time as the transactional read and

write operations,
p r wt t t  . In hardware transactional memories, rt and wt may

differ, but since in PSTM t-var read and write operations perform on Python

dictionary data structure it is realistic to assume that r wt t . Further on, we

assumed
p r wt t t  because processing operations usually are a lightweight task

(money transfer, ticket reservation, etc.) rather than being compute intensive. The

third assumption is that an aborted transaction immediately retries to commit, until

it succeeds (aligned cyclic transaction behavior). This way a run-time execution

overhead needed to restart a transaction in a real system is neglected. For the

comparable overhead values, the results of the analysis would remain unchanged,

otherwise the analysis would be unnecessary complicated and unrealistic for a

genuine system. Hence, these assumptions enable us to handle the transactions

execution times in a unified way without loss of generality of the results of the

analysis.

For 2N  a transactions set execution may evolve through three characteristic

phases. These execution phases are used to derive a formula for the transaction

commit times. Before the analysis of the execution phases, let us first introduce

preliminaries.

Lemma 1. An execution time of the single transaction set takes exactly

r p wt t t t   .

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 208 –

Proof. The single transaction is executed sequentially, thus its execution time is

equal to the duration of all executed operations. □

Lemma 2. In each execution attempt the maximum queue delay
MAXqd is equal to

the number of pending transactions p .

Proof. The proof is rather intuitive. If all pending transactions p request a

transactional memory operation at the same time, then the lastly enqueued request,

is actually the p th transactional request. Further, if a transactional memory

operation takes some time
pt , then p th transactional request in the queue will be

processed after exactly the p times of the time
pt . □

Claim 1. The first transaction which requests the read operation commits at time

c r wt p t t   .

Proof. Obviously, the transaction which requested the read operation first is ahead

of all the others, thus it will also be the first to request the write operation. The

write request will be executed just after the last read request in the queue, i.e. after

reaching the maximum queue delay
MAXqd . Since the queue delay

MAXqd depends

on the number of pending transactions p , the commit time ct is equal to p read

operation times rt and one write operation time wt .

Claim 2. A transactions commit attempt terminates at time ()ter r wt p t t   .

Proof. All read operation requests are served at time rp t . The number of

pending transaction in the current attempt is unchanged, therefore wp t time is

needed for all write operation requests to be served. A commit attempt is

terminated at the time when the last write operation is served, ter r wt p t p t    .

Claim 3. In a commit attempt at, where 2at  , a transaction commits at time
1

1
i

at

c ter r w

i

t t p t t





   

Proof. A new commit attempt starts when a read operation request from the first

transaction in a set of aborted transactions is received by the transactional

memory. The aborted transactions immediately retry, i.e. they send a new read

operation request, but it can be served only after the termination of the previous

commit attempt(s) – all p write operation requests from the previous attempt are

served first. A set comprised of aborted transactions is the new pending

transactions set, therefore the first transaction from the set commits at time

1atc ter r wt t p t t


   

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 209 –

Claim 4. The last transaction commits at time

1

1
i

at

c ter r p w

i

t t t t t





   

Proof. In the last commit attempt (at N), only one transaction is running, thus

it is executed sequentially (Lemma 1). Like to the former case, the last commit

attempt starts execution after the previous commit attempt is terminated.

Based on the conducted analysis, the following formula for calculating commit

times for a set of N transactions in the worst case scenario is derived:

 
1

1

1

1

, 1

, 1

.

i

i

r w

at

c ter r w

i

at

ter r p w

i

N t t c

t c t p t t c and c N

t t t t c N










   



     



   






 (1)

The formula gives the commit time ct as the function of the number of occurred

commits. The number of transactions in a set is denoted as N. The number of

committed and pending transactions are denoted as c and p , respectively. For

0c  no committed transaction exists. A linear function N c p  models the

relation between the total, committed, and pending number of transactions in the

system. The termination time of i th commit attempt
itert is given by Claim 1. The

formula (1) defines a framework for transactions temporal analysis.

