
Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 27 –

Converting MA-PDDL to Extensive-Form

Games

Dániel L. Kovács, Tadeusz P. Dobrowiecki

Department of Measurement and Information Systems, Budapest University of

Technology and Economics

Magyar tudósok krt. 2, H-1117, Budapest, Hungary

E-mail: dkovacs@mit.bme.hu, tade@mit.bme.hu

Abstract: This paper presents algorithms for converting multi-agent planning (MAP)

problems described in Multi-Agent Planning Domain Definition Language (MA-PDDL) to

extensive-form games in order to analyse and solve them with game-theoretic tools in

general. MA-PDDL is an attempt to standardize the description of MAP problems similarly

to PDDL in the single-agent setting. In this paper MA-PDDL is extended with partial-

observability and probabilistic-effects to model more realistic domains. The conversion is

fruitful in both ways: 1) extensive-form games can be solved via game-theoretic solution

concepts (e.g. Nash-equilibrium) providing solutions to corresponding MAP problems in

general, and 2) MA-PDDL problems can be solved via MAP methods providing solutions

to corresponding games. Both cooperative and non-cooperative solutions can be achieved.

Keywords: multi-agent; planning; pddl; game theory; partial observability; probabilistic

1 Introduction

This paper presents methods for converting multi-agent planning (MAP) problems

[1] described in MA-PDDL (Multi-Agent Planning Domain Definition Language)

[2] to extensive-form games [3][4], in order to enable the application of game-

theoretic principles (e.g. solution concepts) to MAP problems in general.

PDDL [5] is quasi the standard description language for modeling deterministic,

single-agent planning problems. Such problems form the basis of automated

planning [6], which is of central importance in Artificial Intelligence (AI) [7] due

to it provides practical methods for designing goal- and utility-based intelligent

agents, with real-world applications ranging from game playing to control of

space vehicles. However PDDL is limited to only one planner, whereas real-world

planning problems may involve multiple cooperative or adversary, controllable or

non-controllable planner agents with different goals, different capabilities and

interacting actions (competing corporations, multiplayer games, electronic

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 28 –

auctions, assisted living, computer networks, robotic soccer, etc.). To model these

aspects PDDL was recently extended to the multi-agent setting in [2].

However solving a MAP problem can prove to be quite difficult due to its inherent

complexity. It is well known, that single-agent planning in discrete-time is

PSPACE-complete even in the propositional case [8] (where conditions within

actions are just literals without variables), i.e. propositional single-agent planning

is among the hardest problems in PSPACE, and PSPACE contains NP. Now in

case of multiple agents the number of actions – and thus complexity – increases

exponentially (since all action-combinations of the multiple agents need to be

considered in general), not speaking of richer MAP models (including predicates,

numeric variables, plan metrics, continuous-time, uncertainty, partial-

observability, etc.). This makes MAP intractable for realistic domains in general,

and only approximations of the global optima are possible in practice. Thus it

comes to no surprise, that currently – in lack of a (quasi)standard MAP problem

modeling language – there are no general means for solving MAP problems.

This paper tries to overcome the above issue by proposing a translation of MAP

problems to extensive-form games in order to analyze and solve them via game-

theoretic methods. MAP problems are described in MA-PDDL, which is an

attempt to standardize the description of MAP problems (similarly to PDDL in

single-agent planning). Naturally the translation cannot reduce the complexity of

converted MAP problems (i.e. solution approximation or shrinking of games [9]

may be required for tractability), but at least it opens a way to strategically analyze

and solve MAP problems in general. To our knowledge this is the first result in

automatically converting MAP problems to game-theoretic models.

Game theory [3][10] describes essentially the same multi-agent situations as MAP

(i.e. strategic interaction of agents), thus the conversion of MAP problems to

games is relatively straightforward, but game theory also provides a rich repertoire

of useful solution concepts that can be applied to MAP problems after the

conversion. The solution of a game is usually a set of strategy-combinations,

which corresponds to a set of joint-plans in the MAP problem. These solutions

may be cooperative or non-cooperative depending on the solution concept used.

