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Abstract: Petri nets and B-Method represent a pair of formal methods, for computer 

systems engineering, with interesting complementary features. Petri nets have nice 

graphical representation, valuable analytical properties and can express concurrency. B-

Method supports verified software development. To gain from these complements, a 

mapping from Petri nets to the language of B-Method has been defined and its correctness 

proved. This paper presents, by means of a case study, the usefulness of incorporation of 

Petri net designs in a software application developed by B-Method. Modifications of this 

mapping intended for the Event-B method and treatment of concurrency are also discussed. 
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1 Introduction 

Petri nets (PN) [8] are a formal language able to naturally express behaviour of 

non-deterministic, parallel and concurrent systems. PN offer an easy to understand 

graphical notation and analytical methods, which, for example, allows one to 

derive invariant properties from the structure of the net. There are many types of 

PN with different expressional and modelling power. PN can be used for 

modelling, analysis and simulation of systems from various areas, including 

network protocols, operating systems, workflow management and business 

processes [5] and robotic manufacturing systems [18, 19]. On the other hand, the 

B-Method (B) [1] is a state based, model-oriented formal method intended for 

software development. Its strength lies in a well-defined development process, 

which allows one to specify a software system as a collection of components 

called B-machines and refine such an abstract specification to a concrete one. The 

concrete specification can be automatically translated to ADA, C or another 

programming language. An internal consistency of the abstract specification and 

correctness of each refinement step are verified by proving a set of predicates 

called proof obligations (PObs). The whole development process, including 

proving, is supported by an industrial-strength software tool called Atelier B. 
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Important properties of these methods are complementary: in PN invariant 

properties can be derived from the structure of the net; in B we have to specify 

invariants manually. B has verified development process but is intended only for 

sequential systems; PN can express concurrency but lack a development process. 

This led to an idea of integration of these methods. The idea was realized in the 

form of semantics-preserving mappings from the language of B-Method (B-

language) to Coloured Petri nets [14] and from Evaluative Petri nets (EvPN) to the 

B-language [13, 15]. The second mapping transforms each EvPN to a 

computationally equivalent (bisimilar) B-machine. Its formal definition and proof 

of correctness was presented in [13, 15] and it has even also been shown that it 

can be used for an additional analysis of PN in B-Method [16]. However, its 

usefulness for software development has yet to be treated. Therefore, in this paper 

we present a case study that demonstrates how a B-machine, obtained by the 

second mapping, can be used as a component of a software system, developed by 

B-Method. We also outline an approach to reflect concurrent aspects of PN 

models in B and describe how the mapping can be adapted for a new version of B, 

called Event-B. The case study uses Place-transition nets, which can be regarded 

as a subclass of EvPN, so both PN and the mapping are treated to this extent only. 

The rest of the paper is organized as follows. Sections 2 and 3 provide necessary 

information about Place-transition (PT) nets and B. Section 4 defines the mapping 

from PT nets to B-Method and shows its application to both the “classical” B and 

Event-B. Section 5 presents the case study and section 6 discusses the approach to 

reflect concurrent aspects. Section 7 describes related work and in the conclusions 

we deal with plans for future research and development. 

2 Place-Transition Nets 

Place-transition nets (PT nets) [8], also called Generalised Petri nets [10], are one 

of the most commonly used and researched type of PN. A PT net is defined [10] 

as a 5-tuple 

N=(P, T, pre, post, m0),  (1) 

where P={p1,...pk} is a finite set of places, T={t1,…, tn}, is a finite set of 

transitions, pre: PT ℕ is a preset function, post: PT ℕ is a postset function 

and m0 ℕ|P|
 is the initial marking. ℕ is the set of natural numbers, including 0. 

PT net is usually depicted as an oriented graph with places (circles or ellipses) and 

transitions (bold lines or rectangles) as vertices (Fig. 1). Arcs are defined by the 

functions pre and post: When pre(p,t) 0, then there is an arc from p to t, when 

post(p,t) 0, then there is an arc from t to p. If the value of pre(p,t) or post(p,t) is 

greater than 1 then it is written next to the corresponding arc. For example, in the 

net in Fig. 1 we have pre(p2,t1)=10, pre(p1,t1)=0, post(p1,t1)=1 and post(p4,t2)=1. 
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With each transition t we can associate two sets: a set of pre-places of t ( t ) and a 

set of post-places of t ( t ). They are defined as follows: 

}0),(|{  tpprePppt , }0),(|{  tppostPppt . (2) 

A marking of PT net N is a function m: P ℕ. Value of m(p) is the number of 

tokens in the place p. Markings represent states of a Petri net. Markings are often 

written as vectors, m=(m(p1),…m(pk)). For example the initial marking of the net 

from Fig. 1 is m0=(0,10,0,10). A transition tT is enabled (feasible) in marking m, 

if and only if 

),()(: tpprepmtp   , (3) 

When t is enabled, it can be executed (fired). The result of its execution is a new 

marking )(' pm  ℕ|P|
: 

),(),()()(' tpposttpprepmpm  , (4) 

A marking, which can be reached from the initial marking of some PT net N by 

firing some sequence of enabled transitions, is called a reachable marking of N. 

