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Abstract: This paper presents algorithms for converting multi-agent planning (MAP) 

problems described in Multi-Agent Planning Domain Definition Language (MA-PDDL) to 

extensive-form games in order to analyse and solve them with game-theoretic tools in 

general. MA-PDDL is an attempt to standardize the description of MAP problems similarly 

to PDDL in the single-agent setting. In this paper MA-PDDL is extended with partial-

observability and probabilistic-effects to model more realistic domains. The conversion is 

fruitful in both ways: 1) extensive-form games can be solved via game-theoretic solution 

concepts (e.g. Nash-equilibrium) providing solutions to corresponding MAP problems in 

general, and 2) MA-PDDL problems can be solved via MAP methods providing solutions 

to corresponding games. Both cooperative and non-cooperative solutions can be achieved. 
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1 Introduction 

This paper presents methods for converting multi-agent planning (MAP) problems 

[1] described in MA-PDDL (Multi-Agent Planning Domain Definition Language) 

[2] to extensive-form games [3][4], in order to enable the application of game-

theoretic principles (e.g. solution concepts) to MAP problems in general. 

PDDL [5] is quasi the standard description language for modeling deterministic, 

single-agent planning problems. Such problems form the basis of automated 

planning [6], which is of central importance in Artificial Intelligence (AI) [7] due 

to it provides practical methods for designing goal- and utility-based intelligent 

agents, with real-world applications ranging from game playing to control of 

space vehicles. However PDDL is limited to only one planner, whereas real-world 

planning problems may involve multiple cooperative or adversary, controllable or 

non-controllable planner agents with different goals, different capabilities and 

interacting actions (competing corporations, multiplayer games, electronic 
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auctions, assisted living, computer networks, robotic soccer, etc.). To model these 

aspects PDDL was recently extended to the multi-agent setting in [2]. 

However solving a MAP problem can prove to be quite difficult due to its inherent 

complexity. It is well known, that single-agent planning in discrete-time is 

PSPACE-complete even in the propositional case [8] (where conditions within 

actions are just literals without variables), i.e. propositional single-agent planning 

is among the hardest problems in PSPACE, and PSPACE contains NP. Now in 

case of multiple agents the number of actions – and thus complexity – increases 

exponentially (since all action-combinations of the multiple agents need to be 

considered in general), not speaking of richer MAP models (including predicates, 

numeric variables, plan metrics, continuous-time, uncertainty, partial-

observability, etc.). This makes MAP intractable for realistic domains in general, 

and only approximations of the global optima are possible in practice. Thus it 

comes to no surprise, that currently – in lack of a (quasi)standard MAP problem 

modeling language – there are no general means for solving MAP problems. 

This paper tries to overcome the above issue by proposing a translation of MAP 

problems to extensive-form games in order to analyze and solve them via game-

theoretic methods. MAP problems are described in MA-PDDL, which is an 

attempt to standardize the description of MAP problems (similarly to PDDL in 

single-agent planning). Naturally the translation cannot reduce the complexity of 

converted MAP problems (i.e. solution approximation or shrinking of games [9] 

may be required for tractability), but at least it opens a way to strategically analyze 

and solve MAP problems in general. To our knowledge this is the first result in 

automatically converting MAP problems to game-theoretic models. 

Game theory [3][10] describes essentially the same multi-agent situations as MAP 

(i.e. strategic interaction of agents), thus the conversion of MAP problems to 

games is relatively straightforward, but game theory also provides a rich repertoire 

of useful solution concepts that can be applied to MAP problems after the 

conversion. The solution of a game is usually a set of strategy-combinations, 

which corresponds to a set of joint-plans in the MAP problem. These solutions 

may be cooperative or non-cooperative depending on the solution concept used. 

Extensive-form games are appropriate for both cases even though they are part of 

non-cooperative game theory. In the non-cooperative case e.g. Nash-equilibrium 

(NE) [11] or Subgame Perfect NE [12] or Perfect Bayesian Equilibrium [13], 

while in the cooperative case e.g. Pareto-optimum [10] can be used to find suitable 

solutions. Cooperation can also be achieved by maximizing social-welfare (i.e. the 

sum of utilities of agents) or individual utility of agents may reflect their collective 

preferences, so even non-cooperative solution concepts can lead to cooperative 

solutions. I.e. the proposed conversion does not limit the cooperation of agents. 

Eventually the proposed connection of MA-PDDL and extensive-form games is 

fruitful in both directions: (1) an extensive-form game can be solved via available 

game-theoretic solution concepts providing solutions to the corresponding MAP 
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problem and (2) MA-PDDL can provide a much richer model of the same game-

theoretic situation, and can be solved via available state-of-the-art MAP methods 

[1] providing solutions to the corresponding game (converted from MA-PDDL). 

The paper is structured as follows: Section 2 introduces the preliminaries of 

automated planning, PDDL, MA-PDDL and extensive-form games. Section 3 

proposes conversion algorithms from MA-PDDL to extensive-form games. First 

the fully-observable, deterministic case is discussed, then partial-observability and 

probabilistic-effects are added gradually. At the end of Section 3 a short example 

illustrates the concept. Finally Section 4 concludes the work and outlines future 

research directions. Appendix 1-3 provides the additional BNF (Backus-Naur 

Form) grammar for partial-observability and probabilistic-effects in MA-PDDL. 

