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Abstract: Defects on the rail surface will hasten the wear of the wheels. At the same time, 

when the wheel is periodically hitting and rolling surface defected, the defects will 

gradually develop into the interior, which significantly increases the possibility of a train 

derailment and serious safety accidents. A timely checking of the railway tracks to find 

defects as early as possible is a basic condition for ensuring the safety of railway 

operations. It also prolongs the service life of railways because most of the rolling contact 

fatigue (RCF) can be eliminated during rail grinding. Such defects appear as spalling and 

cracks in the first stage of the rail surface. Manual detection has been challenging to meet 

the large-scale railway running mileage. Therefore, a more efficient automatic detection 

method is indispensable. This article reviews the latest research and exploration on the 

defect inspection of rail surfaces in recent years. In the article, not only the application of 

traditional ultrasonic and acceleration detection methods but also contributing computer 

vision and deep learning to detect defects on the rail surface. The new detection technology 

can even classify and evaluate the damage, further improving the efficiency of the detection 

system. Besides, the emerging research on defect state prediction to reduce inspection costs 

is interesting. 
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1 Introduction 

In the 21st Century, railway transport will be an increasingly important task related 

to the developed world and society. It started in the 19th and 20th Centuries with 

enormous railway construction procedures worldwide [1-3]. Railway construction 

investment has been continually increasing. It can be said that traffic safety is an 

important consideration for traffic users when choosing a particular means of 

transport. It is critical to the scale of traffic implementation, revenue, and overall 

business performance [4]. The total railway mileage in the world is about 1.5 

million kilometers, and the European Union accounts for about 25% [5]. The rail 

is an important part of the railway. The defects on the surface of the rails have 

caused great damage to the wheelsets and bearings of the rail vehicles. When the 
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wheels are moving on the track with defective surfaces, periodic impacts will 

cause the coupled vibration of the entire vehicle and the track system. It will 

reduce the service life of the train components and a significant cause of vehicle 

derailment overturning and combustion axles. Therefore, defect detection of 

railway tracks is an essential means to ensure the safety of railway transportation. 

The annual railway inspection cost in the EU (European Union) alone is about 70 

million euros [6]. Finding rolling contact fatigue (RCF) as early as possible cannot 

only avoid traffic accidents but also take timely measures to extend the service life 

of rails [7], both of which can reduce railway running costs [8]. The detection of 

track surface defects has long relied on manual inspections. This detection method 

needs experts to visually inspect components and use specific tools to identify any 

defects in the rail surface [9]. However, this method is cumbersome, hardworking, 

and prone to human error. In addition, the personal safety of the inspectors is also 

an issue that needs to heed. With the increase in demand for high-speed railway 

transport and advanced technology, it is necessary to develop an automatic 

intelligent detection system to replace manual detection in detecting track surface 

defects. 

Although the continual improvement of technology has reduced the probability of 

internal defects in the rail, the probability of fatigue cracks on the surface of the 

rail is still high [10]; harsh environments can also cause surface defects, which 

may irritate worsening the rail [11, 12]. Surface defects of rail can be divided into 

the wave-shaped abrasion and discrete disease of the rail. Wave-shaped abrasion 

refers to the irregularity of the wavy shape of the periodic disease that appears on 

the surface of the rail in the longitudinal direction [13]. Discrete damage occurs 

randomly on the surface of the rail [14]. With developing technology, people have 

fully researched and applied the detection methods of rail surface defects by using 

the above technologies. Non-contact detection methods based on machine vision 

have gradually developed and been widely used in electrical, electronic, 

mechanical, automotive, and industrial inspections. Machine learning can even 

predict some regular damage. 

This article reviewed the rail surface defect detection, recognition, classification, 

and evaluation methods proposed and improved in the past ten years. Technical 

analysis, the characteristics of technology, cost performance, accuracy, and the 

object to which the method is applicable. However, the results of each method and 

the matching limits are recorded. Through comparing and analysis methods that 

can evaluate the size or severity of rail surface defects or classify them to select 

the best rail surface damage detection method. The organization of this article is 

as follows: Chapter 2 expounds on the research results of detection and 

recognition, discusses and emphasizes the advantages and limits of each method 

in the paper. Chapter 3 introduces the research results of classification, evaluation, 

highlights the accuracy and background conditions of every method in the article. 