 

Figure 1 

PT net representing limited variant of RW problem 

An example of PT net can be seen in Fig. 1. The net specifies a solution of a 

limited variant of the so-called readers-writers (RW) problem. The RW problem 

can be described as follows: We have shared contents (a library) that can be 

accessed concurrently by two kinds of processes: readers, which only read the 

contents and writers, which also modify it. The problem is to ensure that no reader 

will access the contents while some writer is modifying it. In the limited variant of 

the problem, the library capacity, that is, the maximal number of processes 

accessing concurrently, is limited. The capacity is set to 10 in our example. The 

number of tokens in writersIn is the number of writers in the library (i.e. of 

processes modifying it) and the number of tokens in readersIn is the number of 
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readers in the library. Firing of wrEnter means that a writer process started 

accessing the library and wrLeave that it finished accessing the library; rdEnter 

and rdLeave have similar meaning for readers. We mentioned earlier that a 

handful of analytical methods are available for PN. One of them is a computation 

of so-called place invariants and by applying it to our net we get equations (5) and 

(6), which hold in any reachable marking m of the net. The equations prove that 

the net has required properties, such as the mutual exclusion of readers and 

writers. 

m(writersIn)+ m(freeCap)+ m(readersIn) = 10 (5) 

10m(writersIn)+ m(sem)+ m(readersIn)  = 10 (6) 

3 B-Method 

As it was written above, the B-Method (B) [1] allows us to specify a software 

system as a collection of B-machines and to refine such an abstract specification to 

an implementable one, while providing formal means to prove that both abstract 

specification and its refinements are consistent. All components in B are written in 

its own B-language (also called B-AMN), which is based on Zermelo-Fraenkel set 

theory and E.W. Dijkstra's Guarded Command Language [9]. 

Table 1 

General structure of B-machine (left) and Refinement (right) 

MACHINE M(p) 

CONSTRAINTS C 

SETS St 

CONSTANTS k 

PROPERTIES Bh 

VARIABLES v 

DEFINITIONS D 

INVARIANT I 

ASSERTIONS A 

INITIALISATION T 

OPERATIONS 

  y←op(x) = 

   PRE P THEN S END 

  … 

END 

REFINEMENT R(p) 

REFINES M 

SETS St1 

CONSTANTS k1 

PROPERTIES Bh1 

VARIABLES w 

DEFINITIONS D1 

INVARIANT J 

ASSERTIONS A1 

INITIALISATION T1 

OPERATIONS 

  y←op(x) = 

   PRE P1 THEN S1 END 

  … 

END 

Each B-machine consists of several clauses (Table 1). The most important are the 

MACHINE clause with a name M of the machine and a list p of its formal 

parameters, the VARIABLES clause with a list v of state variables, INVARIANT 

with properties I of the state variables, INITIALISATION with an operation T 

that establishes an initial state of the machine, and OPERATIONS that contains its 
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operations. The B-Method obeys the encapsulation principle, so only operations of 

the given machine can modify its variables. We say that the machine is internally 

consistent if I holds in each of its states. St is a list of deferred and enumerated 

sets. These are regarded as new types. Constants of the machine are listed in k and 

a predicate Bh defines properties of St and k. D is a list of macro definitions and 

A is a list of lemmas used to simplify proof of PObs. Only the MACHINE clause is 

mandatory. 

Table 2 

Selected generalized substitutions and their intuitive meaning 

GS meaning of GS 

skip Empty GS (do nothing). 

x := e  Assignment of value of expression e to variable x. 

S1 ; S2  Sequential composition (do GS S1, then GS S2). 

S1 || S2 Parallel composition (do S1 and S2 at once). 

CHOICE S1 OR S2 END  Do S1 or S2. 

PRE E THEN S1 END  If predicate E holds, do S1. Otherwise, do anything. 

SELECT E THEN S1 END  If E holds, do S1. Otherwise, do not execute. 

IF E THEN S1 ELSE S2 END  If E holds, do S1. Otherwise, do S2. 

VAR v IN S1 END For any values of local variables from the list v do S1. 

ANY v WHERE E  

         THEN S1 END 

For any values of variables from v that satisfy E do S1. 

If no values satisfy E, do not execute. 