2 Preliminaries 

2.1 Automated Planning 

Automated planning [6] is a process of finding a plan of action (e.g. either a totally 

ordered sequence of actions, or some conditional plan of action) that upon 

execution is expected to solve a planning problem. A planning problem typically 

defines an initial state and desired goal states of an environment, i.e. the solution 

of a planning problem, a solution plan should drive the environment from the 

initial state to a goal state upon execution (hopefully in a minimal number of 

steps, minimizing the risk and the cost of execution). In case of a deterministic 

environment with only a single agent the execution of a solution plan should lead 

to a goal state, however in case the environment is only partially observable to the 

agent, or it is probabilistic/non-deterministic, or there are multiple autonomous 

agents in it, then the execution may fail (e.g. an other agent may interfere during 

execution). So in this case a solution plan should be either prepared for all 

contingencies or its execution should be monitored and the plan should be 

repaired on-the-fly. A planning problem may have many or no solutions at all. 

2.2 PDDL (Planning Domain Definition Language) 

PDDL [5] is the quasi-standard, predicate logic based declarative description 

language for deterministic, single-agent planning problems. The latest official 

version of PDDL is 3.1 [14,15]. Each new version of the language adds new, 

modular features to previous versions. PDDL divides the description of the 

planning problem in two parts: a domain- and a problem-description. The 

domain-description contains those model-elements which are present in every 

particular problem of the domain, while the problem-description specifies the 

concrete planning problem at hand within the domain. Thus the input of a domain-
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independent PDDL-based planner is the domain- and problem-description, while 

its output is a plan that solves the specified planning problem (if it is solvable). 

More precisely, the domain-description contains the following: a unique name; a 

list of requirements (a list of PDDL-features used); a type-hierarchy (classifying 

objects); constants (objects present in every problem of the domain); and a list of 

predicates and actions. Actions have input parameters; preconditions (that need to 

be satisfied in a given state of the environment for the action to be executable); 

and effects (describing the change to the state if the action is executed). Effects of 

an action can be conditional or continuous. Moreover, actions may have arbitrary, 

non-unit duration. A domain-description may also include a list of functions, 

derived predicates or hard constraints. The domain of a function is a Cartesian 

product of object-types, while its range may be either the set of real numbers or 

any object-type. A derived predicate is true, if its preconditions are true. Actions 

may refer to derived predicates in their preconditions. Constraints are statements 

in modal logic about state-trajectories that must be true for valid solution plans. 

The problem-description also has a unique name; a reference to the respective 

domain-description; a list of all objects in the logical universe; an initial state; and 

a specification of goal states of the environment. Problem-descriptions can also 

include a metric (a real-valued function for measuring the quality of solution 

plans); timed initial literals (facts becoming true at a given time); and constraints 

similarly to the domain-description, but here they can refer to preferences (soft 

constraints, which should not necessarily be satisfied, but they can be incorporated 

in the metric). Preferences can also be defined in goal, or in action preconditions. 

2.3 MA-PDDL (Multi-Agent PDDL) 

MA-PDDL [2] is a minimalistic, modular extension of PDDL3.1, indicated by a 

new additional PDDL-requirement, :multi-agent. It extends PDDL3.1 to allow 

planning by and for multiple agents. Different agents may have different actions, 

different goals and different metrics, unlike in original PDDL. This allows 

modeling of not just homogeneous, but also heterogeneous agents in either 

cooperative or competitive scenarios. Moreover, in MA-PDDL the preconditions 

of actions can directly refer to concurrent actions and thus actions with interacting 

effects can be modeled in general (e.g. when at least 2 agents are needed to 

execute the lift action to lift a heavy table, or it will remain on the ground, or a 

third agent may interfere by pushing the table down to the ground), which allows 

for a more refined model of cooperation and inter-dependence of agents. 

However, since PDDL3.1 assumes that the environment is deterministic and fully-

observable (i.e. every agent can access the value of every state-fluent at every 

instant and observe every previously executed action), thus by default the same 

holds in MA-PDDL too. Nonetheless in Section 3.2 and 3.3 these constraints are 

lifted by extending MA-PDDL with partial-observability and probabilistic effects. 
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2.4 Game Theoretic Fundamentals 

The normal form of an incomplete information game   [16] (the most general non-

cooperative game) is a 5-tuple   (  {  }    {  }    {  }     ), where 

  {       } denotes the set of agents;    is the finite set of pure strategies of 

    and    is the finite set of its types of    ; typically           is the 

real-valued utility function of agent  , where       
    is the set of all strategy-

combinations. Depending on the interpretation and dependence of types, 

sometimes the utility of an agent may also depend on the type of other agents too, 

i.e.         , where       
    denotes the set of all type-combinations. 

