
Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 187 –

Petri Nets to B-Language Transformation in

Software Development

Štefan Korečko, Branislav Sobota

Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 041 20 Košice, Slovakia,

stefan.korecko@tuke.sk, branislav.sobota@tuke.sk

Abstract: Petri nets and B-Method represent a pair of formal methods, for computer

systems engineering, with interesting complementary features. Petri nets have nice

graphical representation, valuable analytical properties and can express concurrency. B-

Method supports verified software development. To gain from these complements, a

mapping from Petri nets to the language of B-Method has been defined and its correctness

proved. This paper presents, by means of a case study, the usefulness of incorporation of

Petri net designs in a software application developed by B-Method. Modifications of this

mapping intended for the Event-B method and treatment of concurrency are also discussed.

Keywords: Petri nets; B-Method; Event-B; refinement; software development; concurrency

1 Introduction

Petri nets (PN) [8] are a formal language able to naturally express behaviour of

non-deterministic, parallel and concurrent systems. PN offer an easy to understand

graphical notation and analytical methods, which, for example, allows one to

derive invariant properties from the structure of the net. There are many types of

PN with different expressional and modelling power. PN can be used for

modelling, analysis and simulation of systems from various areas, including

network protocols, operating systems, workflow management and business

processes [5] and robotic manufacturing systems [18, 19]. On the other hand, the

B-Method (B) [1] is a state based, model-oriented formal method intended for

software development. Its strength lies in a well-defined development process,

which allows one to specify a software system as a collection of components

called B-machines and refine such an abstract specification to a concrete one. The

concrete specification can be automatically translated to ADA, C or another

programming language. An internal consistency of the abstract specification and

correctness of each refinement step are verified by proving a set of predicates

called proof obligations (PObs). The whole development process, including

proving, is supported by an industrial-strength software tool called Atelier B.

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 188 –

Important properties of these methods are complementary: in PN invariant

properties can be derived from the structure of the net; in B we have to specify

invariants manually. B has verified development process but is intended only for

sequential systems; PN can express concurrency but lack a development process.

This led to an idea of integration of these methods. The idea was realized in the

form of semantics-preserving mappings from the language of B-Method (B-

language) to Coloured Petri nets [14] and from Evaluative Petri nets (EvPN) to the

B-language [13, 15]. The second mapping transforms each EvPN to a

computationally equivalent (bisimilar) B-machine. Its formal definition and proof

of correctness was presented in [13, 15] and it has even also been shown that it

can be used for an additional analysis of PN in B-Method [16]. However, its

usefulness for software development has yet to be treated. Therefore, in this paper

we present a case study that demonstrates how a B-machine, obtained by the

second mapping, can be used as a component of a software system, developed by

B-Method. We also outline an approach to reflect concurrent aspects of PN

models in B and describe how the mapping can be adapted for a new version of B,

called Event-B. The case study uses Place-transition nets, which can be regarded

as a subclass of EvPN, so both PN and the mapping are treated to this extent only.

The rest of the paper is organized as follows. Sections 2 and 3 provide necessary

information about Place-transition (PT) nets and B. Section 4 defines the mapping

from PT nets to B-Method and shows its application to both the “classical” B and

Event-B. Section 5 presents the case study and section 6 discusses the approach to

reflect concurrent aspects. Section 7 describes related work and in the conclusions

we deal with plans for future research and development.

2 Place-Transition Nets

Place-transition nets (PT nets) [8], also called Generalised Petri nets [10], are one

of the most commonly used and researched type of PN. A PT net is defined [10]

as a 5-tuple

N=(P, T, pre, post, m0), (1)

where P={p1,...pk} is a finite set of places, T={t1,…, tn}, is a finite set of

transitions, pre: PT ℕ is a preset function, post: PT ℕ is a postset function

and m0 ℕ|P|
 is the initial marking. ℕ is the set of natural numbers, including 0.

PT net is usually depicted as an oriented graph with places (circles or ellipses) and

transitions (bold lines or rectangles) as vertices (Fig. 1). Arcs are defined by the

functions pre and post: When pre(p,t) 0, then there is an arc from p to t, when

post(p,t) 0, then there is an arc from t to p. If the value of pre(p,t) or post(p,t) is

greater than 1 then it is written next to the corresponding arc. For example, in the

net in Fig. 1 we have pre(p2,t1)=10, pre(p1,t1)=0, post(p1,t1)=1 and post(p4,t2)=1.

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 189 –

With each transition t we can associate two sets: a set of pre-places of t (t) and a

set of post-places of t (t). They are defined as follows:

}0),(|{ tpprePppt , }0),(|{ tppostPppt . (2)

A marking of PT net N is a function m: P ℕ. Value of m(p) is the number of

tokens in the place p. Markings represent states of a Petri net. Markings are often

written as vectors, m=(m(p1),…m(pk)). For example the initial marking of the net

from Fig. 1 is m0=(0,10,0,10). A transition tT is enabled (feasible) in marking m,

if and only if

),()(: tpprepmtp , (3)

When t is enabled, it can be executed (fired). The result of its execution is a new

marking)(' pm ℕ|P|
:

),(),()()(' tpposttpprepmpm , (4)

A marking, which can be reached from the initial marking of some PT net N by

firing some sequence of enabled transitions, is called a reachable marking of N.