Every operation has two parts: a header and a body. The header includes its name 

(op) and optional input and output parameters (x, y). The body is written in the 

Generalized Substitution Language (GSL), a part of the B-language. GSL contains 

several constructs, or “commands”, called generalized substitutions (GS). Some of 

them are listed in Table 2. The formal semantics of GSL is defined by the weakest 

pre-condition calculus [9]. Standardly, the body has the form of PRE GS, however 

if P  TRUE then it consists only of S. The PObs for B-machine assert that T 

always establishes an initial state in which I holds and that for each operation op 

it holds that if op is executed from a state satisfying I and P then it always 

terminates in a state satisfying I. 

One of the valuable assets of B-Method is its verified stepwise refinement process. 

This means that an abstract specification, consisting of B-machines (MM), can be 

modified in one or more steps into a form of concrete, implementable, 

specification. There are two additional components used during the refinement 

process – Refinement (RR) and Implementation (II). Structures of MM, RR (Table 

1) and II are similar, but there are some differences. For example GS “;” and 

loops are not allowed in MM and “||”, PRE, SELECT and CHOICE are not allowed 

in II. A RR or II can refine only one MM or RR but one MM or RR can be refined 

by more RR or II. To refine means to modify data or operations. Interfaces (i.e. 
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parameters and operation headers) of a refining and a refined component have to 

be the same. The structure of RR can be seen in Table 1. Invariant J of the 

refinement R defines properties of w but also a relation between v and w. Whether 

J is established by T1 and maintained by all operations of R is, again, verified by 

proving the PObs. 

We stated earlier that specification in B usually consists of more than one 

component. To access contents of one component from another, several 

composition mechanisms can be used. For example, SEES and USES allow 

different level of read-only access, INCLUDES allow to call operations of 

accessed component in the accessing one and IMPORTS replaces INCLUDES in 

implementations. These mechanisms are usually defined right after the 

CONSTRAINTS or REFINES clause. 

3.1 Event-B 

In the late 1990s a development of a new version of B-Method, called Event-B [2], 

started. Event-B was meant to be a reinvention of B-Method (now also called the 

classical B), based on existing experiences with the practical use of B and a wide 

variety of research results related to B. It has a broader scope – it is intended for 

computer system modelling and development in general and is not only meant for 

software. Specifications are called models and composition is possible via SEES 

and EXTENDS mechanisms. We have two types of specification components in 

Event-B: Context with sets, constants and their properties and Machine with 

everything else. Machines can be refined, and refined components are called 

machines, too. Operations are replaced by events and the initialisation is now one 

of them. Event-B uses a modified version of B-language. Most of GS have been 

dropped and each event has the form  

any v where E then S end, 

where v is a list of local variables, E is a list of predicates, called guards and S is a 

list of (possibly multiple and non-deterministic) assignments, called actions. All 

its guards have to hold for an event to be executable (enabled) and when executed 

all its actions are run at once. On the other hand, there are some new additions to 

B-language that allows one to specify names and additional properties of 

specification components and their parts. The concept of refinement has been 

modified, too; in Event-B it is possible to refine one event into several events. 

One may wonder how a sequential program can be described in Event-B without 

the sequential composition, conditional statements and loops. But the general 

model of an Event-B model execution is such that all its events, except of the 

initialisation, are executed in a loop and the loop terminates if no event is enabled. 

If there are more enabled events, one of them is selected non-deterministically. So, 

by a careful design of guards and actions we can ensure that events of a model 

will be executed in desired order. This is covered in more detail in [2]. 
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4 Petri Net to B-Machine Transformation 

The transformation has been originally designed for a Turing-complete low-level 

type of PN, called Evaluative Petri Nets (EvPN). As the type of PN used in our 

case study is PT nets, we present here a simplified version of the original 

mapping, namely the mapping π from the class PTcl of PT nets to the class 

PTlBMcl of PT-like B-machines (Definition 1). The structure of PT-like B-

machine (PTlBM) is given in (7). In the resulting PTlBM M, M= π(N), there will 

be one state variable svi for each place pi from the PT net N and one operation opj 

for each transition tj from N. 

Definition 1. Let N be a PT-net N=(P,T,pre,post,m0), where P={p1,…, pk}, 

T={t1,…, tn}, and  be a mapping 
cllcl

BMPTPT : . Then the image of N under 

π is the PT-like B-machine M, 
cll

BMPTMNM  ),( , with the structure 

 
MACHINE M 

VARIABLES sv1, …, svk 

INVARIANT sv1:NATURAL & … & svk:NATURAL 

INITIALISATION sv1 := iv1|| …|| svk := ivk 

OPERATIONS 

  op1 = SELECT PCond1 THEN Sub1 END; 

  … 

  opn = SELECT PCondn THEN Subn END 

END 

(7) 

and elements defined as follows: 

)(:)1(
0 ii

pmivkii   (8) 

),tprc(p),tprc(pnjj
jkjj

&&...Pcond:)1(
1

  (9) 














tpif

tpiftpprep
prc(p,t)TtPptp P

TRUE

),()(
:),(,


 (10) 