The goal of an agent is to choose its strategy so as to maximize its own expected 

utility. The difficulty is that agents choose their strategies simultaneously and 

independently. Moreover each agent   plays with an active type,      , which is 

revealed only to  , and chosen randomly by Nature (or Chance) at the beginning of 

each play.   is the a priori probability distribution above all type-combinations 

    according to which Nature chooses active types for agents. A type-

combination     is thus realized with probability  ( ). If there is only 1 type-

combination, i.e. when | |   , then   is of complete information. Otherwise, 

when | |   ,   is of incomplete information. In any case   is common knowledge 

among the agents (every agent knows, that every agent knows...  ). 

The extensive form of   adds the notion of choice nodes    , where   is the 

finite set of all choice nodes with a distinguished initial choice node,     , 

from where each play of   begins. A function       { } can indicate which 

agent    ( ) chooses an elementary move (or action) in     from the finite, 

non-empty set of its moves,    (one and only one agent is associated to each 

   ). Similarly function         
 
    { } may indicate the set of those 

moves,  ( )    ( ), which agent  ( ) can choose in   (one and only one 

move can be chosen in each  ). Thus in an incomplete information game 

 (  )    and  (  )    holds, where agent 0 represents Nature (or Chance). 

In any given     node, where  ( )    holds, agent 0 chooses its respective 

moves randomly according to a probability distribution   ( ), where      
 (  ) denotes the stochastic strategy of agent 0, and  (  ) is the set of all 

probability distributions above   . It follows that   (  )    holds for   . 

Eventually each choice node corresponds to a unique sequence of moves of length 

between 0 and      (a given maximum), with    corresponding to the empty 

sequence   of length 0. So a play begins initially in   . Then, after agent  (  ) 

choses a move   (  )    (  ), the play continues in    corresponding to the 

sequence 〈  (  )〉. This continues until the play reaches a sequence 

〈  (  )   (  )     (    )〉. Thus the choice nodes can be connected in a tree-

graph   of maximal depth   with    being the root-node. 

Agents can’t necessarily observe all the previous moves of other agents during a 

play. For this reason information functions         { } are introduced for 
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each          . The information function of agent i associates a non-empty 

information set,   ( )   , to each choice node  , where    ( ). An 

information set   ( ) denotes the set of those choice nodes that agent   believes to 

be possible in  . It is assumed that     ( ) holds for every     and    , 

and also that           ( )  (  )   (   ). Thus the choice nodes inside an 

information set are indistinguishable for the respective agent. Information sets of 

agent   are disjoint, forming an information partition       ( )     ( )   . 

Now the set of pure strategies    of agent           in   is the set of all 

         functions, where for    ( )       (  ( ))   ( ) holds. This 

finishes the description of the extensive-form of an incomplete information game. 

3 Conversion of MA-PDDL to Extensive Form 

Games 

This section presents the main results of the paper: the conversion of fully- and 

partially-observable, probabilistic MA-PDDL models to extensive-form games. 

3.1 Case of Full-Observability 

The idea of the conversion is to generate successor states from the initial state of 

an MA-PDDL problem,     , in every possible way (i.e. via every applicable 

action-combination of agents, including no-op (no-operation) actions, with every 

agent executing one action at a time), and then recursively apply the same process 

to the resulting states altogether  -times, and convert this graph into an extensive-

form game. Thus all joint-plans with agents acting effectively    times (maybe 

even heterogeneously) are found. Alg. 1 forms the backbone of this method. 

Algorithm 1: Convert a fully-observable MA-PDDL description to an extensive-form game 

1:  CONVERT(      ) 

2:      
3:     AGENT_OBJECTS(    ) 

4:    | |,         
5:  foreach     

6:  |    {           ( )},      

7:  |     ALL_GROUNDED_ACTIONS(      )  {  -  } 
8:  end-foreach 

9:      NEW_CHOICE_NODE( ),  (  )   ,    {  (          )},  (  )     

10:  (  (          ))   ,    (  )    

11:     CHOICE_NODE_FROM_INITIAL_STATE(    ) 

12:  (  )   ,  (  )    ,   (  )  {  },         {   (  )} 

13:   {     },   (  {(       )}),              {  } 
14: while (   ) 

15: |       

16: | 〈    {  }    {  }                〉    
17: |     ADD_NEXT_LEVEL(            {  }    {  }                   {  }     ) 
18: end-while 

19: {  }     ENUMERATE_STRATEGIES(  {  }      {  }   ) 
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20: {  }     GET_METRIC_VALUES(       {  }    {  }                          ) 

21: return   (  {  }    {  }    {  }              {  }    {  }    {  }    { }        ) 

The CONVERT method has 2 inputs (#1):      is a fully-observable, discrete, 

deterministic MA-PDDL domain- and problem-description, and     is a 

positive integer specifies the number of levels of successor states generated. In 

case of   | | agents the resulting extensive-form game   (#21) has a tree-graph 

  of depth         (#4), where   is the set of agent-objects in      (#3). 