Chapter 4 discusses the results, analyzes the characteristics of the method, and 

shows the overall progress in the field. Finally, Chapter 5 summarizes the purpose 

and results of this article, and prospects for detecting technologies. 
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2 Detection Methods 

In the paper, the detection methods shown in 70 research papers regained by 

Scopus can be divided into six categories: geometry measuring, detecting wheel 

track motion (vibration or acceleration), using electric or magnetic field changes, 

using acoustic or light waves (thermal sensors), Image processing and machine 

learning. The research field is mainly concentrated in the emerging image 

processing and machine learning fields. Because other detection methods have 

been around for a long-time and have been thoroughly studied, the new research 

mainly explores improving detection technology and optimizes a particular step. 

In this section, a comprehensive review of these papers will be conducted. 

Analyze the performance, results, and limits of each technology. 

2.1 Geometric Measurement 

Although measuring geometric information can get the situation of the railway 

track through many indicators [15], good results have been achieved. A single 

geometric measurement method is used to obtain the geometric data of the track 

surface, mainly through a mechanical stylus or laser reflection. These methods can 

only detect a cross-section and cannot provide macroscopic inspection data. Later 

manual inspections are still required to confirm the location and size of surface 

defects, but most inspections in the railway industry do not use 3D reconstruction 

technology. To complete 3D technology combines cross-sectional data with a 

longitudinal plane positioning based on geometric detection, making 3D model 

reconstruction possible in defect detection on the rail surface. Ye et al. present a 

novel 3D perceptual system based on a low-cost 2D laser sensor [16]. This 

method uses the 2D laser sensor detection system and a drawing sensor to decide 

the longitudinal position movement. The data are formed into a three-dimensional 

point set. 3D modeling by Matlab. Use the 3D model to identify rail surface 

defects. Rikhotso et al. also applied this method to measure rail profile and detect 

defects on the track surface [17]. Casey Jessop and Naeimi each proposed a 3D 

modeling method combining the stylus Profile-metric and X-Ray scan data.  

The results showed a geometry similar to the squat network, also possible to infer 

the crack tip of the surface to a deeper depth that needs improvement. Still, the 

description of the mid-depth squat crack network is sufficiently accurate [18, 19]. 

The above methods can theoretically detect surface defects, but they also have 

obvious shortcomings. Radiography is mainly used to detect internal defects. 

Surface defects are just derived properties and cannot be quickly moved to detect. 

The geometric detection of mechanical contacts also has this disadvantage. Laser 

sensors are sensitive to the environment, too strong light will affect the 

measurement results, and strenuous exercise will cause high deviations. Niu et al. 

proposed a method based on a binocular line scanning system, which can obtain 

contour information in the high-precision image while avoiding the decoding 
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distortion of the structured light reconstruction method [20]. Sysyn et al. applied 

the modeling method to detect surface wear of turnouts, using the measurement 

data on the surface scanning device to establish the 3D model of the turnouts and 

analyze the change of the wheel/rail trajectory to detect the defect of turnouts [21]. 

This method has high 3D modeling accuracy while high detection speed, which is 

a research direction worth looking forward to. 

2.2 Electromagnetic Detection 

Electromagnetic detection is a  broad region of technologies used in railways. Due 

to surface inspection of blind subjects in conventional ultrasonic technology, an 

eddy inspection method based on electromagnetic principles has been proposed to 

detect the rail surface and near-surface defects [22]. Eddy testing uses alternating 

magnetic fields to create vortex-like induced alternating currents in the measured 

conductive Rail. The conductivity, magnetic permeability, defects, defect size, and 

shape of the measured part affect the distribution and size of the eddy. Through 

the coil-detection to measure the magnetic field change caused by the eddy.  