Figure 1

PT net representing limited variant of RW problem

An example of PT net can be seen in Fig. 1. The net specifies a solution of a

limited variant of the so-called readers-writers (RW) problem. The RW problem

can be described as follows: We have shared contents (a library) that can be

accessed concurrently by two kinds of processes: readers, which only read the

contents and writers, which also modify it. The problem is to ensure that no reader

will access the contents while some writer is modifying it. In the limited variant of

the problem, the library capacity, that is, the maximal number of processes

accessing concurrently, is limited. The capacity is set to 10 in our example. The

number of tokens in writersIn is the number of writers in the library (i.e. of

processes modifying it) and the number of tokens in readersIn is the number of

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 190 –

readers in the library. Firing of wrEnter means that a writer process started

accessing the library and wrLeave that it finished accessing the library; rdEnter

and rdLeave have similar meaning for readers. We mentioned earlier that a

handful of analytical methods are available for PN. One of them is a computation

of so-called place invariants and by applying it to our net we get equations (5) and

(6), which hold in any reachable marking m of the net. The equations prove that

the net has required properties, such as the mutual exclusion of readers and

writers.

m(writersIn)+ m(freeCap)+ m(readersIn) = 10 (5)

10m(writersIn)+ m(sem)+ m(readersIn) = 10 (6)

3 B-Method

As it was written above, the B-Method (B) [1] allows us to specify a software

system as a collection of B-machines and to refine such an abstract specification to

an implementable one, while providing formal means to prove that both abstract

specification and its refinements are consistent. All components in B are written in

its own B-language (also called B-AMN), which is based on Zermelo-Fraenkel set

theory and E.W. Dijkstra's Guarded Command Language [9].

Table 1

General structure of B-machine (left) and Refinement (right)

MACHINE M(p)

CONSTRAINTS C

SETS St

CONSTANTS k

PROPERTIES Bh

VARIABLES v

DEFINITIONS D

INVARIANT I

ASSERTIONS A

INITIALISATION T

OPERATIONS

 y←op(x) =

 PRE P THEN S END

 …

END

REFINEMENT R(p)

REFINES M

SETS St1

CONSTANTS k1

PROPERTIES Bh1

VARIABLES w

DEFINITIONS D1

INVARIANT J

ASSERTIONS A1

INITIALISATION T1

OPERATIONS

 y←op(x) =

 PRE P1 THEN S1 END

 …

END

Each B-machine consists of several clauses (Table 1). The most important are the

MACHINE clause with a name M of the machine and a list p of its formal

parameters, the VARIABLES clause with a list v of state variables, INVARIANT

with properties I of the state variables, INITIALISATION with an operation T

that establishes an initial state of the machine, and OPERATIONS that contains its

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 191 –

operations. The B-Method obeys the encapsulation principle, so only operations of

the given machine can modify its variables. We say that the machine is internally

consistent if I holds in each of its states. St is a list of deferred and enumerated

sets. These are regarded as new types. Constants of the machine are listed in k and

a predicate Bh defines properties of St and k. D is a list of macro definitions and

A is a list of lemmas used to simplify proof of PObs. Only the MACHINE clause is

mandatory.

Table 2

Selected generalized substitutions and their intuitive meaning

GS meaning of GS

skip Empty GS (do nothing).

x := e Assignment of value of expression e to variable x.

S1 ; S2 Sequential composition (do GS S1, then GS S2).

S1 || S2 Parallel composition (do S1 and S2 at once).

CHOICE S1 OR S2 END Do S1 or S2.

PRE E THEN S1 END If predicate E holds, do S1. Otherwise, do anything.

SELECT E THEN S1 END If E holds, do S1. Otherwise, do not execute.

IF E THEN S1 ELSE S2 END If E holds, do S1. Otherwise, do S2.

VAR v IN S1 END For any values of local variables from the list v do S1.

ANY v WHERE E

 THEN S1 END

For any values of variables from v that satisfy E do S1.

If no values satisfy E, do not execute.

Every operation has two parts: a header and a body. The header includes its name

(op) and optional input and output parameters (x, y). The body is written in the

Generalized Substitution Language (GSL), a part of the B-language. GSL contains

several constructs, or “commands”, called generalized substitutions (GS). Some of

them are listed in Table 2. The formal semantics of GSL is defined by the weakest

pre-condition calculus [9]. Standardly, the body has the form of PRE GS, however

if P TRUE then it consists only of S. The PObs for B-machine assert that T

always establishes an initial state in which I holds and that for each operation op

it holds that if op is executed from a state satisfying I and P then it always

terminates in a state satisfying I.

One of the valuable assets of B-Method is its verified stepwise refinement process.

This means that an abstract specification, consisting of B-machines (MM), can be

modified in one or more steps into a form of concrete, implementable,

specification. There are two additional components used during the refinement

process – Refinement (RR) and Implementation (II). Structures of MM, RR (Table

1) and II are similar, but there are some differences. For example GS “;” and

loops are not allowed in MM and “||”, PRE, SELECT and CHOICE are not allowed

in II. A RR or II can refine only one MM or RR but one MM or RR can be refined

by more RR or II. To refine means to modify data or operations. Interfaces (i.e.

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 192 –

parameters and operation headers) of a refining and a refined component have to

be the same. The structure of RR can be seen in Table 1. Invariant J of the

refinement R defines properties of w but also a relation between v and w. Whether

J is established by T1 and maintained by all operations of R is, again, verified by

proving the PObs.