The algorithm first sets a level-counter   to zero (#2), then for every agent it 

initializes the set of types to a one-element set (deterministic MA-PDDL is 

converted to a complete information game). Information partition    is set to the 

empty-set for every    , and all grounded actions of agent   are extracted from 

     into respective sets of moves,   , including the always executable   -   

action with no effects (#5-8). Next (#9) the root node of the game-tree,   , is 

created, and its actor is set to agent  , the actions of agent   are set to   , and    

is allowed in   . Then (#10) the probability of “action”  ,  ( ), is set to 1, so this 

distribution governs the stochastic strategy of agent   in   , i.e.   (  ) is set to  . 

Next (#11) the CHOICE_NODE_FROM_INITIAL_STATE method creates a new 

choice node,   , which corresponds to the initial state of     . Agent   is set to 

act in    (#12), allowing any move from   . Line (#12) initializes also the 

information set   (  ) and information partition     of agent  . Line (#13) 

initializes the set of choice nodes,  , to include only    and   ; and the game-

graph   to have these nodes as vertices with only one edge – labeled with move   

–, (       ), and then also the 0
th

 state-level is initialized to {  }. 

State-levels are of central importance. They consist of those choice nodes in  , 

which correspond directly to states of the multi-agent environment. The following 

5 lines (#14-18) create new state-levels via intermediate action-levels by calling 

the ADD_NEXT_LEVEL method iteratively in a while-loop. The detailed pseudo-

code of the method is shown in Alg. 2. After   iterations the while-loop exits, 

and the finalized information partitions of agents, {  }   , are used to enumerate 

(#19) all the possible          functions (for every    ) to form the sets of 

pure strategies, {  }   . This is done by the ENUMERATE_STRATEGIES method. 

The utility of agents is defined explicitly for every possible outcome (i.e. for every 

strategy-combination). These outcomes are represented with choice-nodes of the 

last state-level in the game-tree. Each of them corresponds to exactly one  -step 

state/action-trajectory, thus the idea is to simply get the MA-PDDL metric-value 

of these trajectories from      for every agent-object, and associate them to the 

respective choice-nodes. If an agent-object has no metric defined in     , then 

its utility is 1, if its goal was achieved during the given trajectory, and 0 otherwise. 

This way each choice-node in the last state-level will have an  -long utility-

vector. This is what the GET_METRIC_VALUES method does (#20). Finally the 

algorithm returns the converted game,   (#21). 
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The heart of the above presented CONVERT method is the iterative call of the 

ADD_NEXT_LEVEL method, which effectively builds the game-tree, level-by-level 

(#16-17). This method is described in Alg. 2 below. 

Algorithm 2: Add a level to the extensive game-tree of a fully-observable MA-PDDL description 

1:  ADD_NEXT_LEVEL(       (   )      {  }    {  }                     {  }     ) 

2:                     
3:  foreach                    

4:  |               { },                   
5:  | TRACE( )   ,     CLONE( ),     {  } 

6:  |  (  )   ,  (  )     ,    (  )  {  },         {   (  )} 
7:  | for    ,    ,     

8:  | | if     then         {             } end-if 
9:  | | if     then                   end-if 

10: | | foreach                 

11: | | | if     then    ( )                end-if 

12: | | | foreach     ( ) 

13: | | | | if     then 

14: | | | | |    NEW_CHOICE_NODE( ) 

15: | | | | | TRACE( )  (     ( )   ) 

16: | | | | |  ( )     ,  ( )        

17: | | | | else 

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((     ( )   )            ) then 

19: | | | | | |    CHOICE_NODE_FROM_SUCCESSOR_STATE(  (     ( )   )          ) 

20: | | | | | |  ( )   ,  ( )     ,    ( )  { },         {   ( )} 
21: | | | | | else 

22: | | | | | |      
23: | | | | | end-if 

24: | | | | end-if 

25: | | | |                                 { } 

26: | | | |     { },     {(      )},     { } 
27: | | | end-foreach 

28: | | end-foreach 

29: | end-for 

30: |                                                   

31: end-foreach 

32: return 〈  (   )   {  }    {  }                    〉 

The ADD_NEXT_LEVEL method has 9 inputs (#1):      is the MA-PDDL 

description;   is the actual game-graph (a set of vertices,  , and a set of labeled 

edges,  );    is the root node of  ;   is the actual set of choice-nodes; {  }    

and {  }    are actual information partitions and functions of agents respectively; 

                 is the latest state-level; {  }    is the set of sets of moves of 

agents; and   is the number of agents. First (#2) the next state-level is initialized 

to an empty-set, and then it is gradually built in a foreach-loop (#3-31), which 

goes through every                    node, and grows a sub-tree of moves 

from it, every move of every agent, starting with agent   until agent   (#7-29). 

The levels of sub-trees are called action-levels, and the choice nodes of an action-

level belong to the same information set (of the respective actor agent), since 

agents act simultaneously in every instant and thus they cannot observe each 

other’s moves. However each information set at state-levels (where agent   acts) 

consists of one choice node because of full-observability. The sub-tree built from 

  in the for-loop (#7-29) has     levels, level   being part of                  
and level     being part of the                 . The latter consists of choice 
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nodes that correspond to successor states of the environment, produced in every 

possible way from the state corresponding to  . Inside the for-loop a foreach-

loop (#10-28) goes through every choice node   of action-level  , and inside it a 

further foreach-loop (#12-27) goes through every possible move     ( ) of 

agent   supposing that the previous     agents chose action-combination 

     ( ).      ( ) is initially empty. Further choice nodes of the game-tree are 

updated with the move-path (     ) which leads to them from  . 