Extensive-form games are appropriate for both cases even though they are part of

non-cooperative game theory. In the non-cooperative case e.g. Nash-equilibrium

(NE) [11] or Subgame Perfect NE [12] or Perfect Bayesian Equilibrium [13],

while in the cooperative case e.g. Pareto-optimum [10] can be used to find suitable

solutions. Cooperation can also be achieved by maximizing social-welfare (i.e. the

sum of utilities of agents) or individual utility of agents may reflect their collective

preferences, so even non-cooperative solution concepts can lead to cooperative

solutions. I.e. the proposed conversion does not limit the cooperation of agents.

Eventually the proposed connection of MA-PDDL and extensive-form games is

fruitful in both directions: (1) an extensive-form game can be solved via available

game-theoretic solution concepts providing solutions to the corresponding MAP

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 29 –

problem and (2) MA-PDDL can provide a much richer model of the same game-

theoretic situation, and can be solved via available state-of-the-art MAP methods

[1] providing solutions to the corresponding game (converted from MA-PDDL).

The paper is structured as follows: Section 2 introduces the preliminaries of

automated planning, PDDL, MA-PDDL and extensive-form games. Section 3

proposes conversion algorithms from MA-PDDL to extensive-form games. First

the fully-observable, deterministic case is discussed, then partial-observability and

probabilistic-effects are added gradually. At the end of Section 3 a short example

illustrates the concept. Finally Section 4 concludes the work and outlines future

research directions. Appendix 1-3 provides the additional BNF (Backus-Naur

Form) grammar for partial-observability and probabilistic-effects in MA-PDDL.

2 Preliminaries

2.1 Automated Planning

Automated planning [6] is a process of finding a plan of action (e.g. either a totally

ordered sequence of actions, or some conditional plan of action) that upon

execution is expected to solve a planning problem. A planning problem typically

defines an initial state and desired goal states of an environment, i.e. the solution

of a planning problem, a solution plan should drive the environment from the

initial state to a goal state upon execution (hopefully in a minimal number of

steps, minimizing the risk and the cost of execution). In case of a deterministic

environment with only a single agent the execution of a solution plan should lead

to a goal state, however in case the environment is only partially observable to the

agent, or it is probabilistic/non-deterministic, or there are multiple autonomous

agents in it, then the execution may fail (e.g. an other agent may interfere during

execution). So in this case a solution plan should be either prepared for all

contingencies or its execution should be monitored and the plan should be

repaired on-the-fly. A planning problem may have many or no solutions at all.

2.2 PDDL (Planning Domain Definition Language)

PDDL [5] is the quasi-standard, predicate logic based declarative description

language for deterministic, single-agent planning problems. The latest official

version of PDDL is 3.1 [14,15]. Each new version of the language adds new,

modular features to previous versions. PDDL divides the description of the

planning problem in two parts: a domain- and a problem-description. The

domain-description contains those model-elements which are present in every

particular problem of the domain, while the problem-description specifies the

concrete planning problem at hand within the domain. Thus the input of a domain-

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 30 –

independent PDDL-based planner is the domain- and problem-description, while

its output is a plan that solves the specified planning problem (if it is solvable).

More precisely, the domain-description contains the following: a unique name; a

list of requirements (a list of PDDL-features used); a type-hierarchy (classifying

objects); constants (objects present in every problem of the domain); and a list of

predicates and actions. Actions have input parameters; preconditions (that need to

be satisfied in a given state of the environment for the action to be executable);

and effects (describing the change to the state if the action is executed). Effects of

an action can be conditional or continuous. Moreover, actions may have arbitrary,

non-unit duration. A domain-description may also include a list of functions,

derived predicates or hard constraints. The domain of a function is a Cartesian

product of object-types, while its range may be either the set of real numbers or

any object-type. A derived predicate is true, if its preconditions are true. Actions

may refer to derived predicates in their preconditions. Constraints are statements

in modal logic about state-trajectories that must be true for valid solution plans.