),t(pasg),t(pasgubSnjj
jkjj

| |...| |:)1(
1

  (11) 
















ttpif

ttpiftpposttpprepp
(p,t)asg

TtPptp

PP

skip

: ),(),()()(

:),(,

  (12) 

The 
P

 is an auxiliary mapping: 

},,{:
1 kP

svsvP  ,
iiP

svpkii  )(:)1(   (13) 

The bisimilarity between N and π(N) is not hard to see. The construction of the 

INITIALISATION clause in (7) and the formula (8) ensure that the initial value 

of each svi will be the same as m0(pi). In opj the predicate PCondj, specified 

according to (9) and (10), is similar to the enabling condition (3) and GS Subj, 
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defined by (11), (12), is equivalent to the new marking computation formula (4) 

(both for tj). The SELECT GS is used because it is not executable when its 

condition (PCondj here) is false. 

4.1 B-Machine for RW Problem 

The PT-like B-machine RWlimited, transformed from the net in Fig. 1 by the 

mapping π, is shown in Fig. 2. In the machine we named variables and  

 

MACHINE RWlimited 

VARIABLES writersIn, sem, readersIn, freeCap 
 

INVARIANT 

  writersIn:NATURAL & sem:NATURAL & readersIn:NATURAL &  

  freeCap:NATURAL 
   

INITIALISATION 

  writersIn := 0 || sem := 10 || readersIn := 0 || freeCap := 10 
 

OPERATIONS 

 wrEnter = SELECT sem >= 10 & freeCap >= 1 THEN 

   writersIn:=writersIn+1 || sem:=sem-10 || freeCap:=freeCap-1 END; 
  

 wrLeave = SELECT writersIn >= 1 THEN 

   writersIn:=writersIn-1 || sem:=sem+10 || freeCap:=freeCap+1 END; 
 

 rdEnter = SELECT sem >= 1 & freeCap >= 1 THEN 

   sem:=sem-1 || readersIn:=readersIn+1  || freeCap:=freeCap-1 END; 
 

 rdLeave = SELECT readersIn >= 1 THEN 

   sem:=sem+1 || readersIn:=readersIn-1  || freeCap:=freeCap+1 END 

END 

Figure 2 

B-machine RWlimited 

operations in the same way that places and transitions are named in Fig. 1. 

Statements “skip” and “TRUE” are omitted as for each generalized substitution S 

it holds that S||skip  S and for each predicate P that PTRUE  P. The symbol 

“:” stands for “belongs to” and “NATURAL” is the set of natural numbers. 

4.2 Transformation to Event-B 

The concept of events in the Event-B model being executed in a loop while at 

least one of them is executable is essentially the same as the original concept of 

Petri net execution: Petri net is also firing transitions until none of them are 

enabled. And if more transitions are enabled simultaneously, one of them is 

selected randomly and fired. To adjust our transformation for Event-B we just 

need to rename operations to events, delete “||” and “” symbols, add names for 

predicates and actions, replace SELECT by where and move the initialisation to 

events. We will not define the transformation formally here; we only show how 

the Event-B version of RWlimited looks like (Fig. 3). 
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machine RWlimitedEvB 
 

variables writersIn sem  

          readersIn freeCap  
 

invariants 

  @inv1 writersIn : NATURAL 

  @inv2 sem : NATURAL 

  @inv3 readersIn : NATURAL 

  @inv4 freeCap : NATURAL 
 

events 
 

  event INITIALISATION 

    then 

     @act1 writersIn := 0 

     @act2 sem := 10 

     @act3 readersIn := 0 

     @act4 freeCap := 10 

  end 

  event wrEnter 

    where 

     @grd1 sem >= 10 

     @grd2 freeCap >= 1 

    then 

     @act1 writersIn :=  

           writersIn + 1 

     @act2 sem := sem - 10 

     @act3 freeCap := freeCap-1 

  end 
 

  event wrLeave … 
 

  event rdEnter … 
 

  event rdLeave … 

end 

 

Figure 3 

Event-B machine RWlimitedEvB 

As it can be seen, only the then…end part of an event is mandatory. The 

where…then…end command is semantically identical to the SELECT GS. Only 

INITIALISATION and wrEnter events are shown as the rest is created in the 

same way. 

5 Application in Software Development 

The form of operations introduced in Definition 1 is perfect for an analysis of 

Petri nets by means of B, for example to prove deadlock freeness [16]. But it is 

not good for software development as the SELECT GS is not feasible when its 

condition doesn’t hold. And only completely feasible operations can be refined. 