We stated earlier that specification in B usually consists of more than one

component. To access contents of one component from another, several

composition mechanisms can be used. For example, SEES and USES allow

different level of read-only access, INCLUDES allow to call operations of

accessed component in the accessing one and IMPORTS replaces INCLUDES in

implementations. These mechanisms are usually defined right after the

CONSTRAINTS or REFINES clause.

3.1 Event-B

In the late 1990s a development of a new version of B-Method, called Event-B [2],

started. Event-B was meant to be a reinvention of B-Method (now also called the

classical B), based on existing experiences with the practical use of B and a wide

variety of research results related to B. It has a broader scope – it is intended for

computer system modelling and development in general and is not only meant for

software. Specifications are called models and composition is possible via SEES

and EXTENDS mechanisms. We have two types of specification components in

Event-B: Context with sets, constants and their properties and Machine with

everything else. Machines can be refined, and refined components are called

machines, too. Operations are replaced by events and the initialisation is now one

of them. Event-B uses a modified version of B-language. Most of GS have been

dropped and each event has the form

any v where E then S end,

where v is a list of local variables, E is a list of predicates, called guards and S is a

list of (possibly multiple and non-deterministic) assignments, called actions. All

its guards have to hold for an event to be executable (enabled) and when executed

all its actions are run at once. On the other hand, there are some new additions to

B-language that allows one to specify names and additional properties of

specification components and their parts. The concept of refinement has been

modified, too; in Event-B it is possible to refine one event into several events.

One may wonder how a sequential program can be described in Event-B without

the sequential composition, conditional statements and loops. But the general

model of an Event-B model execution is such that all its events, except of the

initialisation, are executed in a loop and the loop terminates if no event is enabled.

If there are more enabled events, one of them is selected non-deterministically. So,

by a careful design of guards and actions we can ensure that events of a model

will be executed in desired order. This is covered in more detail in [2].

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 193 –

4 Petri Net to B-Machine Transformation

The transformation has been originally designed for a Turing-complete low-level

type of PN, called Evaluative Petri Nets (EvPN). As the type of PN used in our

case study is PT nets, we present here a simplified version of the original

mapping, namely the mapping π from the class PTcl of PT nets to the class

PTlBMcl of PT-like B-machines (Definition 1). The structure of PT-like B-

machine (PTlBM) is given in (7). In the resulting PTlBM M, M= π(N), there will

be one state variable svi for each place pi from the PT net N and one operation opj

for each transition tj from N.

Definition 1. Let N be a PT-net N=(P,T,pre,post,m0), where P={p1,…, pk},

T={t1,…, tn}, and be a mapping
cllcl

BMPTPT : . Then the image of N under

π is the PT-like B-machine M,
cll

BMPTMNM),(, with the structure

MACHINE M

VARIABLES sv1, …, svk

INVARIANT sv1:NATURAL & … & svk:NATURAL

INITIALISATION sv1 := iv1|| …|| svk := ivk

OPERATIONS

 op1 = SELECT PCond1 THEN Sub1 END;

 …

 opn = SELECT PCondn THEN Subn END

END

(7)

and elements defined as follows:

)(:)1(
0 ii

pmivkii (8)

),tprc(p),tprc(pnjj
jkjj

&&...Pcond:)1(
1

 (9)

tpif

tpiftpprep
prc(p,t)TtPptp P

TRUE

),()(
:),(,

 (10)

),t(pasg),t(pasgubSnjj
jkjj

| |...| |:)1(
1

 (11)

ttpif

ttpiftpposttpprepp
(p,t)asg

TtPptp

PP

skip

:),(),()()(

:),(,

 (12)

The
P

 is an auxiliary mapping:

},,{:
1 kP

svsvP ,
iiP

svpkii)(:)1((13)

The bisimilarity between N and π(N) is not hard to see. The construction of the

INITIALISATION clause in (7) and the formula (8) ensure that the initial value

of each svi will be the same as m0(pi). In opj the predicate PCondj, specified

according to (9) and (10), is similar to the enabling condition (3) and GS Subj,

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 194 –

defined by (11), (12), is equivalent to the new marking computation formula (4)

(both for tj). The SELECT GS is used because it is not executable when its

condition (PCondj here) is false.

4.1 B-Machine for RW Problem

The PT-like B-machine RWlimited, transformed from the net in Fig. 1 by the

mapping π, is shown in Fig. 2. In the machine we named variables and

MACHINE RWlimited

VARIABLES writersIn, sem, readersIn, freeCap

INVARIANT

 writersIn:NATURAL & sem:NATURAL & readersIn:NATURAL &

 freeCap:NATURAL

INITIALISATION

 writersIn := 0 || sem := 10 || readersIn := 0 || freeCap := 10

OPERATIONS

 wrEnter = SELECT sem >= 10 & freeCap >= 1 THEN

 writersIn:=writersIn+1 || sem:=sem-10 || freeCap:=freeCap-1 END;

 wrLeave = SELECT writersIn >= 1 THEN

 writersIn:=writersIn-1 || sem:=sem+10 || freeCap:=freeCap+1 END;

 rdEnter = SELECT sem >= 1 & freeCap >= 1 THEN

 sem:=sem-1 || readersIn:=readersIn+1 || freeCap:=freeCap-1 END;

 rdLeave = SELECT readersIn >= 1 THEN

 sem:=sem+1 || readersIn:=readersIn-1 || freeCap:=freeCap+1 END

END

Figure 2

B-machine RWlimited

operations in the same way that places and transitions are named in Fig. 1.