The problem-description also has a unique name; a reference to the respective

domain-description; a list of all objects in the logical universe; an initial state; and

a specification of goal states of the environment. Problem-descriptions can also

include a metric (a real-valued function for measuring the quality of solution

plans); timed initial literals (facts becoming true at a given time); and constraints

similarly to the domain-description, but here they can refer to preferences (soft

constraints, which should not necessarily be satisfied, but they can be incorporated

in the metric). Preferences can also be defined in goal, or in action preconditions.

2.3 MA-PDDL (Multi-Agent PDDL)

MA-PDDL [2] is a minimalistic, modular extension of PDDL3.1, indicated by a

new additional PDDL-requirement, :multi-agent. It extends PDDL3.1 to allow

planning by and for multiple agents. Different agents may have different actions,

different goals and different metrics, unlike in original PDDL. This allows

modeling of not just homogeneous, but also heterogeneous agents in either

cooperative or competitive scenarios. Moreover, in MA-PDDL the preconditions

of actions can directly refer to concurrent actions and thus actions with interacting

effects can be modeled in general (e.g. when at least 2 agents are needed to

execute the lift action to lift a heavy table, or it will remain on the ground, or a

third agent may interfere by pushing the table down to the ground), which allows

for a more refined model of cooperation and inter-dependence of agents.

However, since PDDL3.1 assumes that the environment is deterministic and fully-

observable (i.e. every agent can access the value of every state-fluent at every

instant and observe every previously executed action), thus by default the same

holds in MA-PDDL too. Nonetheless in Section 3.2 and 3.3 these constraints are

lifted by extending MA-PDDL with partial-observability and probabilistic effects.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 31 –

2.4 Game Theoretic Fundamentals

The normal form of an incomplete information game [16] (the most general non-

cooperative game) is a 5-tuple ({ } { } { }), where

 { } denotes the set of agents; is the finite set of pure strategies of

 and is the finite set of its types of ; typically is the

real-valued utility function of agent , where
 is the set of all strategy-

combinations. Depending on the interpretation and dependence of types,

sometimes the utility of an agent may also depend on the type of other agents too,

i.e. , where
 denotes the set of all type-combinations.

The goal of an agent is to choose its strategy so as to maximize its own expected

utility. The difficulty is that agents choose their strategies simultaneously and

independently. Moreover each agent plays with an active type, , which is

revealed only to , and chosen randomly by Nature (or Chance) at the beginning of

each play. is the a priori probability distribution above all type-combinations

 according to which Nature chooses active types for agents. A type-

combination is thus realized with probability (). If there is only 1 type-

combination, i.e. when | | , then is of complete information. Otherwise,

when | | , is of incomplete information. In any case is common knowledge

among the agents (every agent knows, that every agent knows...).

The extensive form of adds the notion of choice nodes , where is the

finite set of all choice nodes with a distinguished initial choice node, ,

from where each play of begins. A function { } can indicate which

agent () chooses an elementary move (or action) in from the finite,

non-empty set of its moves, (one and only one agent is associated to each

). Similarly function

 { } may indicate the set of those

moves, () (), which agent () can choose in (one and only one

move can be chosen in each). Thus in an incomplete information game

 () and () holds, where agent 0 represents Nature (or Chance).

In any given node, where () holds, agent 0 chooses its respective

moves randomly according to a probability distribution (), where
 () denotes the stochastic strategy of agent 0, and () is the set of all

probability distributions above . It follows that () holds for .

Eventually each choice node corresponds to a unique sequence of moves of length

between 0 and (a given maximum), with corresponding to the empty

sequence of length 0. So a play begins initially in . Then, after agent ()

choses a move () (), the play continues in corresponding to the

sequence 〈 ()〉. This continues until the play reaches a sequence

〈 () () ()〉. Thus the choice nodes can be connected in a tree-

graph of maximal depth with being the root-node.