Because of this, when using PTlBM for software development we replace the form 

of opj from (7) by (14) or (15). The form (15) is used if there is a need to report a 

success of corresponding state change back to a caller of opj. 

 opj= IF PCondj THEN Subj END (14) 

 ok<--opj=IF PCondj THEN Subj||ok:=TRUE  (15) 

 ELSE ok:=FALSE END 

This replacement doesn’t change the bisimilarity relation between markings of N 

and states of π(N) as the state of π(N) (i.e. the values of its state variables) is 

changed by opj only if PCondj is true. If PCondj is false, opj is executed but 

doesn’t change the state of π(N) at all. 
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Figure 4 

Components of B specification case study 

In the rest of this section we present a case study that demonstrates how a B-

machine, obtained from a Petri net, can be refined to a more feature-rich form and 

how this form can be used in other specification components in B. The structure of 

our specification is shown in Fig. 4. The machine translated from PT net is 

AccPolicy, which is in fact a slightly modified version of RWlimited. This is 

then included (imported) into the AdvAccPolicy machine, its refinement  

AdvAccPolicy_r and implementation AdvAccPolicy_i, in order to define 

a more sophisticated access policy component based on the limited RW problem 

solution. The Library machine represents shared contents and LibAccess 

with its refinement and implementation provide access to the shared contents 

using the policy defined by AdvAccPolicy. 

The AccPolicy (Fig. 5) primarily differs from RWlimited in that it uses the 

form (15) for operations and that the abstract type NATURAL is replaced by an 

implementable type NAT. The second modification is an introduction of the 

parameter cap, which represents the capacity of the library and replaces the value 

“10” from RWlimited. This makes the machine more usable without affecting 

any of its properties. Finally, the third change is an addition of formulas 

equivalent to (5) and (6) to its invariant (in italic in Fig. 5). This addition was 

necessary for proving that variables of the machine will not exceed the limit of the 

type NAT. Fig. 5 doesn’t show bodies of rdEnter and rdLeave, as they are 

similar to those of the previous operations. 

 

MACHINE AccPolicy (cap) 

CONSTRAINTS cap:NAT & cap>0 

VARIABLES writersIn, sem, readersIn, freeCap 
 

INVARIANT 

  writersIn:NAT & sem:NAT & readersIn:NAT & freeCap:NAT & 

  writersIn+freeCap+readersIn=cap & cap*writersIn+sem+readersIn=cap 
 

INITIALISATION 

  writersIn := 0 || sem := cap || readersIn := 0 || freeCap := cap 

 

OPERATIONS 
 

 ok<--wrEnter =  

   IF sem >= cap & freeCap >= 1 THEN 
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    writersIn:= writersIn+1 || sem:= sem-cap || freeCap:=freeCap-1  

    || ok:=TRUE  

   ELSE ok:=FALSE END; 
 

 ok<--wrLeave =  

   IF writersIn >= 1 THEN 

    writersIn:= writersIn-1 || sem:= sem+cap || freeCap:= freeCap+1  

    || ok:=TRUE  

   ELSE ok:=FALSE END; 
 

 ok<--rdEnter = ... END; 

 ok<--rdLeave = ... END 
 

END 

Figure 5 

B-machine AccPolicy 

The crucial difference between AccPolicy and AdvAccPolicy (and 

corresponding refined components) is that the latter contain variables reading 

and writing. These are used to register processes that are currently editing or 

reading the shared contents. Both variables are subsets of the set PROCESSES, 

which represents all processes that could possibly access the contents. One 

member of PROCESSES, stored in the noPr variable, is reserved for the null 

process. Introduction of reading and writing allowed us to check by PObs 

whether our advanced procedure really obeys the access policy defined by the 

original PT net (and AccPolicy): In AdvAccPolicy (Fig. 6) we prove that it 

is impossible to write and read at the sametime, and in AdvAccPolicy_r (Fig. 

7) we show that the number of writing and reading processes is always the same 

as in AccPolicy. Related parts of their invariants are written in italic. The 

operation reqRAcc corresponds to rdEnter, reqWAcc to wrEnter and 

leave unites rdLeave and wrLeave. They call the corresponding operations 

from AccPolicy. The proper order of calling is established in the refinement 

AdvAccPolicy_r since it is impossible to use the sequential composition in B-

machines. The scs output parameter indicate whether a request to access or leave 

the shared contents was successful and pr holds assigned process id. The null 

process (noPr) is returned if the access is not granted. There are three extra 

operations, canRead and canWrite to return process status and getNullPr 

to get the value used as the null process. The last operation is necessary for the 

final stage of development as it is forbidden to read variables directly in 

implementations. 