5 PSTM Verification

As mandatory properties of almost any system, the correctness criteria include

safety, liveness, deadlock freeness, and reachability properties. PSTM system is

not the exception, therefore, all the former properties are checked.

An execution scenario used to verify a property may vary for each property.

Namely, some properties may be verified using all types of transactions while for

the others an execution scenario restricted to only one type of transactions may be

more suitable. However, the property statements are formulated in such manner

that they could be applied to any PSTM-based system with arbitrary number of

transactions, t-vars, and read, write, and processing duration values. The given

properties are generalized and formulated as statements accompanied with the

equivalent CTL formulas expressed in UPPAAL query language [17].

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 210 –

5.1 Deadlock Freeness

The property deadlock freeness can be verified with the following query:

A[] not deadlock

Let us name the former query as Deadlock Freenees. It verifies that a system is

deadlock free. A remark about this property is related to terminal states and how

UPPAAL tool defines a deadlock state. In UPPAAL tool, a state is a deadlock

state if there are no outgoing action transitions either from the state itself or any of

its delay successors [17]. This is important for both linear and cyclic transactions.

Namely, the linear transactions finally end up either in the state aborted or the

state committed whereas the cyclic transactions end up in the state

committed. Due to the lack of terminal states this may be considered as a

deadlock. In order adapt the transaction automation to the deadlock definition, a

self-loop transition is added to the final state(s) of an automaton – aborted and

committed states in the case of linear transactions, and only committed state

in the case of cyclic transactions.

5.2 Safety

Commonly, in a transactional memory environment, safety property is reduced to

atomicity property. In order to get a clear picture of the problem, we need to

consider a set of transactions in the PSTM system and analyze a relevant

verification scenario. The safety property is verified from the two complementary

angles, the perspective of transactional memory operations execution and the

perspective of transactions execution in the case of the highest concurrency.

The first safety property, named Safety I, claims that in any execution scenario a

transactional memory operation is executed atomically, i.e. the transactional

memory always serves only one transaction’s request at the time, and, more

precisely, the currently front request in the RPC queue. The property can be

verified with the following CTL query:

A[] TxMemory.processing imply queue[current].id ==

owner.id

It brings to the focus the components which are fundamental for safety. It verifies

that always when the automaton TxMemory is in the state processing, the

current request in the queue is actually the same request which is the owner

of the transactional memory.

The second, stronger safety property, named Safety II, claims that in the case of

the highest concurrency, in which all the transactions are in the conflict, only one

transaction may commit at the time. It is stated as follows: from a set of N

conflicted transactions, only one transaction may commit – a transaction whose

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 211 –

commit request is received first – while remaining 1N  transactions aborts:

;commit id firstTr Tr  0 1{ } { , ,abort id first id idTr Tr Tr Tr    1, } { }id N id firstTr Tr   . The

execution scenario for this property is composed of aligned linear transactions

only. The property can be verified with the following CTL query:

A[] forall (i:IDs) ((i == first imply S1) and (i !=

first imply S2))

S1 := Tx[i].result != TX_RSP_ABORTED

S2 := Tx[i].result != TX_RSP_COMMITTED

The auxiliary statements S1 and S2 do not affect the logic behind the query, they

are used to relax a query expression. The statement S1 limits a transaction result

to the two possible values, TX_RSP_NONE and TX_RSP_COMMITTED. The

statement S2 limits a transaction result to TX_RSP_NONE and

TX_RSP_ABORTED. The value TX_RSP_NONE is used for initialization

purposes, which means that the transaction did not request any operation yet.

5.3 Liveness

Liveness property is used as a warrant of a system progress. It guaranties that all

transactions will finish eventually. The three liveness properties are introduced:

Liveness I, Liveness II, and Liveness III. Each definition of the liveness property

aims to verify a system progress. The difference between them is the number of

details which they comprehend. These properties are defined in the increasing

order of their respective power (from the weakest to the strongest). The strongest

property Liveness III, introduces the timings of the system evolution. The

properties are defined in a context of N cyclic transactions.