Agents can’t necessarily observe all the previous moves of other agents during a

play. For this reason information functions { } are introduced for

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 32 –

each . The information function of agent i associates a non-empty

information set, () , to each choice node , where (). An

information set () denotes the set of those choice nodes that agent believes to

be possible in . It is assumed that () holds for every and ,

and also that () () (). Thus the choice nodes inside an

information set are indistinguishable for the respective agent. Information sets of

agent are disjoint, forming an information partition () () .

Now the set of pure strategies of agent in is the set of all

 functions, where for () (()) () holds. This

finishes the description of the extensive-form of an incomplete information game.

3 Conversion of MA-PDDL to Extensive Form

Games

This section presents the main results of the paper: the conversion of fully- and

partially-observable, probabilistic MA-PDDL models to extensive-form games.

3.1 Case of Full-Observability

The idea of the conversion is to generate successor states from the initial state of

an MA-PDDL problem, , in every possible way (i.e. via every applicable

action-combination of agents, including no-op (no-operation) actions, with every

agent executing one action at a time), and then recursively apply the same process

to the resulting states altogether -times, and convert this graph into an extensive-

form game. Thus all joint-plans with agents acting effectively times (maybe

even heterogeneously) are found. Alg. 1 forms the backbone of this method.

Algorithm 1: Convert a fully-observable MA-PDDL description to an extensive-form game

1: CONVERT()

2:
3: AGENT_OBJECTS()

4: | |,
5: foreach

6: | { ()},

7: | ALL_GROUNDED_ACTIONS() { - }
8: end-foreach

9: NEW_CHOICE_NODE(), () , { ()}, ()

10: (()) , ()

11: CHOICE_NODE_FROM_INITIAL_STATE()

12: () , () , () { }, { ()}

13: { }, ({()}), { }
14: while ()

15: |

16: | 〈 { } { } 〉
17: | ADD_NEXT_LEVEL({ } { } { })
18: end-while

19: { } ENUMERATE_STRATEGIES({ } { })

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 33 –

20: { } GET_METRIC_VALUES({ } { })

21: return ({ } { } { } { } { } { } { })

The CONVERT method has 2 inputs (#1): is a fully-observable, discrete,

deterministic MA-PDDL domain- and problem-description, and is a

positive integer specifies the number of levels of successor states generated. In

case of | | agents the resulting extensive-form game (#21) has a tree-graph

 of depth (#4), where is the set of agent-objects in (#3).

The algorithm first sets a level-counter to zero (#2), then for every agent it

initializes the set of types to a one-element set (deterministic MA-PDDL is

converted to a complete information game). Information partition is set to the

empty-set for every , and all grounded actions of agent are extracted from

 into respective sets of moves, , including the always executable -

action with no effects (#5-8). Next (#9) the root node of the game-tree, , is

created, and its actor is set to agent , the actions of agent are set to , and

is allowed in . Then (#10) the probability of “action” , (), is set to 1, so this

distribution governs the stochastic strategy of agent in , i.e. () is set to .

Next (#11) the CHOICE_NODE_FROM_INITIAL_STATE method creates a new

choice node, , which corresponds to the initial state of . Agent is set to

act in (#12), allowing any move from . Line (#12) initializes also the

information set () and information partition of agent . Line (#13)

initializes the set of choice nodes, , to include only and ; and the game-

graph to have these nodes as vertices with only one edge – labeled with move

–, (), and then also the 0
th

 state-level is initialized to { }.

State-levels are of central importance. They consist of those choice nodes in ,

which correspond directly to states of the multi-agent environment. The following

5 lines (#14-18) create new state-levels via intermediate action-levels by calling

the ADD_NEXT_LEVEL method iteratively in a while-loop. The detailed pseudo-

code of the method is shown in Alg. 2. After iterations the while-loop exits,

and the finalized information partitions of agents, { } , are used to enumerate

(#19) all the possible functions (for every) to form the sets of

pure strategies, { } . This is done by the ENUMERATE_STRATEGIES method.