The distribution, size, and phase of the eddy in the test piece were measured 

without contact.  It can perform high-speed inspections but has a skin effect and 

can only detect the surface and near-surface structure status of conducive 

materials [23]. The eddy testing technology has matured application examples in 

Eurailscout in Germany and Sperry in the United States [24]. However, lift-off has 

a more significant impact on the accuracy of rapid inspection. Huang and others, 

the Chinese Academy of Railway Sciences, and others have studied the card-type 

eddy sensor used to detect surface defects of curved turnout rails [25].  

The research team of Nanjing University of Aeronautics and Astronautics has 

been continuously researching magnetic flux leakage detection technology in 

recent years. The team studied the development of array-type magnetic flux 

leakage inspection equipment and quantitative analysis of rail cracks to get defect 

location and distribution characteristics. Under the simulated conditions of the 

laboratory, the inspection speed of cracks with a width of 0.2 mm can reach up to 

200 km per hour, which is in the leading position in the field [26]. This team 

added a ferrite in a sensor to reduce the reluctance to increase the magnetic 

intensity above the defects to increase the MFL signals [27]. It also gives an 

improved adaptive filtering method is proposed to solve the problem caused by 

filtering the MFL signal on the rail top surface [28]. 

The alternating magnetic field measurement method detects material defects by 

measuring the changes in the induced magnetic field on the surface of the Rail, 

which can realize the accurate positioning and measurement of defects. The data 

Rows Handel collects from ACFM sensors are processed offline by combining 

threshold and feature matching methods rather than simple threshold methods. 

Even in the presence of peeling changes and noise, the automatic detection of 

surface damage defects has high reliability [29]. Chacón Muñoz et al. presents the 
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B-Spline approach used for the accurate filtering of the noise of the raw ACFM 

signal gained during high-speed tests to improve the reliability of the 

measurements [30]. Papaeias et al. studied the applicability of ACFM technology 

in detecting and assessing the severity of surface cracked RCF defects [31]. 

ACFM technology has an extensive development prospect in detecting and 

quantifying RCF cracks. However, it is necessary to overcome the influence of the 

probe on the detection sensitivity caused by being too far from the object's 

surface. It is needed to continue improving the sensitivity of corrugated and 

polished track detection. 

2.3 Track-side and On-board Vibration and Acceleration 

Detection 

The dynamic interaction between the wheels and the track produces vibrations and 

varying accelerations transferred through the track system, air, and rolling stock. 

This vibration is generally used to measure rail defects in squats. Axlebox 

acceleration (ABA) measurement is often used to identify railway and track 

irregularities. The squat is a kind of rolling contact fatigue defect, and early 

detection is conducive to the safe operation of railways [32]. Mykola Sysyn et al. 

deal with measurement interpretation problems by analyzing vibration to estimate 

the health of the turnout [21]. Some scholars try to use this technology to detect 

spalling defects on the rail surface. Andrew Keong Ng aims to model and simulate 

three common defects with three degrees of damage, process and analyze the 

simulated RSD-driven ABA signal, and create explicit dynamic finite element 

models of wheel-rail interaction for tracks with and without RSDs [33]. Sysyn et 

al. introduced a method to detect the defect of the turnout by using the ESAH-F 

system to perform the machine learning on the inertial measurement data of the 

axle box on the running train [34]. The research team then discussed the Hilbert-

Huang transform method used to overcome the relationship between the measured 

acceleration component and impact lateral distribution and the life cycle of 

ordinary turnout contact surface [35]. However, this detection method is 

challenging to use to detect cracks and small peeling. Besides, it is not practical 

outside the laboratory, because the vertical acceleration of the train in operation is 

affected by too many reasons. 