The liveness property Liveness I is used as a basic (sanity) functional correctness

test. It checks if it is possible for a system to reach a state in which all the

transactions are committed. The liveness property Liveness I ensures the

following: for a set of N cyclic transactions, there is a path to a state in which all

the transactions will commit eventually, in any transactions schedule. The

property can be verified with the following CTL query:

E<> forall (i:N) TxW(i).committed

The liveness property Liveness II is stronger than the former in the sense that it

includes pending transactions. It verifies that a specific relation between the

committed, pending, and total number of transactions holds in any state. This

relation defines the total number of transactions in a system as the sum of already

committed and still running (pending) transactions. The property can be verified

with the following CTL query:

A[] forall (i:N) ((i == pending) imply (L >= (NUM_OF_TX

- i))

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 212 –

L := Tx(0).committed + + Tx(N-1).committed

An auxiliary statement L defines the total number of transactions instances

Tx(i), which are in the state committed. Clearly, if a transaction is not in the

state committed, then it is still running (trying to commit).

Liveness property named Liveness III, as a warrant of a system progress enforces

the strict timing of the system. It utilizes the formula (1) to define an upper bound

of a time window along which the system advances. For the kind of property such

like liveness, the timings of the system progress are critical. The example of a

negative and undesired timing is a system livelock. In order to verify that a system

progress is positive, a number of committed transactions must be analyzed, too.

A system progresses in a positive way as long as some of the transactions

commits. This can be interpreted as the definition of the property Liveness I.

Indeed, the property Liveness III may be viewed as a timed version of the property

Liveness I. It is defined in the similar way, but with an additional criterion which

defines an upper bound of time up to which a particular number of transactions

must commit. Each time window with higher lower and upper bounds, increases

the number of committed transactions – it increases the number of commits. With

this approach, the property Liveness III can be considered as a proof that the

PSTM system is livelock free as well. The property can be verified with the

following CTL query:

E<> now == tcommitt and (L == num_of_committed)

L := Tx(0).committed + + Tx(N-1).committed

num_of_committed {1, ,N}

tcommit = commit_time(num_of_committed, N)

An auxiliary statement L defines a number of transaction instances Tx(i) that

are in the state committed while the value of num_of_committed is the

expected number of committed transactions. In order to verify the commits of a

set of N transactions, the same number N of verification queries has to be defined.

The value of num_of_committed is the parameter which denotes a particular

number of transaction commits which is the subject of verification. The value

tcommitt is calculated by function commit_time() which actually is an

implementation of the formula (1).

5.4 Reachability

The reachability property is included as additional proof of the liveness property.

It is exploited to verify the system termination, i.e. the system state after all the

transactions have been finished. We use the reachability to verify that the system

terminates correctly in any execution scenario. The property Reachability can be

verified with the following CTL query:

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 213 –

R --> ((TxMemory.wait and TxMemState == AVAILABLE) and

(RPCQueue.wait and RPCQueueState == EMPTY))

R := (Tx(0).committed or Tx(0).aborted) and … and

(Tx(N-1).committed or Tx(N-1).aborted

An auxiliary statement R claims that N Transaction instances are either in the

state committed or in the state aborted, i.e. that all transactions are finished.

6 Verification Results

The property verification queries can be applied to a system with an arbitrary

number of transactions and arbitrary duration of read, write and processing time.

Despite of model’s generic nature, it was not feasible to conduct verificaion for all

arbitrary sets of parameters, so for all verification properties the operations read,

write and processing take one time unit, 1p r wt t t   . These particular values

make the verification process viable, without losing anything from the generality

of the applied method.

Increasing the number of transactions influences the verification time required by

a model checker to explore a state space and make a verdict about the property.

Considering PSTM architecture design, the correctness properties can be verified

using only two transactions, which are required for minimal level of contingency

that may provoke undesired system behavior. A system can be verified against an

arbitrary number of transactions N, if it is necessary. In the conducted verification,

the number of transaction instances is increased as long as the verification

execution time was reasonable. Actually, at some point, due to the expanded state

space, the model checker may consume all of the operating memory of the host

machine. In such a case, the tool is capable of utilizing more memory by using

swapping mechanism, although this causes very long verification time. However,

this bottleneck is related to the host’s hardware capabilities.