The utility of agents is defined explicitly for every possible outcome (i.e. for every

strategy-combination). These outcomes are represented with choice-nodes of the

last state-level in the game-tree. Each of them corresponds to exactly one -step

state/action-trajectory, thus the idea is to simply get the MA-PDDL metric-value

of these trajectories from for every agent-object, and associate them to the

respective choice-nodes. If an agent-object has no metric defined in , then

its utility is 1, if its goal was achieved during the given trajectory, and 0 otherwise.

This way each choice-node in the last state-level will have an -long utility-

vector. This is what the GET_METRIC_VALUES method does (#20). Finally the

algorithm returns the converted game, (#21).

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 34 –

The heart of the above presented CONVERT method is the iterative call of the

ADD_NEXT_LEVEL method, which effectively builds the game-tree, level-by-level

(#16-17). This method is described in Alg. 2 below.

Algorithm 2: Add a level to the extensive game-tree of a fully-observable MA-PDDL description

1: ADD_NEXT_LEVEL(() { } { } { })

2:
3: foreach

4: | { },
5: | TRACE() , CLONE(), { }

6: | () , () , () { }, { ()}
7: | for , ,

8: | | if then { } end-if
9: | | if then end-if

10: | | foreach

11: | | | if then () end-if

12: | | | foreach ()

13: | | | | if then

14: | | | | | NEW_CHOICE_NODE()

15: | | | | | TRACE() (())

16: | | | | | () , ()

17: | | | | else

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((())) then

19: | | | | | | CHOICE_NODE_FROM_SUCCESSOR_STATE((()))

20: | | | | | | () , () , () { }, { ()}
21: | | | | | else

22: | | | | | |
23: | | | | | end-if

24: | | | | end-if

25: | | | | { }

26: | | | | { }, {()}, { }
27: | | | end-foreach

28: | | end-foreach

29: | end-for

30: |

31: end-foreach

32: return 〈 () { } { } 〉

The ADD_NEXT_LEVEL method has 9 inputs (#1): is the MA-PDDL

description; is the actual game-graph (a set of vertices, , and a set of labeled

edges,); is the root node of ; is the actual set of choice-nodes; { }

and { } are actual information partitions and functions of agents respectively;

 is the latest state-level; { } is the set of sets of moves of

agents; and is the number of agents. First (#2) the next state-level is initialized

to an empty-set, and then it is gradually built in a foreach-loop (#3-31), which

goes through every node, and grows a sub-tree of moves

from it, every move of every agent, starting with agent until agent (#7-29).

The levels of sub-trees are called action-levels, and the choice nodes of an action-

level belong to the same information set (of the respective actor agent), since

agents act simultaneously in every instant and thus they cannot observe each

other’s moves. However each information set at state-levels (where agent acts)

consists of one choice node because of full-observability. The sub-tree built from

 in the for-loop (#7-29) has levels, level being part of
and level being part of the . The latter consists of choice

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 35 –

nodes that correspond to successor states of the environment, produced in every

possible way from the state corresponding to . Inside the for-loop a foreach-

loop (#10-28) goes through every choice node of action-level , and inside it a

further foreach-loop (#12-27) goes through every possible move () of

agent supposing that the previous agents chose action-combination

 (). () is initially empty. Further choice nodes of the game-tree are

updated with the move-path () which leads to them from .

If (#13-16), then the possible action-combination is not yet ready, so a new

choice node is created in action-level , and its trace, actor and move-set is

set. Otherwise, if (#18-24), then (()) is an -element action-

combination, which may have an executable subset in the state corresponding to

in light of the generated state-trajectory. This is checked by the

HAS_CONSISTENT_EXECUTABLE_SUBSET method (#18) in 5 steps: first (i) it

collects those actions from (()) into a set , which are potentially

executable in . A single-action is considered potentially executable in a state if

its pre-conditions are satisfied taking also Assumption 1 into account.

Assumption 1 (undefined effects). If the executability of a grounded action in a

state requires the concurrent execution (or no execution) of some actions, then if

any of those actions are not executed (or executed) concurrently with , then we

assume that still remains executable, but it will have no effects (empty effects).