If     (#13-16), then the possible action-combination is not yet ready, so a new 

choice node   is created in action-level    , and its trace, actor and move-set is 

set. Otherwise, if     (#18-24), then (     ( )   ) is an  -element action-

combination, which may have an executable subset in the state corresponding to   

in light of the generated state-trajectory. This is checked by the 

HAS_CONSISTENT_EXECUTABLE_SUBSET method (#18) in 5 steps: first (i) it 

collects those actions from (     ( )   ) into a set  , which are potentially 

executable in  . A single-action is considered potentially executable in a state if 

its pre-conditions are satisfied taking also Assumption 1 into account. 

Assumption 1 (undefined effects). If the executability of a grounded action   in a 

state requires the concurrent execution (or no execution) of some actions, then if 

any of those actions are not executed (or executed) concurrently with  , then we 

assume that   still remains executable, but it will have no effects (empty effects). 

Assumption 1 covers the case when an MA-PDDL action is defined to refer to an 

action in its pre-conditions, but no effects are specified for the case, when that 

reference is negated. I.e. potential executability of actions is independent from 

concurrently executed actions in light of Assumption 1. 

Next (ii) all single- and joint-actions are identified within  . A joint-action within 

  is a subset of  , where all members either refer to at least one other member in 

their pre-conditions or the conditions of their active conditional effects, or they are 

referred to by at least one of the other members. Reference to actions may be 

positive or negative, and the conditional effects are active in   if their conditions 

are satisfied in   with actions in   being executed. This produces an unambiguous 

partition of   . Next (iii) individually inconsistent or not executable elements are 

removed from that partition. A single-action is individually consistent in   if its 

active conditions and effects are both consistent on their own in  . A joint-action 

is individually consistent in   if its joint active conditions and joint active effects 

are both consistent on their own in   in case the actions within the given joint-

action are executed simultaneously. Interference of conditions and effects of 

concurrent discrete actions is not considered. Individual executability requires 

satisfaction of (joint) pre-conditions in  . 

Next (iv) elements with pairwise inconsistent joint-effects are removed from the 

partition. Finally (v) the remaining elements are checked, whether their joint 

execution is allowed by the hard state-trajectory constraints in     . If yes, then 

these actions form the consistent and executable subset of (     ( )   ), i.e. 
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they can be executed, and so the HAS_CONSISTENT_EXECUTABLE_SUBSET 

method returns true. Otherwise, if not, or if the executable subset is empty, then 

the return-value is false. In case the return-value is true, a new choice node   

corresponding to the state produced by the consistent and executable subset is 

added to action-level     (#19,20,25). Otherwise a choice node        is 

put into action-level     (#5,22,25). In both cases   and   are updated 

appropriately (#26) and action-level     is added to the                  
(#30). This is repeated for every   in                  (#3-31) before finishing. 

3.2 Case of Partial-Observability 

Now MA-PDDL is extended with partial-observability (cf. Appendix 1 and 3). In 

case of partial-observability information sets at state-levels of the converted game 

may not be singleton, since there may be state/action-trajectories, where the 

observation-history (including the observation of actions) is the same for an agent, 

and thus the choice-nodes corresponding to those trajectories should be members 

of the same information set. Based on this Alg.1 needs to be extended as follows. 

First the following 3 lines should be inserted between line #12 and #13 in Alg. 1. 

13: foreach    , 
14: | OBS_HIST(    )  〈   (    )〉,   (  )  {  },       {  (  )} 
15: end-foreach 

This foreach-loop initializes the observation-history of agent   (for     ) to a 

list including only its observations in   ,    (    ), which is a set of grounded 

observations and their value holding in   .   (  ) is the information-set of agent 

  in    (even though agent 1 acts in   ), and       is the information-partition at 

state-level   of agent  . The ADD_NEXT_LEVEL method now has also {      }   
 

and {  }    among its inputs, and {    }   
 and {  }    among its outputs. Alg.2 

is changed accordingly: first, manipulation of agent  ’s information-partition,   , 

in line #6 and #20 are removed together with the complete line #8. Then each 

reference to any               is replaced with              ( ) to keep track 

of the possibly distinct sub-trees of each                   . Line #11 is 

deleted, but the following line is added after line #6 to initialize the observation-

history and information-sets   (  ) of choice node    (clone of  ). 

7:  | foreach    , OBS_HIST(    )          (   ),   (  )  {  } end-foreach 

To update the observation-histories of agents and to initialize their information 

sets for a new choice node   corresponding to a successor state, the next 5 lines 

should be added after line #20 in the original pseudo-code of Alg.2. 