2.4 Sound and Light Wave Detection 

Acoustic wave detection uses the characteristics of sound wave reflection, 

diffraction, and transmission to determine whether there are defects inside the 

measured rail by watching the waveform, echo, sound velocity, attenuation, and 

resonance of the ultrasonic wave in the measured rail. Conventional ultrasonic 

technology has been widely applied in the detection of internal defects in steel 

rails. Defects extending in the horizontal direction and longitudinally close to the 
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gauge angle will reflect the ultrasonic wave, and obstruct the incidence of the 

sound beam so that the dangerous cracks buried under it cannot be detected. There 

is a prominent detection blind zone, defects with a depth of less than 4 mm from 

the surface of the tested part. There will be missed inspections. Therefore, 

ultrasound is generally not used for surface defect detection. However, Yi Jiang et 

al. and Hui Zhang et al. still tried to detect near-surface damage [36, 37].  

The outstanding research is that Yuehong Zhang et al. studied the technology of 

rapid laser ultrasonic detection of rail surface defects and designed an interlaced 

laser ultrasonic defect detection imaging method: laser ultrasonic signals are 

excited on both sides of the rail to detect, and the images are fused and registered 

by algorithms. Filtering and image registration, obtaining a complete rail surface 

inspection image, displaying defect characteristics, and solving laser ultrasonic 

insensitive to defects [38]. Also, Bilawal Ramzan et al. proposed a research 

method to use Active Thermography to detect railroads surface crack [39].  

The reflection of microwaves can be used to measure distance. Andrey Zhuravlev 

et al. proposed using the microwave or short waves to detect the rail surface, but it 

has become a method [40]. 

2.5 Image Processing Detection  

Accurate judgment and cognition through computer vision research have been 

applied in many fields with the development of science and technology. The basic 

principle of rail computer visual damage detection is to use an image acquisition 

device to obtain information on the surface of the rail and convert it into an 

electronic image signal. By filtering the image, the contrast and equal processing 

are enhanced. According to the data characteristics of the pixel, the interference 

will interfere with various code operations. The background information is 

eliminated, and the characteristics of the rail surface damage, such as size, length, 

number, etc., are extracted. It even uses deep learning to mine the potential 

features of the data to classify and judge damage. The basic computer vision 

inspection system, the important part of the composition, includes the image 

acquisition module, the image-the preprocessing module, and the result judgment 

module. The research in computer vision also focuses on the optimization and 

exploration of these three modules. Usually, an inspection system is constructed 

by combining the improved methods of all stages. Liu and Wei presented a 

detection system based on image processing and edge detection to find the defect 

on the rail surface [41-44]. 

About improving the image acquisition module, it is mainly to adopt better 

equipment and optimize the method of acquiring images. The more creative 

research is that Francisco Javier de la Calle Herrero, etc. proposed a system that 

uses visual algorithm processing to find changes in pixel values between images 

[45]. Besides, Jia Ge et al. present an improved traditional system by combining a 

speed adaptive (SAA) system to adjust the appropriate exposure frequency and 
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uniform image quality at any time according to the speed of the vehicle [46]. 

Guangyu Dai et al. studied an image processing system that is useful for online 

real-time detect the defects of the railway track surfaces. When the images are 

obtained by linear CMOS camera, the train detection speed can be 50 km/h while 

the image is a planar array CMOS camera; the train speed can be 100 km/h [47]. 

More researches focus on the image-processing module and the defect recognition 

module. The irregularity of rail surface defects makes automatic visual inspection 

very difficult. Because irregular defects appear randomly on the surface of the rail, 

the defects can only be located according to the image pixels. Moreover, in the 

natural environment, the uneven illumination and different reflectivity received by 

the curved surface of the rail will greatly impact the grayscale distribution of the 

image. The electronic interference in the image acquisition process will inevitably 

add some noise to the image [48]. At the same time, effective image enhancement 

and automatic threshold segmentation of defective images can improve detection 

efficiency. The image processing process mainly goes through the following steps. 

First: Track positioning, using the principle that the track surface and the 

background are quite different, such as edge detection, gray value positioning [49], 

etc. Second: Image noise reduction, the commonly used noise reduction methods 

are: mean filtering, median filtering, non-local means, Gaussian filtering, etc. 