The summary results are given in Table 1. The results confirmed that PSTM

satisfies all the previously defined properties. Although the correctness property

results are the main objective of the conducted verification they are accompanied

with additional data, namely the number of transactions, the verification execution

time, and the number of explored states, which may be beneficial for other

researchers who want to get insight into verification process statistics.

The system complexity is elevated by increasing the number of transaction

instances. In addition to the number of transaction instances, transactions type is

relevant as well. For example, property verification for a set of cyclic transactions

is more demanding than the verification of the same property against a set of

linear transactions. Further, verifying a property against drifted cyclic transactions

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 214 –

is certainly more demanding than verifying the same property against aligned

cyclic transactions. The same can be concluded for linear transactions. The reason

is rooted in the automata structure – firstly, the model of linear transaction is

lighter than the model of cyclic transaction, and secondly, for the model checker it

is easier to deal with a committed state (aligned transaction) than with a non-

deterministic state (drifted transactions).

Unquestionably, the number of time invariants, i.e. clock variables, significantly

impacts a state space which has to be explored. UPPAAL tool is very sensitive to

clock variables which causes state space to expand faster. Generally, relaxing the

number of clock variables would reduce the state space size.

Table 1

Summary of verification results and performance statistics

Property
Number of

Transactions

Type of

Transactions
Time

States

Explored

Deadlock

Freeness

6 Linear Drift 1m 2s 110ms 9 045 757

5 Cyclic Drift 1m 2s 440ms 10 140 401

8 Linear Aligned 1m 2s 90ms 8 014 336

7 Cyclic Aligned 24s 930ms 3 597 232

Safety I

6 Linear Drift 32s 180ms 9 045 757

5 Cyclic Drift 34s 670ms 10 140 401

8 Linear Aligned 34s 790ms 8 014 336

7 Cyclic Aligned 12s 950ms 3 597 232

Safety II 8 Linear Aligned 38s 740ms 8 014 336

Liveness I
5 Cyclic Drift 1m 0s 20ms 17 489 881

7 Cyclic Aligned 13s 450ms 3 597 232

Liveness II
5 Cyclic Drift 5s 510ms 1 690 633

7 Cyclic Aligned 12s 420ms 3 577 073

Liveness III 7 Cyclic Aligned 13s 680ms 3 577 073

Reachability

6 Linear Drift 32s 500ms 9 186 157

5 Cyclic Drift 52s 620ms 14 008 901

8 Linear Aligned 34s 650ms 8 094 976

7 Cyclic Aligned 13s 500ms 3 662 752

The experiments are conducted using Ubuntu 14.04 64bit OS, which is running on

Intel i7-3770 CPU with 16 GB of RAM, and UPPAAL 64-4.1.19 (rev. 5648).

Conclusions

In this paper we tried to overcome the shortcomings of existing STM formal

verification approaches by introducing an approach based on timed automata

formalism which uses existing STM’s program code as its input. Our verification

approach respects a STM solution implementation details aiming to make

verification models as faithful counterparts of the implementation rather than

Acta Polytechnica Hungarica Vol. 16, No. 7, 2019

 – 215 –

developing a generalized verification framework to cover more transaction

execution models and semantics. Particularly, we demonstrated our approach to

formal verification of one STM, written in the Python language, named Python

Software Transactional Memory (PSTM) [13], utilizing UPPAAL tool [17, 14].

Based on the PSTM architecture and implementation details, we derived a model

of a PSTM system which is formally verified by the UPPAAL model checker.

The verification of the system correctness includes checking deadlock-freeness,

safety, liveness, and reachability properties. We analyzed the system execution

against the types of aligned and drifted read-write transactions which share a

common transactional variable. The system temporal behavior is analyzed, too.

For the purpose of the system temporal behavior verification a framework for

calculating transactions execution times in the worst case scenario is developed.