20: | | | | | | foreach    , 

21: | | | | | | | OBS_HIST(   )   ⟨        (   )  … 

22: | | | | | | |         OBS(                  (  (     ( )   )          )), … 

23: | | | | | | |            (   )⟩,   ( )  { } 
24: | | | | | | end-foreach 
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In line #22                  produces a choice node corresponding to a state, 

where progressive facts about consistent and executable actions of (     ( )   ) 

are added to  . They are identified as in HAS_CONSISTENT_EXECUTABLE_SUBSET. 

Finally line #32 in Alg.2 is replaced with the following code-segment. 

36: foreach     

37: | if      

38: | | foreach        

39: | | |                 
               ( )     

  

40: | | | foreach                   
 ,    ( )                  

 end-foreach 

41: | | |         {                
} 

42: | | end-foreach 

43: | end-if 

44: | foreach                        where      

45: | | if OBS_HIST(   )    OBS_HIST(    ) then 

46: | | | if      then   ( )    ( )  {  },   (  )    (  )  { } end-if 

47: | | |   ( )    ( )  {  },   (  )    (  )  { } 
48: | | end-if 

49: | end-foreach 

50: |      
51: | foreach                     

52: | | if      then         {  ( )} end-if 

53: | |         {  ( )} 
54: | end-foreach 

55: end-foreach 

56: return 〈  (   )   {  }    {  }    {  }    {  }                    〉 

 

In the foreach-loop (#36-55), if     (#37-43), then those  th
 action-levels are 

unified into an information-set     of agent  , where the root nodes belong to the 

same information-set.     is updated accordingly.    in line #38 is      received as 

an input of ADD_NEXT_LEVEL. In lines (#44-49) choice nodes in the next state-

level corresponding to states with same observation-history are put in the same 

information-set. Finally the information-partitions of all agents are finalized in the 

next state-level (#50-54), and it is returned by the method (#56). 

3.3 Case of Probabilistic Effects 

In this section probabilistic elements are assumed to be added to MA-PDDL on 

top of partial-observability (cf. Appendix 2-3), so the CONVERT method in Section 

3.2 needs to be modified accordingly. In row (#4) the calculation of   should be: 

      (   ), since now a dedicated chance-node level is added after each 

action-tree to represent all the possible probabilistic outcomes. Next, the 

initialization of types-sets should be replaced with initialization of information-

partitions         in row (#6). Then in row (#9) the initialization of the action-set 

of agent 0 should be replaced with: (   )              (    ),     . 

Here P_INITSTATES generates all the possible grounded initial states of the MA-

PDDL problem     , corresponding to the finite set of type-combinations and 

their respective probabilities forming the a priori probability distribution   over  . 

Thus in row (#10) the initialization of   is omitted, and row (#11) is replaced with: 

11: (      )   CHOICE_NODES_FROM_P_INITSTATES( ),   {  }    ,                ,     
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Here the set of choice nodes,   , is formed from  . An inverse function,         

  is also returned for later use. The set of all nodes, edges and the initial state-

level is initialized. Next, row (#12) is deleted, and the next 4 rows before the 

while-cycle are replaced with the following code-segment. 

12: foreach                 
13: |  (  )   ,  (  )    ,   (  )  {  },     {(       )}|   (  )     

14: | foreach    , 
15: | | OBS_HIST(    )  〈   (    )〉,   (  )  {  } 
16: | end-foreach 

17: end-foreach 

18:   (   ) 
19: foreach    , 
20: | foreach                    where      

21: | | if OBS_HIST(   )    OBS_HIST(    ) then 

22: | | | if      then   ( )    ( )  {  },   (  )    (  )  { } end-if 

23: | | |   ( )    ( )  {  },   (  )    (  )  { } 
24: | | end-if 

25: | end-foreach 

26: | foreach                 

27: | | if      then         {  ( )} end-if 
28: | |             {  ( )} 
29: | end-foreach 

30: end-foreach 

This initializes information-sets, partitions and observation-histories of all agents 

at the initial state-level. Next, ADD_NEXT_LEVEL should include    in its inputs 

and outputs; the set of type-sets, {  }   , should be replaced with   both in   

returned by CONVERT and in the inputs of GET_METRIC_VALUES. Utilities 

returned by this method should be of form         , and the contents of 

ADD_NEXT_LEVEL in Section 3.2 between rows (#12-30) should be replaced with: 

12: | | | | if     then 

13: | | | | |    NEW_CHOICE_NODE( ), TRACE( )  (     ( )   ) 

14: | | | | |  ( )     ,  ( )       ,     {(      )},   { } 
15: | | | | else 

16: | | | | |    NEW_CHOICE_NODE( ),  ( )   ,  ( )      

17: | | | | |     { },     { },     {(      )} 

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((     ( )   )            ) then 

19: | | | | | | (    )   CHOICE_NODES_FROM_P_SUCC_STATES(  (     ( )   )          ) 

20: | | | | | | foreach    , 

21: | | | | | | |  ( )   ,  ( )     ,    ( )  { },     {(     )} 
22: | | | | | | | foreach    , 