Third: Image enhancement, traditional methods are global histogram equalization, 

adaptive histogram equalization, contrast-limited adaptive histogram equalization 

[50], local contrast enhancement [51], low-rank matrix decomposition, etc.  

At Last: Threshold segmentation, commonly used methods are: Ostu, Maximum 

between-class variance method, maximum entropy method, Iterative threshold 

method, etc. 

The research on image processing has mainly improved and innovated on the 

original methods. Li et al. propose the Michelson-like contrast (MLC) measure 

image enhancement method with a new threshold algorithm, named proportion 

emphasized maximum entropy (PEME) [46]. Wu and Li optimized the 

background difference method by reducing the template preprocessing to reduce 

the influence of shadows and a loop threshold algorithm using histogram 

judgment [52]. Jinrui Gan et al. proposed a background-oriented defect detector 

(BODI), which uses modeling to determine specific image features of the track to 

distinguish background and defects to improve detection efficiency. The perfect 

detection rate of 100% for large defects, but only 41.78% for relatively small 

defects [53]. The defect-recognition rate reached 92.2%. Yu et al. proposed a 

coarse-to-fine model (CTFM) to identify defects of different scales. Using 

different image processing methods to identify various defects has achieved better 

results than the previous method. The accuracy rate reached 100% in the actual 

evaluation [54] Hu et al. proposed an optical rail surface spalling detection 

algorithm based on visual saliency. Use a two-dimensional differential Gaussian 

(2D DoG) filter to reduce noise [55]. Wu Yunpeng et al. proposed the LWLC-

GSME model in a drone-based visual inspection system, using a new image 
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enhancement algorithm based on local Weber-like contrast (LWLC) to enhance 

railway images and gray-scale stretched maximum entropy (GSME) segmentation 

images [56]. 

The image processing method of visual inspection shows better performance than 

other detection methods in detecting the rail surface peeling damage. However, in 

practical applications, it may be affected by more factors to reduce the accuracy. 

Therefore, some new image processing technologies have also been used.  

For example, Ashwani Kumar Dubey proposed using the maximally stable 

extremal region marking on the original system [57]. In the turnout surface wear 

detection field, Sysyn et al. introduced the application of computer vision in the 

diagnosis of common cross frogs [58]. However, technology has insufficient 

detection accuracy in detecting the rail surface cracks or more minor defects. With 

the continuous research of computer machine learning, the efficiency and 

accuracy of machine learning methods in image classification have surpassed the 

traditional classification methods. Since 2010, many scientific research 

institutions have conducted a lot of research on the categorization of rail surface 

defects in this field and make specific predictions about the development of cracks 

or defects. Machine learning methods are necessarily accompanied by defect 

assessment and prediction, so they are introduced in the next section. 

3 Classification Evaluation and Prediction 

Advances in technology have made it possible to automatically classify or 

evaluate the damage to the track surface, whether it is based on ultrasonic 

inspections or, of course, more visual images. Now the final evaluation and 

classification step almost have to rely on machine learning. Current methods for 

predicting features of track defects and even more minor cracks must also use 

machine learning. This section mainly introduces some research results in this 

field in the past ten years. Machine learning is divided into deep learning and 

shallow learning methods. The shallow machine learning calculation logic is 

relatively simple, and the classification analysis of available features is more 

accurate. Deep machine learning is more complex and has advantages in the 

classification and analysis of uncertain features. 

3.1 Shallow Machine Learning 

The traditional data classification method is a shallow machine-learning model. 