 

MACHINE AdvAccPolicy(prCap) 

CONSTRAINTS prCap:NAT & prCap>0 

INCLUDES AccPolicy(prCap) 

SETS PROCESSES 

VARIABLES reading, writing, noPr 

INVARIANT reading <: PROCESSES & writing <: PROCESSES & 

          noPr : PROCESSES & reading /\ writing = {} & 

          {noPr} /\ reading = {} & {noPr} /\ writing = {} 

INITIALISATION reading:= {} || writing:= {} || noPr::PROCESSES 
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OPERATIONS 
 

 pr,scs<--reqRAcc= 

  IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN 

   ANY pp WHERE pp:PROCESSES-(reading\/writing\/{noPr}) THEN 

     CHOICE reading := reading \/ {pp} || pr:=pp OR pr:=noPr END  

     || scs<--rdEnter  

   END 

  ELSE scs:=FALSE || pr:=noPr END; 
 

 pr,scs<--reqWAcc= 

  IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN 

   ANY pp WHERE pp:PROCESSES-(reading\/writing\/{noPr}) THEN 

     CHOICE writing := writing \/ {pp} || pr:=pp OR pr:=noPr END  

     || scs<--wrEnter  

   END  

  ELSE scs:=FALSE || pr:=noPr END;  
 

 scs<--leave(pr)= 

  PRE pr: reading\/writing THEN 

   IF pr:reading THEN  

     CHOICE reading := reading - {pr} OR skip END || scs<--rdLeave  

   ELSE 

     CHOICE writing := writing - {pr} OR skip END || scs<--wrLeave 

   END 

  END; 
 

 yes<--canRead(pr)= PRE pr:PROCESSES THEN 

    IF pr:reading THEN yes:=TRUE ELSE yes:=FALSE END 

 END; 
 

 yes<--canWrite(pr)= PRE pr:PROCESSES THEN 

    IF pr:writing THEN yes:=TRUE ELSE yes:=FALSE END 

 END; 
 

 npr <-- getNullPr = BEGIN npr:=noPr END 
 

END 

Figure 6 

B-machine AdvAccPolicy 

In Fig. 6 and the following ones the symbol “<:”means “is subset or equal”, “\/” 

is the set union, “/\” the set intersection, “{}” the empty set set and “{x}” is a 

set with x as its only member. The symbol “/=” stands for “not equal” and 

“xx::SS” is a special kind of the ANY GS with the meaning “assign any arbitrary 

selected value from a set SS to a variable xx”. 

 

REFINEMENT AdvAccPolicy_r(prCap) 

REFINES AdvAccPolicy 

INCLUDES AccPolicy(prCap) 

VARIABLES reading, writing, noPr 

INVARIANT card(writing)=writersIn & card(reading)=readersIn 

INITIALISATION reading:= {}; writing:= {}; noPr::PROCESSES  

 

OPERATIONS 
 

 pr,scs<--reqRAcc= 

  IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN 

   VAR acd,pp IN 
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     acd <--rdEnter; 

     pp::PROCESSES-(reading\/writing\/{noPr}); 

     IF acd=TRUE THEN 

       reading := reading \/ {pp}; pr:=pp; scs:=TRUE 

     ELSE scs:=FALSE; pr:=noPr END  

   END 

  ELSE scs:=FALSE; pr:=noPr END; 
 

 pr,scs<--reqWAcc= 

  IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN 

   VAR acd,pp IN 

     acd <--wrEnter; 

     pp::PROCESSES-(reading\/writing\/{noPr}); 

     IF acd=TRUE THEN 

      writing := writing \/ {pp}; pr:=pp; scs:=TRUE 

     ELSE scs:=FALSE; pr:=noPr END  

   END 

  ELSE scs:=FALSE; pr:=noPr END; 
 

 scs<--leave(pr)= 

  IF pr: reading\/writing THEN 

    VAR acd IN 

      IF pr:reading THEN 

        acd <--rdLeave; 

        IF acd=TRUE THEN reading := reading - {pr}; scs:=TRUE  

         ELSE scs:=FALSE END 

      ELSE 

        acd <--wrLeave; 

        IF acd=TRUE THEN writing := writing - {pr}; scs:=TRUE 

         ELSE scs:=FALSE END 

      END 

    END 

  ELSE scs:=FALSE END; 
 

 yes<--canRead(pr)= IF pr:PROCESSES THEN 

   IF pr:reading THEN yes:=TRUE ELSE yes:=FALSE END  

 ELSE yes:=FALSE END; 
 

 yes<--canWrite(pr)= IF pr:PROCESSES THEN 

   IF pr:writing THEN yes:=TRUE ELSE yes:=FALSE END 

 ELSE yes:=FALSE END; 
 

 npr <-- getNullPr = BEGIN npr:=noPr END  
 

END 

Figure 7 

Refinement AdvAccPolicy_r 

MACHINE Library 

VARIABLES contents 

INVARIANT contents:NAT 

INITIALISATION contents:=0 
 

OPERATIONS 

 lcnt <-- read = lcnt:=contents; 

 write(ncnt) = PRE ncnt:NAT THEN contents:=ncnt END 

END 

Figure 8 

B-machine Library 
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The machine Library (Fig. 8) represents shared contents that is accessed by 

processes and defines operations over it. For the sake of simplicity, the content is 

only a natural number here. 