Statements “skip” and “TRUE” are omitted as for each generalized substitution S

it holds that S||skip S and for each predicate P that PTRUE P. The symbol

“:” stands for “belongs to” and “NATURAL” is the set of natural numbers.

4.2 Transformation to Event-B

The concept of events in the Event-B model being executed in a loop while at

least one of them is executable is essentially the same as the original concept of

Petri net execution: Petri net is also firing transitions until none of them are

enabled. And if more transitions are enabled simultaneously, one of them is

selected randomly and fired. To adjust our transformation for Event-B we just

need to rename operations to events, delete “||” and “” symbols, add names for

predicates and actions, replace SELECT by where and move the initialisation to

events. We will not define the transformation formally here; we only show how

the Event-B version of RWlimited looks like (Fig. 3).

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 195 –

machine RWlimitedEvB

variables writersIn sem

 readersIn freeCap

invariants

 @inv1 writersIn : NATURAL

 @inv2 sem : NATURAL

 @inv3 readersIn : NATURAL

 @inv4 freeCap : NATURAL

events

 event INITIALISATION

 then

 @act1 writersIn := 0

 @act2 sem := 10

 @act3 readersIn := 0

 @act4 freeCap := 10

 end

 event wrEnter

 where

 @grd1 sem >= 10

 @grd2 freeCap >= 1

 then

 @act1 writersIn :=

 writersIn + 1

 @act2 sem := sem - 10

 @act3 freeCap := freeCap-1

 end

 event wrLeave …

 event rdEnter …

 event rdLeave …

end

Figure 3

Event-B machine RWlimitedEvB

As it can be seen, only the then…end part of an event is mandatory. The

where…then…end command is semantically identical to the SELECT GS. Only

INITIALISATION and wrEnter events are shown as the rest is created in the

same way.

5 Application in Software Development

The form of operations introduced in Definition 1 is perfect for an analysis of

Petri nets by means of B, for example to prove deadlock freeness [16]. But it is

not good for software development as the SELECT GS is not feasible when its

condition doesn’t hold. And only completely feasible operations can be refined.

Because of this, when using PTlBM for software development we replace the form

of opj from (7) by (14) or (15). The form (15) is used if there is a need to report a

success of corresponding state change back to a caller of opj.

 opj= IF PCondj THEN Subj END (14)

 ok<--opj=IF PCondj THEN Subj||ok:=TRUE (15)

 ELSE ok:=FALSE END

This replacement doesn’t change the bisimilarity relation between markings of N

and states of π(N) as the state of π(N) (i.e. the values of its state variables) is

changed by opj only if PCondj is true. If PCondj is false, opj is executed but

doesn’t change the state of π(N) at all.

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 196 –

AccPolicy LibraryLibAccessAdvAccPolicy MMINCLUDES

AdvAccPolicy_r

REFINESINCLUDES

LibAccess_r

REFINESINCLUDES INCLUDES

AccPolicy_i AdvAccPolicy_i LibAccess_i Library_i

RR

II

REFINES
REFINES

REFINES

IMPORTS

IMPORTS

REFINES

Figure 4

Components of B specification case study

In the rest of this section we present a case study that demonstrates how a B-

machine, obtained from a Petri net, can be refined to a more feature-rich form and

how this form can be used in other specification components in B. The structure of

our specification is shown in Fig. 4. The machine translated from PT net is

AccPolicy, which is in fact a slightly modified version of RWlimited. This is

then included (imported) into the AdvAccPolicy machine, its refinement

AdvAccPolicy_r and implementation AdvAccPolicy_i, in order to define

a more sophisticated access policy component based on the limited RW problem

solution. The Library machine represents shared contents and LibAccess

with its refinement and implementation provide access to the shared contents

using the policy defined by AdvAccPolicy.

The AccPolicy (Fig. 5) primarily differs from RWlimited in that it uses the

form (15) for operations and that the abstract type NATURAL is replaced by an

implementable type NAT. The second modification is an introduction of the

parameter cap, which represents the capacity of the library and replaces the value

“10” from RWlimited. This makes the machine more usable without affecting

any of its properties. Finally, the third change is an addition of formulas

equivalent to (5) and (6) to its invariant (in italic in Fig. 5). This addition was

necessary for proving that variables of the machine will not exceed the limit of the

type NAT. Fig. 5 doesn’t show bodies of rdEnter and rdLeave, as they are

similar to those of the previous operations.