The basic process of using image information classification is as follows: First, 

image features are extracted. Commonly used image features include HOG 

(Histogram of Oriented Gradient) features [59], LBP (Local Binary Pattern) 

features [60], HAAR features, and SIFT (Scale Invariant Feature Transform) 



Acta Polytechnica Hungarica Vol. 19, No. 3, 2022 

 – 175 – 

features [61]. After extracting the feature words, use the word bag model or 

clustering method (Marker controlled watershed segmentation (MCWS), K-means 

(KM) clustering, Expectation-Maximization (EM), and canny edge detection 

(CED), etc.) to reshape extracted features. Then, send the reshaped features to the 

classifier to get the classification result. Commonly used classifiers include 

support vector machines (SVM), decision trees, random forests, and Bayesian 

classification. Mercy et al. introduced three machine-learning methods for the 

prediction of track surface defects. Decision trees have the highest accuracy in 

predicting distortions and inhomogeneity. The random forest has the highest 

accuracy in predicting specific defects [62]. Regardless of accuracy, the 

recognition rate and complexity of the detection task. Machine learning has 

reached or even surpassed traditional methods. 

Table 1 summarizes some research on the detection and judgment of track surface 

defects using image processing methods and the recently studied shallow machine 

learning methods. Shallow machine learning can already perform evaluation tasks 

other than the detection of rail surface defects, such as classification. Nearly 90% 

of the classification tasks of multi-class classification have been well applied in 

practice. With the research and development of deep learning, the effect of deep 

learning in target detection tasks surpasses all the above methods. And people 

gradually turn to the study of deep learning rail surface defect detection. 

3.2 Deep Machine Learning 

The deep learning model can learn deep abstract features layer by layer from the 

data set through supervised and unsupervised modes to achieve an abstract 

description of learning goals. The concept of deep learning has been produced 

since 1986. Deep learning models can learn deep abstract features layer by layer 

from the data set through supervised or unsupervised learning methods to achieve 

abstract descriptions of learning goals. In 2016, Hinton et al. elaborated on the 

deep learning system and proposed related technologies such as deep neural 

networks. In recent years, the wave of deep learning research has come and has 

produced many significant results. 

The deep learning models currently used in the field of image and visual 

recognition mainly include Stacked auto-encoders, SAE, Deep belief network, 

DBN, and Convolutional Neural Networks, CNN), among which CNN has 

achieved satisfactory research and application results. A multi-layer convolutional 

neural network (convolutional neural network, CNN) can adaptively input data for 

feature learning and classify or recognize the learned features. CNN-based target 

detection is mainly divided into three categories: regression-based network 

models, such as YOLO, network models generated based on candidate regions, 

such as R-CNN, Fast R-CNN, Faster R-CNN; search-based network models, such 

as AlexNet; and VGGNet. Since deep learning simulates the human visual 
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perception system, avoids the weaknesses of manual design features, and has the 

advantages of non-linearity and high parallelism, it has a wide range of 

applications. 

Table 1 
Image Processing and machine learning methods for rail defect detection 

There have also been a lot of researches in the detection of rail surface defects. 

The surrounding set is the RSDD data released by Beijing Jiaotong University. By 

combining Wavelet Scattering and Neural Networks, Yang Jin improved 

classification accuracy up to 97.20% and 94.74% for the two datasets [70]. 

Method Features Dataset Results Ref. 

Decision Tree Rail surface 

defect 

 

Data from East 

Coast Railway 

division 

Precision= 93.02% 
[62] 

Random Forest Precision= 95.23% 

Region growing  

The area of defect 

 

Rail Images 

Acquisition 

Sensitivity=100% 

[63] 
MCWS Sensitivity=90.9% 

K-means Sensitivity=72.7% 

 Canny edge Sensitivity=81.8% 

SVM 

Crack 
17000 Rail images 

from CRH and CM 

Accuracy=99.87% 

[64] 
Random Forest Accuracy=100% 

logistic regression Accuracy=99.74% 

boosted tree Accuracy=99.92% 

AdaBoost 

multiclassifier 

+CART decision 

tree 

Rail surface 

defect classifier 

recognition 

1200 rail images 

Recognition rate(%): 

Scale peeling 

crack=81.45; Stripping 

block =79.64;Tread 

cracks=82.27 

[65] 

Deep Forest 
Peeling and Crack 

classification 

Video from X5 

PTZ camera 

Classification accuracy 

=100% 
[66] 

LWLC+GSME 

25<T-I Defect < 

255 mm2; 