By applying generalized property queries to a verification system based on a

different number and type of transactions, we successfully verified that our PSTM

system model satisfies all the formerly mentioned properties. The results

presented in the paper may be useful for the academia and the industry researches

as well.

The direction of future work is oriented towards development and formal

verification of a distributed (P)STM for the Internet of Things.

Acknowledgement

This work was supported by the Ministry of Education, Science, and Technology

Development of Republic of Serbia under grants III-44009, ON174026, III044006.

References

[1] M. Herlihy, J. E. B. Moss: Transactional memory: Architectural support for

lock-free data structures, Proceedings of the 20th Annual International

Symposium on Computer Architecture (ISCA’93), pp. 289-300, 1993

[2] T. Harris, J. R. Larus, R. Rajwar: Transactional Memory, 2nd edition,

Morgan and Claypool Publishers, 2010

[3] N. Shavit, D. Touitou: Software transactional memory, Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing

(PODC’95), pp. 204-213, 1995

[4] A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, L. D. Zuck: Verifying

correctness of transactional memories, Proceedings of the 7th International

Conference on Formal Methods in Computer - Aided Design (FMCAD

2007), pp. 37-44, 2007

[5] M. Emmi, R. Majumdar, R. Manevich: Parameterized verification of

transactional memories, Proceedings of the 31st Conference on

Programming Language Design and Implementation (PLDI’10), pp. 134-

145, 2010

B. Kordic et al. Formal Verification of Python Software Transactional Memory Based on Timed Automata

 – 216 –

[6] R. Guerraoui, M. Kapałka: On the correctness of transactional memory,

Proceedings of the 13th Symposium on Principles and Practice of Parallel

Programming (PPoPP'08), pp. 175-184, 2008

[7] R. Guerraoui, T. A. Henzinger, V. Singh: Model checking transactional

memories, Distributed computing, Vol. 22 (3), pp. 129-145, 2010

[8] S. Doherty, L. Groves, V. Luchangco, M. Moir: Towards formally

specifying and verifying transactional memory, Formal Aspects of

Computing (FAOC), Vol. 25 (5), pp. 769-799, 2013

[9] B. Kordic, M. Popovic, S. Ghilezan, I. Basicevic: An approach to formal

verification of python software transactional memory, Proceedings of the

Fifth European Conference on the Engineering of Computer-Based Systems

(ECBS’17), pp. 1-10, 2017

[10] M. Amitay, M. Goldstein: Evaluating the peptide structure prediction

capabilities of a purely ab-initio method, Protein Engineering, Design and

Selection, Vol. 30 (10), pp. 723-727, 2017

[11] M. Goldstein, E. Fredj, R. B. Gerber: A new hybrid algorithm for finding

the lowest minima of potential surfaces: approach and application to

peptides, Journal of Computational Chemistry, Vol. 32, pp. 1785-1800,

2011

[12] PyPy Software Transactional Memory:

http://doc.pypy.org/en/latest/introduction.html (accessed 15 October 2018)

[13] M. Popovic, B. Kordic: PSTM: Python software transactional memory, 22nd

Telecommunications Forum Telfor (TELFOR 2014), pp. 1106-1109, 2014

[14] UPPAAL tool home page: http://www.uppaal.org (accessed 15 October

2018)

[15] C. Belwal, A. M. K. Cheng: Schedulability analysis of transactions in

software transactional memory using timed automata. IEEE 10th

International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), pp. 1091-1098, 2011

[16] J. Perhac, D. Mihalyi, V. Novitzka: Modeling synchronization problems:

from composed Petri nets to provable linear sequents. Acta Polytechnica

Hungarica, Vol. 14 (8), pp. 165-182, 2017

[17] G. Behrmann, A. David, K. G. Larsen: A tutorial on Uppaal, Lecture Notes

in Computer Science, Vol. 3185, pp. 200-236, 2004

[18] R. Alur, D. L. Dill: A theory of timed automata, Theoretical Computer

Science, Vol. 126 (2), pp. 183-235, 1994

http://doc.pypy.org/en/latest/introduction.html