An access to the shared contents is provided by the LibAccess (Fig. 9) 

component and its refinement. In fact, LibAccess defines only heads of 

operations and the type RETCODE, while the real functionality is encoded in its 

refinement LibAccess_r (Fig. 10). The reason why we have to use the 

refinement is the restriction on the use of “;”, again. 

 

MACHINE LibAccess(lCap) 

CONSTRAINTS lCap:NAT & lCap>0 

SETS RETCODE={ok,failEnter, failLeave, failWrite} 
 

OPERATIONS 

 cnt, rc<--libRead= BEGIN rc::RETCODE || cnt::NAT END; 

 rc<--libWrite(cnt)=PRE cnt:NAT THEN rc::RETCODE END 

 

END 

Figure 9 

B-machine LibAccess 

To read the contents, one has to call the operation libRead, which first checks 

whether it is possible to read by calling reqRAcc from AdvAccPolicy then 

reads (by calling read from Library) and, finally, calls leave to announce 

that the reading is over. For editing the libWrite operation is used, which 

works in the similar way. 

We decided to not describe the four implementation components of our case study 

in this paper as they are similar to the corresponding refinements or machines. 

 

REFINEMENT LibAccess_r(lCap) 

REFINES LibAccess 
INCLUDES AdvAccPolicy(lCap), Library 
 

OPERATIONS 
 cnt,rc<--libRead=  

   VAR acd, prId IN 
     prId,acd <--reqRAcc; 

     IF acd=TRUE & prId /=noPr THEN 
       cnt<--read; acd <--leave(prId); 
       IF acd=TRUE THEN rc:=ok ELSE rc:=failLeave END 
     ELSE cnt:=0; rc:=failEnter END 
 END; 
 

 rc<--libWrite(cnt)= 

   IF cnt:NAT THEN 

     VAR acd, prId IN 

       prId,acd <--reqWAcc; 

       IF acd=TRUE & prId /=noPr THEN  

         write(cnt); acd <--leave(prId); 
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       IF acd=TRUE THEN rc:=ok ELSE rc:=failLeave END 

     ELSE rc:=failEnter END 

    END 

ELSE rc:=failWrite END 

END 
 

Figure 10 

Refinement LibAccess_r 

6 Utilization in Concurrent Environment 

While the verification mechanisms of B proved to be sufficient to ensure that 

properties of the design (AccPolicy machine) are maintained in components 

refining and directly including it, we still cannot call the resulting implementation 

safe for use in a concurrent environment. B doesn’t take concurrency into account, 

so to improve the situation, extensions to both its language and tools are 

necessary. The B-language can be extended by annotations allowing one to label 

operations that cannot be run in parallel at all or within some group of operations. 

Then modified compilers for B will translate these annotations to equivalent 

constructs of target programming languages. However, one critical question 

remains open: Can the process of annotating of operations and of verifying their 

consistency be automated? 

The use of machines translated from Petri nets provides a partial answer here: 

Assuming that all concurrency issues are treated in machines transformed by π 

and that these machines are separately implemented (like AccPolicy in 

AccPolicy_i), we can automatically annotate operations in them and mark all 

operations that directly or indirectly call their operations as candidates for 

concurrent execution. However, it is very probable that the final decision about 

the calling operations will require certain amount of manual checking. 

The automatic annotating of machines translated from PN can be easily 

implemented, obeying the following rule: operations created from transitions with 

common pre-places cannot be run at once. This is because there is a risk that their 

enabling conditions (PCond in (7)) will be evaluated at once and, as they read 

some common variables, will lead to faulty execution of their bodies. In machines 

in Fig. 2 and Fig. 5 wrEnter and rdEnter are such operations as their 

counterparts in Fig. 1 have common pre-places sem and freeCap. Separate and 

careful development of these machines is critical: we can introduce new variables 

and add new functionality to its refinements and implementation, but what was 

defined in the machine must stay intact. 
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Regarding the calling operations, the question is whether they call those originated 

from Petri nets properly. In our case study, the calling ones can be found in 

AdvAccPolicy(_r) (the first three ones) and in LibAccess_r (both). In the 

case of AdvAccPolicy_r, its invariants and corresponding PObs help to 

resolve the situation and they can be allowed to run concurrently. Operations from 

LibAccess(_r) are also the calling ones as they call the first three from 

AdvAccPolicy, but invariants and PObs are of no help here. This is because 

operations from AdvAccPolicy are called in sequence in libRead and 

libWrite and PObs only check states before and after an operation execution. 

Again, the situation can be improved by introducing annotations to define order of 

execution of operations in machines obtained from PN and a procedure that will 

check whether this order is maintained within every calling operation. 

7 Related Work 

The problem of Petri nets and B-Method integration attracted other researchers as 

well, but, to our knowledge, all of these works have been published after the initial 

version of our transformation [13] and approach the problem from a more or less 

different perspective. 