Assumption 1 covers the case when an MA-PDDL action is defined to refer to an

action in its pre-conditions, but no effects are specified for the case, when that

reference is negated. I.e. potential executability of actions is independent from

concurrently executed actions in light of Assumption 1.

Next (ii) all single- and joint-actions are identified within . A joint-action within

 is a subset of , where all members either refer to at least one other member in

their pre-conditions or the conditions of their active conditional effects, or they are

referred to by at least one of the other members. Reference to actions may be

positive or negative, and the conditional effects are active in if their conditions

are satisfied in with actions in being executed. This produces an unambiguous

partition of . Next (iii) individually inconsistent or not executable elements are

removed from that partition. A single-action is individually consistent in if its

active conditions and effects are both consistent on their own in . A joint-action

is individually consistent in if its joint active conditions and joint active effects

are both consistent on their own in in case the actions within the given joint-

action are executed simultaneously. Interference of conditions and effects of

concurrent discrete actions is not considered. Individual executability requires

satisfaction of (joint) pre-conditions in .

Next (iv) elements with pairwise inconsistent joint-effects are removed from the

partition. Finally (v) the remaining elements are checked, whether their joint

execution is allowed by the hard state-trajectory constraints in . If yes, then

these actions form the consistent and executable subset of (()), i.e.

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 36 –

they can be executed, and so the HAS_CONSISTENT_EXECUTABLE_SUBSET

method returns true. Otherwise, if not, or if the executable subset is empty, then

the return-value is false. In case the return-value is true, a new choice node

corresponding to the state produced by the consistent and executable subset is

added to action-level (#19,20,25). Otherwise a choice node is

put into action-level (#5,22,25). In both cases and are updated

appropriately (#26) and action-level is added to the
(#30). This is repeated for every in (#3-31) before finishing.

3.2 Case of Partial-Observability

Now MA-PDDL is extended with partial-observability (cf. Appendix 1 and 3). In

case of partial-observability information sets at state-levels of the converted game

may not be singleton, since there may be state/action-trajectories, where the

observation-history (including the observation of actions) is the same for an agent,

and thus the choice-nodes corresponding to those trajectories should be members

of the same information set. Based on this Alg.1 needs to be extended as follows.

First the following 3 lines should be inserted between line #12 and #13 in Alg. 1.

13: foreach ,
14: | OBS_HIST() 〈 ()〉, () { }, { ()}
15: end-foreach

This foreach-loop initializes the observation-history of agent (for) to a

list including only its observations in , (), which is a set of grounded

observations and their value holding in . () is the information-set of agent

 in (even though agent 1 acts in), and is the information-partition at

state-level of agent . The ADD_NEXT_LEVEL method now has also { }

and { } among its inputs, and { }
 and { } among its outputs. Alg.2

is changed accordingly: first, manipulation of agent ’s information-partition, ,

in line #6 and #20 are removed together with the complete line #8. Then each

reference to any is replaced with () to keep track

of the possibly distinct sub-trees of each . Line #11 is

deleted, but the following line is added after line #6 to initialize the observation-

history and information-sets () of choice node (clone of).

7: | foreach , OBS_HIST() (), () { } end-foreach

To update the observation-histories of agents and to initialize their information

sets for a new choice node corresponding to a successor state, the next 5 lines

should be added after line #20 in the original pseudo-code of Alg.2.

20: | | | | | | foreach ,

21: | | | | | | | OBS_HIST() ⟨ () …

22: | | | | | | | OBS(((()))), …

23: | | | | | | | ()⟩, () { }
24: | | | | | | end-foreach

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 37 –

In line #22 produces a choice node corresponding to a state,

where progressive facts about consistent and executable actions of (())

are added to . They are identified as in HAS_CONSISTENT_EXECUTABLE_SUBSET.

Finally line #32 in Alg.2 is replaced with the following code-segment.