T-II > 255mm2 

HD video from 

DJI Matrice 600 

T-I 

Precision=88.63.22%; 

T-II Precision=90.32% 

[56] 

GMM+MRF 
Rail surface 

defect 

Image detection 

system 

Precision =88.8%, recall 

=92.0% 
[67]  

Bayesian 

classification + EM 

Onboard detection 

RUL prediction 

Data from 3D 

acceleration 

sensors 

RUL predicted accuracy= 

75% 
[68] 

MODWPT+ Lasso 

regression 

Trackside 

detection 

RUL prediction 

Data from 3D 

acceleration 

sensors 

RUL predicted accuracy= 

50% 
[69] 
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Combining the advantages of the bilateral full convolutional network and CRF 

proposed by Zhang Ziwen and others will also significantly improve detection 

accuracy [71]. This article introduces the use of deep learning, mainly neural 

convolution, to detect rail surface defects in the past ten years. Part of the research 

on classification and evaluation is shown in Table 2. Various methods can be 

intuitively compared. 

3.3 Prediction 

The losses caused by the catastrophic railway failures caused by RCF are difficult 

to estimate. Although the rails are very expensive, the defects are found in time, 

and the prediction and evaluation are carried out. The forecast reduces the number 

of inspections and avoids disasters, which is an economical and safe method.  

In the field of state prediction, many methods of finite element analysis are used. 

For example, H. M. El-Sayed establishes a wheel-rail stress model, simulates the 

rail head's damage state through finite element analysis, and predicts the service 

life of the rail through long-term data [72]. The ability of machine learning in the 

field of prediction has also been proven to have more potential. In recent years, 

there have been more studies for the prediction of rail damage. Ahmed Lasisi et al. 

proposed an integrated learning framework. It takes advantage of the advantages 

of a single machine learning tools and overcomes assuming basic distribution 

(such as Weibull) to predict the deviation of the defect, and also consider the 

railway characteristics except for the traffic volume (Mt) to achieve the purpose of 

optimizing the prediction results [73]. Sysyn's research team conducted two 

studies on the remaining useful life (RUL) prognosis of common crossings as 

shown in Table 2 on the inspection data obtained by the on-side and the onboard 

intrinsic measurement system of the turnout. 

The two machine learning methods proposed in the research systematically carry 

out the processes of feature extraction, selection, fusion, and degradation 

modeling and are then used to deal with the problem. It corresponds to about 50% 

and 75% of the condition indicator reached. Therefore, the available period would 

be sufficient for maintenance planning, thus avoiding operational hindrance costs 

[66]. 

Table 2 

Deep learning detection methods 

Method  Features  Dataset   Results  Ref. 

DCNN 

Classification: Weld, 

large, middle and 

small Squat; Joint 

22408 images; size 100 

× 50 
Accuracy=92% [74] 

CNN Defect on Surface 
25.000 profiles per 

second 
Accuracy=98% [75] 

CNN Defect on Surface 
7897 images size 

4096x3000 

Precision=61.14%; 

Recall=75.52% 
[76] 
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Cropped i-

CNN 
Rail Surface location 

5793 images; size 960 

× 1280 

Recall=92.54%;Precisio

n=92.8% 
[77] 

MOLO 

Classification: 

corrugation, fatigue 

block, stripping 

off block 

96944 images; 

size 224×224×3 

Corrugation 

AP=95.28%;Fatigue 

block AP=84.60%; 

Stripping 

off block AP=82.33% 

[78] 

SegNet Rail surface defects 

120 rail training 

images; 

size 1250 × 55  

Detection Rate=100% [79] 

YOLOv3 Rail surface defect 
184images; size 416 × 

416 

Recognition rate more 

than 97% 
[80] 

MRF-

GMM and 

CNN 

Rail surface defects 

6 categories, 2700 

samples; size 250 × 

160 

Precision=96.74%, 

Recall =94.13% 

Overlap =95.18%  

[81] 