23: | | | | | | | | OBS_HIST(   )   ⟨        (   )  … 

24: | | | | | | | |         OBS(                  (  (     ( )   )          )), … 

25: | | | | | | | |            (   )⟩,   ( )  { } 
26: | | | | | | | end-foreach 

27: | | | | | | end-foreach 

28: | | | | | else 

29: | | | | | |   {  },   (  )   ,     {(       )} 
30: | | | | | end-if 

31: | | | | |   ( )     

32: | | | | end-if 

33: | | | |                ( )                 ( )   ,      ,       

This includes management of chance nodes  , added after each  -long action-

combination (     ( )   ) to represent possible probabilistic outcomes. The set 

of choice nodes in the next state level corresponding to these outcomes,  , 
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connected to  , is produced by CHOICE_NODES_FROM_P_SUCC_STATES. It 

generates all possible successor states via all possible consistent and executable 

action-subsets of (     ( )   ) as described in the end of Section 3.1, except that 

the consistency of (joint)actions depends on every variation of their effects. 

The CONVERT method in Sections 3.1-3.3 is of constant-time complexity in the 

number of possible state/action-trajectories within a finite horizon  , however the 

number of these trajectories is super-exponential in the number of agents., i.e. 

optimization is needed. The following 4 steps reduce the redundancy of  . 

1. From top to bottom each edge of potentially not executable and no-op 

actions should be deleted from   together with their complete sub-graph. 

2. If a chance node   has only 1 outgoing edge, then it should be deleted, and its 

parent action node   should be connected directly to its child state node  . 

3. Starting from the last state-level the cloned    nodes should be deleted 

together with the edges from their parents. 

4. If the last remaining outgoing edge of a node is being deleted, then the node 

should be replaced with the end-vertex of that edge, if it exists. Otherwise, if 

it is an action-node, it should be deleted with all edges from its parents. 

3.4 Example 

A one-card poker problem is formulated in MA-PDDL based on pp. 37-40 in [10]. 

It is then converted to an extensive-form game, which is solved, and the solution 

is projected back to the MA-PDDL level. The example is best read and understood 

in conjunction with the original definition of MA-PDDL in [2] and Appendix 1-3. 
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There are 2 agents, player1 and player2, playing a simple poker game. Before 

the play, both put 1 coin in the pot. Then they both receive their cards. player1 

receives a winning hand with a probability of ½, and then it either raise the bid (to 

2 coins) or fold. If it folds (shows its cards), then if it has a winning hand, then it 

wins the pot. Otherwise player2 wins. But if player1 raises, then player2 can 

either meet this bid (also put 1 more coin in the pot) or pass. If it decides to pass, 

then player1 wins the pot. But if player2 meets, then if player1 has a 

winning hand, then player1 wins the pot. Otherwise player2 wins the pot. 

Both agents try to maximize their profit (i.e. the difference of their income and 

investment), but player2 is in a worse position, since it is unable to observe the 

hand of player1. So player2 decides between meeting or passing by chance. 

To solve this problem it is first converted to an extensive-form game. Since Poker 

is non-cooperative game, a non-cooperative solution concept can be used, e.g. 
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Perfect Bayesian Equilibrium [13], since the game is of incomplete information. 

The horizon of the conversion is trivially    . There are 2 possible initial states 

depending on whether winning-hand-player1 is true with probability ½. A 

chance node,   , is created with 2 edges to             . Every action-combination 

is considered for     steps, and since both decentralized agents have 3 actions 

(including no-op), there are 9 combinations, so a resulting game-graph   with 

423 nodes emerges, which can be reduced to 11 nodes by using the optimization 

steps at the end of Section 3.3 (see. Fig. 1). Finding the PBE of this game leads to 

a unique mixed NE, according to which player1 should raise if it has a winning 

hand, otherwise it should fold with probability 
2
/3 or raise (bluff) with probability 

1
/3, while player2 should meet with probability 

2
/3 or pass with probability 

1
/3. 

This is a rational joint-solution of the above non-cooperative MAP problem. 

 

Figure 1 

Extensive-form of the one-card poker problem (as shown also in Fig. 2.2 on p. 40 in [10]) 

The above (reduced) game may seem small, but this is only due to the simplicity 

of the example. More complex MAP problems can induce much larger games, 

which may need reduction or solution approximation [9]. Furthermore, the 

example given was non-cooperative, but MA-PDDL can also describe inherently 

cooperative situations, e.g. cf. the example in [2], where the only solution is for 

the self-interested agents to cooperate to achieve their common goal. Thus beyond 

using cooperative solution concepts, cooperation can be achieved even that way. 

Conclusions 

Algorithms for converting fully- and partially-observable probabilistic MA-PDDL 

descriptions to extensive-form games were proposed in order to solve multi-agent 

planning problems in general. Partial-observability and probabilistic effects were 

introduced as separate, additional extensions to MA-PDDL. Depending on the 

multi-agent planning problem at hand and the solution concepts used to solve the 

resulting game, both cooperative and non-cooperative behavior can be achieved. 