MACHINE AccPolicy (cap)

CONSTRAINTS cap:NAT & cap>0

VARIABLES writersIn, sem, readersIn, freeCap

INVARIANT

 writersIn:NAT & sem:NAT & readersIn:NAT & freeCap:NAT &

 writersIn+freeCap+readersIn=cap & cap*writersIn+sem+readersIn=cap

INITIALISATION

 writersIn := 0 || sem := cap || readersIn := 0 || freeCap := cap

OPERATIONS

 ok<--wrEnter =

 IF sem >= cap & freeCap >= 1 THEN

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 197 –

 writersIn:= writersIn+1 || sem:= sem-cap || freeCap:=freeCap-1

 || ok:=TRUE

 ELSE ok:=FALSE END;

 ok<--wrLeave =

 IF writersIn >= 1 THEN

 writersIn:= writersIn-1 || sem:= sem+cap || freeCap:= freeCap+1

 || ok:=TRUE

 ELSE ok:=FALSE END;

 ok<--rdEnter = ... END;

 ok<--rdLeave = ... END

END

Figure 5

B-machine AccPolicy

The crucial difference between AccPolicy and AdvAccPolicy (and

corresponding refined components) is that the latter contain variables reading

and writing. These are used to register processes that are currently editing or

reading the shared contents. Both variables are subsets of the set PROCESSES,

which represents all processes that could possibly access the contents. One

member of PROCESSES, stored in the noPr variable, is reserved for the null

process. Introduction of reading and writing allowed us to check by PObs

whether our advanced procedure really obeys the access policy defined by the

original PT net (and AccPolicy): In AdvAccPolicy (Fig. 6) we prove that it

is impossible to write and read at the sametime, and in AdvAccPolicy_r (Fig.

7) we show that the number of writing and reading processes is always the same

as in AccPolicy. Related parts of their invariants are written in italic. The

operation reqRAcc corresponds to rdEnter, reqWAcc to wrEnter and

leave unites rdLeave and wrLeave. They call the corresponding operations

from AccPolicy. The proper order of calling is established in the refinement

AdvAccPolicy_r since it is impossible to use the sequential composition in B-

machines. The scs output parameter indicate whether a request to access or leave

the shared contents was successful and pr holds assigned process id. The null

process (noPr) is returned if the access is not granted. There are three extra

operations, canRead and canWrite to return process status and getNullPr

to get the value used as the null process. The last operation is necessary for the

final stage of development as it is forbidden to read variables directly in

implementations.

MACHINE AdvAccPolicy(prCap)

CONSTRAINTS prCap:NAT & prCap>0

INCLUDES AccPolicy(prCap)

SETS PROCESSES

VARIABLES reading, writing, noPr

INVARIANT reading <: PROCESSES & writing <: PROCESSES &

 noPr : PROCESSES & reading /\ writing = {} &

 {noPr} /\ reading = {} & {noPr} /\ writing = {}

INITIALISATION reading:= {} || writing:= {} || noPr::PROCESSES

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 198 –

OPERATIONS

 pr,scs<--reqRAcc=

 IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN

 ANY pp WHERE pp:PROCESSES-(reading\/writing\/{noPr}) THEN

 CHOICE reading := reading \/ {pp} || pr:=pp OR pr:=noPr END

 || scs<--rdEnter

 END

 ELSE scs:=FALSE || pr:=noPr END;

 pr,scs<--reqWAcc=

 IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN

 ANY pp WHERE pp:PROCESSES-(reading\/writing\/{noPr}) THEN

 CHOICE writing := writing \/ {pp} || pr:=pp OR pr:=noPr END

 || scs<--wrEnter

 END

 ELSE scs:=FALSE || pr:=noPr END;

 scs<--leave(pr)=

 PRE pr: reading\/writing THEN

 IF pr:reading THEN

 CHOICE reading := reading - {pr} OR skip END || scs<--rdLeave

 ELSE

 CHOICE writing := writing - {pr} OR skip END || scs<--wrLeave

 END

 END;

 yes<--canRead(pr)= PRE pr:PROCESSES THEN

 IF pr:reading THEN yes:=TRUE ELSE yes:=FALSE END

 END;

 yes<--canWrite(pr)= PRE pr:PROCESSES THEN

 IF pr:writing THEN yes:=TRUE ELSE yes:=FALSE END

 END;

 npr <-- getNullPr = BEGIN npr:=noPr END

END

Figure 6

B-machine AdvAccPolicy

In Fig. 6 and the following ones the symbol “<:”means “is subset or equal”, “\/”

is the set union, “/\” the set intersection, “{}” the empty set set and “{x}” is a

set with x as its only member. The symbol “/=” stands for “not equal” and

“xx::SS” is a special kind of the ANY GS with the meaning “assign any arbitrary

selected value from a set SS to a variable xx”.

REFINEMENT AdvAccPolicy_r(prCap)

REFINES AdvAccPolicy

INCLUDES AccPolicy(prCap)

VARIABLES reading, writing, noPr

INVARIANT card(writing)=writersIn & card(reading)=readersIn

INITIALISATION reading:= {}; writing:= {}; noPr::PROCESSES

OPERATIONS

 pr,scs<--reqRAcc=

 IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN

 VAR acd,pp IN

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 199 –

 acd <--rdEnter;

 pp::PROCESSES-(reading\/writing\/{noPr});

 IF acd=TRUE THEN

 reading := reading \/ {pp}; pr:=pp; scs:=TRUE

 ELSE scs:=FALSE; pr:=noPr END

 END

 ELSE scs:=FALSE; pr:=noPr END;

 pr,scs<--reqWAcc=

 IF PROCESSES-(reading\/writing\/{noPr}) /= {} THEN

 VAR acd,pp IN

 acd <--wrEnter;

 pp::PROCESSES-(reading\/writing\/{noPr});

 IF acd=TRUE THEN

 writing := writing \/ {pp}; pr:=pp; scs:=TRUE

 ELSE scs:=FALSE; pr:=noPr END

 END

 ELSE scs:=FALSE; pr:=noPr END;

 scs<--leave(pr)=

 IF pr: reading\/writing THEN

 VAR acd IN

 IF pr:reading THEN

 acd <--rdLeave;