DCNN 

Detection and 

classification of 

abrasion scar crack 

corrugation  

38000 training images; 

size 512×512 

The accuracy of defect 

classification achieves 

96.55% 

[82] 

Faster R-

CNN 
Rail surface defect 

1000 images in 

environments 

Average Precision 

=97.8% 
[83] 

OC-IAN & 

OC-TD  
Rail surface defect RSDDs  

T-I: pre.=84.21%; 

T-II: pre.=91.76% 
[84] 

RBGNet & 

LWLC-ME 
Rail surface defect 

video images resized to 

1280 × 720 
 Precision over 90% [85] 

Mcnet  Rail surface defect 
3936 NRSD images,; 

size 400 × 400 

Manmade Pre.=85.28% 

Natural Pre.=72.74%; 
[86] 

4 Results and Discussion 

In this article, various methods for detecting railway surface defects are discussed. 

The detection of defects on the rail surface is challenging because the cracks have 

an irregular form and have no specific shape or size. Each detection method may 

have some advantages and some disadvantages. However, visual inspection and 

electromagnetic technologies such as ACFM and MFL have significant benefits in 

comprehensively comparing inspection efficiency and accuracy. In terms of 

detecting speed, both methods can be used to obtain data on a running train. 

However, the sensitivity of electromagnetic technology at high speeds is not high. 

ACFM is generally less sensitive to short or shallower discontinuities than 

traditional eddy currents. MFL cannot detect relatively small defects. From the 

distribution of the number of papers, it can also be shown that more scholars are 

engaged in the research of visual inspection, especially the visual inspection 

direction in machine learning, on rail surface defects. 
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The visual inspection method of image processing has been well certified in the 

laboratory, but in the actual environment, there is a lot of external interference, 

different texture characteristics, changing lighting conditions, and stains on the 

rails, etc., will cause the image processing process significant interference reduces 

the accuracy of detection. The shallow machine learning methods shown in Table 

1 have achieved 90% or more accuracy in defect detection. Even for some major 

defect categories, the accuracy can reach 80%. The deep machine learning shown 

in Table 2 further strengthens this effect. The detection accuracy is further 

improved by 5-7%. Many neural convolution processes are combined with other 

image processing or SVM, random forest, and other machine learning methods to 

achieve better detection results. Many methods have proved the feasibility and 

relative accuracy in real track surface damage detection. Enlarging the data set can 

avoid overfitting of the model and enhance the accuracy of detection. But larger 

data sets require more data collection time and investment, and deep machine 

learning requires a lot of computing time in working hours and also has high 

requirements for computing equipment. The method of deep machine learning in 

the classification of rail surface damage has shown considerable prospects. There 

are still very few studies used to predict the surface defect of railroad tracks, and 

the prediction results are also relatively unstable. The primary research method 

does not use deep machine learning because shallow machine learning methods 

are easier to control the number and focus of features. 

Conclusions 

This article focuses on reviewing the most advanced rail surface damage detection 

methods in the past decade. These results have been published in top journals and 

conferences. We reviewed the criteria of the 70 research articles screened after the 

application and checked their content in detail. These articles are evaluated based 

on the detection methods they use, performance results, and limitations. Through 

analysis, we can infer that machine learning visual inspection methods can be 

widely used to detect railway surface defects. Combining multiple methods with 

sub-gradient detection of different types of defects has a better detection effect. 

More research needs to focus on the detection of rail surface cracks. At present, 

satisfactory results have been achieved for spalling and squats, while relatively 

small surface crack research has hardly made significant progress. For the 

reasonably complicated in 3 classifications task, orbital surface defect 

classification accuracy can reach 75% or even 85%. After more data sets and more 

research results to overcome false defects or even minor defects are proposed in 

the future, the accuracy of classification will be further improved. In the future, 

research on crack damage detection on the surface of the steel rail will mainly 

focus on the optimization and improvement of deep machine learning, especially 

in the field of CNN. The research on detection can be extended in the direction of 

evaluating the defects and then predicting the service life of the rail. More image 

processing methods suitable for real environments are also necessary. 
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