The work [3] presents an encoding of PT nets and high-level PN (HLPN, tokens 

have values assigned in these types of PN) to the Event-B language. Each Petri net 

is represented by a specification consisting of two machines. The first machine 

contains constants, sets and variables that define the concrete Petri net. The 

second one contains one event for transition firing and in the case of HLPN also 

events for actions associated with places and transitions. The second machine is 

identical for all PT nets. The author uses the Atelier B version of Event-B syntax, 

which is much closer to the classical B-language than to the “official” version, 

presented in [2]. The essential difference between our approach and [3] is that we 

translate each transition to a separate operation (event). This is more natural and 

usable for software development. The author of [3] claims that his primary 

motivation is analysis; however our practical experience shows that the data 

representation chosen in [3] is usually more difficult for the Atelier B prover to 

handle than the one used in our approach. 

In [11, 12] a mapping of a subset of the SYNTESIS scripting language, which is 

similar to HLPN, is presented. The target specification is the Refinement 

component of B-Method. In principle, the approach is close to ours: places are 

mapped to variables and transitions to operations. What differs is that variables in 

[11, 12] are sets and structure of operations is more complicated as high-level PN 

have individualised tokens. The purpose of the mapping is an analysis of scripts in 

SYNTESIS by means of B-Method. A similar transformation is used in a railway 

safety-related case study in [7] to translate a simple Coloured Petri net (a kind of 
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HLPN) specification to the Event-B language with the Atelier B syntax. The B 

specification in [7] uses a special machine that implements multi-sets and the 

purpose of this transformation is a further development of the specified system. 

The mapping of PN, defined in [13, 15] and used in this paper, can be quite easily 

modified for HLPN by adopting principles of these two approaches. However, we 

found the PT nets and other PN types with undistinguishable tokens (so-called 

low-level PN) more suitable for the role of the most abstract specification of a 

development. They provide analytical methods that are only hardly usable for 

HLPN (e.g. derivation of invariants) and an additional functionality can be added 

later, on the side of B-Method. On the other hand, we are aware that utilization of 

HLPN can lead to significant reduction in size of PN models and allow 

parameterisation of models that is impossible for low-level PN. 

There have been also researches that combined B with other formal methods for 

specification of concurrent systems, primarily with the Communicating Sequential 

Processes (CSP) [6]. The most significant approaches are csp2B [4] and CSP||B. 

Both support certain subsets of CSP. The csp2B provides a method of 

transformation of CSP specifications to B-language. The transformation translates 

implicit states of CSP processes to variables and process events to operations and 

is supported by the csp2B tool. The CSP||B is a method that combines 

specifications in CSP and B-language in such a way that CSP controllers manage 

concurrently running B-machines. CSP||B has been introduced in [21] and further 

developed in subsequent works, such as [22] or [23] where it was adjusted for 

Event-B. Both approaches also deal formally with refinement of translated or 

combined specifications, so their results will be considered when designing 

mechanisms for maintaining some consistency aspects of B-machines created by 

our transformation. 

Conclusions 

The approach to implementation of PN specifications, shown here, looks 

promising and brings qualities that B doesn’t provide out of the box, namely some 

control over concurrency aspects. PN have an easy-to-understand graphical form, 

so they may be more attractive for developers to use than text-based methods for 

concurrent systems, such as CSP. By the mapping π we have been able to properly 

transfer a design created and verified on the Petri nets’ side to B-Method. 

However, as B-Method has been designed solely for development of sequential 

systems, its verification system is only of limited use when checking concurrency-

related aspects of translated PN and components that access or refine them. 

Possible solution of this problem is outlined in section 6 and its realization should 

be one of the primary tasks for future research and development. The 

implementation platform will most probably be the BKPI compiler [17], 

developed at the home institution of authors, which can parse specifications in B-

language and translate implementation components to Java and C#. Lessons 

learned by other teams when integrating other formal methods for concurrent 

systems with B (e.g. csp2B and CSP||B) will certainly be considered here. On the 
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PN side the demonstrated approach can also benefit from cooperation with other 

formalisms, for example with the linear logic [20] or artificial intelligence 

concepts such as cognitive maps, including their fuzzy variants [24]. 

Considering the strong relation between computational concepts of Petri nets and 

Event-B, it will also be worth to explore possibilities of incorporation of 

transformed PN to Event-B models. It should be also useful to integrate Petri nets 

in similar way to other industrially-used formal methods for software 

development, such as VDM or language Perfect. For the reasons mentioned in the 

previous section we also plan to extend the mapping π to support core features of 

HLPN. It is relatively easy to specify such an extension and prove its correctness, 

provided that the language used to handle tokens in HLPN is a subset of the B-

language. 

The transformation of the Evaluative PN and PT nets has been already 

implemented in the experimental mFDTE/PNtool2 software, which is available by 

request from the authors. 
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