 IF acd=TRUE THEN reading := reading - {pr}; scs:=TRUE

 ELSE scs:=FALSE END

 ELSE

 acd <--wrLeave;

 IF acd=TRUE THEN writing := writing - {pr}; scs:=TRUE

 ELSE scs:=FALSE END

 END

 END

 ELSE scs:=FALSE END;

 yes<--canRead(pr)= IF pr:PROCESSES THEN

 IF pr:reading THEN yes:=TRUE ELSE yes:=FALSE END

 ELSE yes:=FALSE END;

 yes<--canWrite(pr)= IF pr:PROCESSES THEN

 IF pr:writing THEN yes:=TRUE ELSE yes:=FALSE END

 ELSE yes:=FALSE END;

 npr <-- getNullPr = BEGIN npr:=noPr END

END

Figure 7

Refinement AdvAccPolicy_r

MACHINE Library

VARIABLES contents

INVARIANT contents:NAT

INITIALISATION contents:=0

OPERATIONS

 lcnt <-- read = lcnt:=contents;

 write(ncnt) = PRE ncnt:NAT THEN contents:=ncnt END

END

Figure 8

B-machine Library

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 200 –

The machine Library (Fig. 8) represents shared contents that is accessed by

processes and defines operations over it. For the sake of simplicity, the content is

only a natural number here.

An access to the shared contents is provided by the LibAccess (Fig. 9)

component and its refinement. In fact, LibAccess defines only heads of

operations and the type RETCODE, while the real functionality is encoded in its

refinement LibAccess_r (Fig. 10). The reason why we have to use the

refinement is the restriction on the use of “;”, again.

MACHINE LibAccess(lCap)

CONSTRAINTS lCap:NAT & lCap>0

SETS RETCODE={ok,failEnter, failLeave, failWrite}

OPERATIONS

 cnt, rc<--libRead= BEGIN rc::RETCODE || cnt::NAT END;

 rc<--libWrite(cnt)=PRE cnt:NAT THEN rc::RETCODE END

END

Figure 9

B-machine LibAccess

To read the contents, one has to call the operation libRead, which first checks

whether it is possible to read by calling reqRAcc from AdvAccPolicy then

reads (by calling read from Library) and, finally, calls leave to announce

that the reading is over. For editing the libWrite operation is used, which

works in the similar way.

We decided to not describe the four implementation components of our case study

in this paper as they are similar to the corresponding refinements or machines.

REFINEMENT LibAccess_r(lCap)

REFINES LibAccess
INCLUDES AdvAccPolicy(lCap), Library

OPERATIONS
 cnt,rc<--libRead=

 VAR acd, prId IN
 prId,acd <--reqRAcc;

 IF acd=TRUE & prId /=noPr THEN
 cnt<--read; acd <--leave(prId);
 IF acd=TRUE THEN rc:=ok ELSE rc:=failLeave END
 ELSE cnt:=0; rc:=failEnter END
 END;

 rc<--libWrite(cnt)=

 IF cnt:NAT THEN

 VAR acd, prId IN

 prId,acd <--reqWAcc;

 IF acd=TRUE & prId /=noPr THEN

 write(cnt); acd <--leave(prId);

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 201 –

 IF acd=TRUE THEN rc:=ok ELSE rc:=failLeave END

 ELSE rc:=failEnter END

 END

ELSE rc:=failWrite END

END

Figure 10

Refinement LibAccess_r

6 Utilization in Concurrent Environment

While the verification mechanisms of B proved to be sufficient to ensure that

properties of the design (AccPolicy machine) are maintained in components

refining and directly including it, we still cannot call the resulting implementation

safe for use in a concurrent environment. B doesn’t take concurrency into account,

so to improve the situation, extensions to both its language and tools are

necessary. The B-language can be extended by annotations allowing one to label

operations that cannot be run in parallel at all or within some group of operations.

Then modified compilers for B will translate these annotations to equivalent

constructs of target programming languages. However, one critical question

remains open: Can the process of annotating of operations and of verifying their

consistency be automated?

The use of machines translated from Petri nets provides a partial answer here:

Assuming that all concurrency issues are treated in machines transformed by π

and that these machines are separately implemented (like AccPolicy in

AccPolicy_i), we can automatically annotate operations in them and mark all

operations that directly or indirectly call their operations as candidates for

concurrent execution. However, it is very probable that the final decision about

the calling operations will require certain amount of manual checking.

The automatic annotating of machines translated from PN can be easily

implemented, obeying the following rule: operations created from transitions with

common pre-places cannot be run at once. This is because there is a risk that their

enabling conditions (PCond in (7)) will be evaluated at once and, as they read

some common variables, will lead to faulty execution of their bodies. In machines

in Fig. 2 and Fig. 5 wrEnter and rdEnter are such operations as their

counterparts in Fig. 1 have common pre-places sem and freeCap. Separate and

careful development of these machines is critical: we can introduce new variables

and add new functionality to its refinements and implementation, but what was

defined in the machine must stay intact.