Limitations include the discrete nature of converted descriptions, and that each 

agent needs to execute exactly one action at a time. In the future this could be 

extended to durative cases without the limit on the number of concurrent actions. 
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Appendix 1. Extending MA-PDDL with partial-observability 

Appendix 1-3 is best read in conjunction with the BNF (Backus-Naur Form) 

grammar of MA-PDDL [2] and PDDL3.1 [15]. A new requirement is added to 

MA-PDDL, :partial-observability. To capture partial-observability, the 

addition of the following 6 rules is proposed to the BNF of MA-PDDL. 

 

The above extension has the same semantics as events proposed in [17]. A 

grounded observation holds in states where its conditions are satisfied, but it can’t 

be referred to in conditions or effects of actions or anywhere else. Observations 

can be used solely by the planners and/or incorporated in conditional plans. For 

the sake of convenience the following 5 rules are also added to the grammar. 

 

The above 5 rules allow the declaration of full-observability of individual 

Boolean- and numeric-fluents. An fo atom can be placed as the first argument of 

respective predicate- or function-definitions. The 1
st
 rule for <fo> is covers the 
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single-agent case, but if it is used in the multi-agent case, then every agent(object) 

can observe the corresponding fluent (always, every value). The other two rules 

for <fo> let us specify the type (or even a union of types) of those agents, which 

always observe every value. If the type is not given, it is assumed to be object. 

According to our current knowledge, the only work in literature addressing the 

addition of partial-observability to PDDL is [18]. It adds observations to the 

probabilistic extension of PDDL (PPDDL1.0) [19] via the addition of observation-

predicates that can be referred to in separate observation-effects of actions. 

Although this concept is simple, it is not clear enough semantically. The partial-

observability extension of MA-PDDL proposed in this paper aims to clarify that. 

Appendix 2. Further extending MA-PDDL with probabilistic-effects 

Now probabilistic-effects are added to MA-PDDL beyond partial-observability 

based on PPDDL1.0 [19] and its extension to probability-distributions [20]. First 

the BNF of the effects of discrete actions should be modified to the following. 

 

PPDDL1.0 [19] is different compared to PDDL3.1 [15] in that it allows when-

statements to be nested directly into each other. This is the only significant 

difference. This allows for conditional probabilistic effects. Beyond this [20] adds 

distribution-effects, which are also included above in a bit optimized form. They 

are introduced in the Appendix of [20]. The difference here is that they are 

parametric (thus grounded or lifted). E.g. the following distributions can be used. 

 

PPDDL1.0 also introduced :rewards in form of reward-fluents which are not 

part of the state. Moreover, in PPDDL1.0 <probability> was only <number>, 

but in [20] it could be already a function-expression. We used the latter. A further 

modification of the MA-PDDL grammar based on [19,20] is the following. 
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Similarly to [19] reward-fluents are also added to the language in form of the 

below 2 rules. The second rule allows reward-fluents to be defined for specific 

agents (refered to as constants, variables or object-fluents) in the multi-agent case. 

The first rule can be used only in the single-agent case. 

 

A novelty in [20] was the addition of probability-distributions to [19]. A key of 

this addition was the introduction of random variates, which are eventually the 

actual random values of the distributions, that can be referred in functional-

expressions in the below form, after adding the below 2 rules to the grammar. 

 

PPDDL1.0 and its extension in [20] were discrete, but their ideas can be applied in 

a straightforward manner to the durative case by adding the following 10 rules. 

 

Probabilistic- and distribution-effects can now define the value of observations 

with the addition of the below 8 rules. 

 

In case of continuous-time probabilities are normalized in runtime to guarantee 

that they comply with the elementary properties of probability distributions. 
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Above the modified rule for describing problems is shown. The only change 

beyond the previous changes is the addition of goal-rewards, similarly to [19]. 

 

If the first rule is used in case of :multi-agent, then it refers to all agents. 

Inheritance/polymorphism of goal-rewards is similar to goals and metric in [2]. 

 

Similarly to [19] the above 3 rules are added. The 3
rd

 rule allows the goal-

achieved fluent of a specific agent in the metric of any agent. If the 2
nd

 rule is 

used in MA-case then it is   iff the goal of every agent was achieved at least once. 

The following collection of rules is based on [20], and changes the hitherto 

description of initial states mainly to optionally include uncertainty. 
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Appendix 3. Summary of all additional new MA-PDDL requirements 

 :partial-observability  Allows observations in the domain 

description. It is compatible with multiple agents and probabilistic effects. 

 :probabilistic-effects  Allows discrete probabilistic elements 

in the effects of durative and non-durative actions and in initial states. 

 :distribution-effects  Allows probability distributions in 

probabilistic effects of durative and non-durative actions and in initial states. 

 :rewards  Allows reward fluents in effects of durative and non-

durative actions and in the metric. It is compatible with :multi-agent. 

 :mdp  = :probabilistic-effects + :rewards 

 :pomdp  = :mdp + :partial-observability 

 :dec-mdp  = :mdp + :multi-agent 

 :dec-pomdp = :pomdp + :multi-agent 

I.e. MA-PDDL with partial-observability+probabilistic-effects can describe DEC-

POMDPs (DECentralized Partially Observable Markov Decision Processes) [21]. 