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 202 –

Regarding the calling operations, the question is whether they call those originated

from Petri nets properly. In our case study, the calling ones can be found in

AdvAccPolicy(_r) (the first three ones) and in LibAccess_r (both). In the

case of AdvAccPolicy_r, its invariants and corresponding PObs help to

resolve the situation and they can be allowed to run concurrently. Operations from

LibAccess(_r) are also the calling ones as they call the first three from

AdvAccPolicy, but invariants and PObs are of no help here. This is because

operations from AdvAccPolicy are called in sequence in libRead and

libWrite and PObs only check states before and after an operation execution.

Again, the situation can be improved by introducing annotations to define order of

execution of operations in machines obtained from PN and a procedure that will

check whether this order is maintained within every calling operation.

7 Related Work

The problem of Petri nets and B-Method integration attracted other researchers as

well, but, to our knowledge, all of these works have been published after the initial

version of our transformation [13] and approach the problem from a more or less

different perspective.

The work [3] presents an encoding of PT nets and high-level PN (HLPN, tokens

have values assigned in these types of PN) to the Event-B language. Each Petri net

is represented by a specification consisting of two machines. The first machine

contains constants, sets and variables that define the concrete Petri net. The

second one contains one event for transition firing and in the case of HLPN also

events for actions associated with places and transitions. The second machine is

identical for all PT nets. The author uses the Atelier B version of Event-B syntax,

which is much closer to the classical B-language than to the “official” version,

presented in [2]. The essential difference between our approach and [3] is that we

translate each transition to a separate operation (event). This is more natural and

usable for software development. The author of [3] claims that his primary

motivation is analysis; however our practical experience shows that the data

representation chosen in [3] is usually more difficult for the Atelier B prover to

handle than the one used in our approach.

In [11, 12] a mapping of a subset of the SYNTESIS scripting language, which is

similar to HLPN, is presented. The target specification is the Refinement

component of B-Method. In principle, the approach is close to ours: places are

mapped to variables and transitions to operations. What differs is that variables in

[11, 12] are sets and structure of operations is more complicated as high-level PN

have individualised tokens. The purpose of the mapping is an analysis of scripts in

SYNTESIS by means of B-Method. A similar transformation is used in a railway

safety-related case study in [7] to translate a simple Coloured Petri net (a kind of

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 203 –

HLPN) specification to the Event-B language with the Atelier B syntax. The B

specification in [7] uses a special machine that implements multi-sets and the

purpose of this transformation is a further development of the specified system.

The mapping of PN, defined in [13, 15] and used in this paper, can be quite easily

modified for HLPN by adopting principles of these two approaches. However, we

found the PT nets and other PN types with undistinguishable tokens (so-called

low-level PN) more suitable for the role of the most abstract specification of a

development. They provide analytical methods that are only hardly usable for

HLPN (e.g. derivation of invariants) and an additional functionality can be added

later, on the side of B-Method. On the other hand, we are aware that utilization of

HLPN can lead to significant reduction in size of PN models and allow

parameterisation of models that is impossible for low-level PN.

There have been also researches that combined B with other formal methods for

specification of concurrent systems, primarily with the Communicating Sequential

Processes (CSP) [6]. The most significant approaches are csp2B [4] and CSP||B.

Both support certain subsets of CSP. The csp2B provides a method of

transformation of CSP specifications to B-language. The transformation translates

implicit states of CSP processes to variables and process events to operations and

is supported by the csp2B tool. The CSP||B is a method that combines

specifications in CSP and B-language in such a way that CSP controllers manage

concurrently running B-machines. CSP||B has been introduced in [21] and further

developed in subsequent works, such as [22] or [23] where it was adjusted for

Event-B. Both approaches also deal formally with refinement of translated or

combined specifications, so their results will be considered when designing

mechanisms for maintaining some consistency aspects of B-machines created by

our transformation.

Conclusions

The approach to implementation of PN specifications, shown here, looks

promising and brings qualities that B doesn’t provide out of the box, namely some

control over concurrency aspects. PN have an easy-to-understand graphical form,

so they may be more attractive for developers to use than text-based methods for

concurrent systems, such as CSP. By the mapping π we have been able to properly

transfer a design created and verified on the Petri nets’ side to B-Method.

However, as B-Method has been designed solely for development of sequential

systems, its verification system is only of limited use when checking concurrency-

related aspects of translated PN and components that access or refine them.

Possible solution of this problem is outlined in section 6 and its realization should

be one of the primary tasks for future research and development. The

implementation platform will most probably be the BKPI compiler [17],

developed at the home institution of authors, which can parse specifications in B-

language and translate implementation components to Java and C#. Lessons

learned by other teams when integrating other formal methods for concurrent

systems with B (e.g. csp2B and CSP||B) will certainly be considered here. On the

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 204 –

PN side the demonstrated approach can also benefit from cooperation with other

formalisms, for example with the linear logic [20] or artificial intelligence

concepts such as cognitive maps, including their fuzzy variants [24].

Considering the strong relation between computational concepts of Petri nets and

Event-B, it will also be worth to explore possibilities of incorporation of

transformed PN to Event-B models. It should be also useful to integrate Petri nets

in similar way to other industrially-used formal methods for software

development, such as VDM or language Perfect. For the reasons mentioned in the

previous section we also plan to extend the mapping π to support core features of

HLPN. It is relatively easy to specify such an extension and prove its correctness,

provided that the language used to handle tokens in HLPN is a subset of the B-

language.

The transformation of the Evaluative PN and PT nets has been already

implemented in the experimental mFDTE/PNtool2 software, which is available by

request from the authors.

Acknowledgement

This work was supported by KEGA grant project No. 050TUKE-4/2012:

“Application of Virtual Reality Technologies in Teaching Formal Methods”.

References

[1] J. R. Abrial: The B-Book: Assigning Programs to Meaning, Cambridge

University Press, Cambridge, 1996

[2] J. R. Abrial: Modeling in Event-B: System and Software Engineering,

Cambridge University Press, Cambridge, 2010

[3] J. Ch. Attiogbé: Semantic Embedding of Petri Nets into Event B, In:

International Workshop on Integration of Model-based Methods and Tools

IM FMT'09 at IFM'09 Conference, Düsseldorf Germany, February 2009,

available from: http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/

attiogbe/B_Petri/

[4] M. J. Butler: csp2B: A Practical Approach to Combining CSP and B.,

Formal Aspects of Computing, Vol. 12, 2000, pp. 182-196

[5] H. Ehrig, W. Reisig, G. Rozenberg, H. Weber (Eds.): Petri Net Technology

for Communication-based Systems, LNCS vol. 2472, Springer, 2003

[6] C. A. R. Hoare: Communicating Sequential Processes, Prentice Hall, ISBN

0-13-153289-8, 1985, available from: http://www.usingcsp.com/

[7] F. Defossez, P. Bon, S. Collart-Dutilleu: Taking Advantage of some

Complementary Modelling Methods to Meet Critical System Requirement

Specifications, In: Safety and Security in Railway Engineering, WIT Press,

2010, pp. 119-128

Acta Polytechnica Hungarica Vol. 11, No. 6, 2014

 – 205 –

[8] J. Desel, W. Reisig: Place/Transition Petri Nets. In: W. Reisig and G.

Rozenberg (eds.) Petri Nets, LNCS Vol. 1491, Springer, 1998, pp. 122-173

[9] E. W. Dijkstra: A Discipline of Programming, Prentice Hall, Englewood

Cliffs, ISBN 0-13-215871-X, 1976

[10] Š. Hudák: Reachability Analysis of Systems Based on Petri Nets, Elfa,

Košice, 1999

[11] L. A. Kalinichenko, S. A. Stupnikov, N. A. Zemtsov: Extensible Canonical

Process Model Synthesis Applying Formal Interpretation. In: Proc. of the

East-European Conference ADBIS’05, Talin, Estonia, September 2005, pp.

183-198

[12] L. A. Kalinichenko, S. A. Stupnikov, N. A. Zemtsov: Synthesis of the

Canonical Models for the Integration of Heterogeneous Information

Resources. М.: IPI RAN, 2005, 87 pp (In Russian)

[13] Š. Korečko, Š. Hudák: Implementing Petri nets via B-Method. In: Proc. of

6
th

 International Scientific Conference Electronic Computer and

Informatics, ECI 2004, September 2004, pp. 103-110

[14] Š. Korečko, Š. Hudák: S. Šimoňák: Analysis of B-machine based on Petri

Nets, Proceedings of CSE 2008 International Scientific Conference on

Computer Science and Engineering, September 2008, pp. 24-33

[15] Š. Korečko: From Petri Nets to B-Method, Technical report DCI 1/2009,

Department of Computers and Informatics, Faculty of Electrical

Engineering and Informatics, Technical University of Košice, 2009,

available from: http://hornad.fei.tuke.sk/~korecko/pblctns/trEvPN_B.pdf

[16] Š. Korečko, B. Sobota: Building Parallel Raytracing Simulation Model

with Petri Nets and B-Method, In: Proc. of the 7
th

 EUROSIM Congress on

Modelling and Simulation, Prague, Czech Republic, 2010, ISBN 978-80-

01-04589-3, 7pp

[17] Š. Korečko, M. Dancák: Some Aspects of BKPI B Language Compiler

Design, Egyptian Computer Science Journal, Vol. 35, No. 3, 2011, pp. 33-

43

[18] L. Madarász, J. Vaščák, R. Andoga, T. Karoľ: Decision Making,

Complexity and Uncertainty: Theory and Practice, elfa s.r.o., Košice, 2010,

ISBN 978-80-8086-142-1 (in Slovak)

Š. Korečko et al. Petri Nets to B-Language Transformation in Software Development

 – 206 –

[19] L. Madarász, J. Živčák (Eds.): Aspects of Computational Intelligence:

Theory and Applications, Topics in Intelligent Engineering and

Informatics, Vol. 2, Springer, 2013

[20] D. Mihályi, V. Novitzká, V. Slodičák: From Petri Nets to Linear Logic, In:

Proc. of CSE'2008, Stará Lesná, September 2008, pp. 48-56

[21] S. Schneider, H. Treharne: How to Drive a B Machine. In: Proc. of ZB

2000, LNCS Vol. 1878, Springer, 2000, pp. 188-208

[22] S. Schneider, H. Treharne: Verifying Controlled Components. In: Proc. of

IFM 2004, LNCS Vol. 2999, Springer, 2004, pp. 87-107

[23] S. Schneider, H. Treharne, H. Wehrheim: A CSP Approach to Control in

Event-B. In: Proc. of IFM 2010, LNCS Vol. 6396, Springer 2010, pp. 260-

274

[24] J. Vaščák, L. Madarász: Adaptation of Fuzzy Cognitive Maps – a

Comparison Study, Acta Polytechnica Hungarica, Vol. 7, No. 3, 2010, pp.

109-122