36: foreach

37: | if

38: | | foreach

39: | | |
 ()

40: | | | foreach
 , ()

 end-foreach

41: | | | {
}

42: | | end-foreach

43: | end-if

44: | foreach where

45: | | if OBS_HIST() OBS_HIST() then

46: | | | if then () () { }, () () { } end-if

47: | | | () () { }, () () { }
48: | | end-if

49: | end-foreach

50: |
51: | foreach

52: | | if then { ()} end-if

53: | | { ()}
54: | end-foreach

55: end-foreach

56: return 〈 () { } { } { } { } 〉

In the foreach-loop (#36-55), if (#37-43), then those th
 action-levels are

unified into an information-set of agent , where the root nodes belong to the

same information-set. is updated accordingly. in line #38 is received as

an input of ADD_NEXT_LEVEL. In lines (#44-49) choice nodes in the next state-

level corresponding to states with same observation-history are put in the same

information-set. Finally the information-partitions of all agents are finalized in the

next state-level (#50-54), and it is returned by the method (#56).

3.3 Case of Probabilistic Effects

In this section probabilistic elements are assumed to be added to MA-PDDL on

top of partial-observability (cf. Appendix 2-3), so the CONVERT method in Section

3.2 needs to be modified accordingly. In row (#4) the calculation of should be:

 (), since now a dedicated chance-node level is added after each

action-tree to represent all the possible probabilistic outcomes. Next, the

initialization of types-sets should be replaced with initialization of information-

partitions in row (#6). Then in row (#9) the initialization of the action-set

of agent 0 should be replaced with: () (), .

Here P_INITSTATES generates all the possible grounded initial states of the MA-

PDDL problem , corresponding to the finite set of type-combinations and

their respective probabilities forming the a priori probability distribution over .

Thus in row (#10) the initialization of is omitted, and row (#11) is replaced with:

11: () CHOICE_NODES_FROM_P_INITSTATES(), { } , ,

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 38 –

Here the set of choice nodes, , is formed from . An inverse function,

 is also returned for later use. The set of all nodes, edges and the initial state-

level is initialized. Next, row (#12) is deleted, and the next 4 rows before the

while-cycle are replaced with the following code-segment.

12: foreach
13: | () , () , () { }, {()}| ()

14: | foreach ,
15: | | OBS_HIST() 〈 ()〉, () { }
16: | end-foreach

17: end-foreach

18: ()
19: foreach ,
20: | foreach where

21: | | if OBS_HIST() OBS_HIST() then

22: | | | if then () () { }, () () { } end-if

23: | | | () () { }, () () { }
24: | | end-if

25: | end-foreach

26: | foreach

27: | | if then { ()} end-if
28: | | { ()}
29: | end-foreach

30: end-foreach

This initializes information-sets, partitions and observation-histories of all agents

at the initial state-level. Next, ADD_NEXT_LEVEL should include in its inputs

and outputs; the set of type-sets, { } , should be replaced with both in

returned by CONVERT and in the inputs of GET_METRIC_VALUES. Utilities

returned by this method should be of form , and the contents of

ADD_NEXT_LEVEL in Section 3.2 between rows (#12-30) should be replaced with:

12: | | | | if then

13: | | | | | NEW_CHOICE_NODE(), TRACE() (())

14: | | | | | () , () , {()}, { }
15: | | | | else

16: | | | | | NEW_CHOICE_NODE(), () , ()

17: | | | | | { }, { }, {()}

18: | | | | | if HAS_CONSISTENT_EXECUTABLE_SUBSET((())) then

19: | | | | | | () CHOICE_NODES_FROM_P_SUCC_STATES((()))

20: | | | | | | foreach ,

21: | | | | | | | () , () , () { }, {()}
22: | | | | | | | foreach ,

23: | | | | | | | | OBS_HIST() ⟨ () …

24: | | | | | | | | OBS(((()))), …

25: | | | | | | | | ()⟩, () { }
26: | | | | | | | end-foreach

27: | | | | | | end-foreach

28: | | | | | else

29: | | | | | | { }, () , {()}
30: | | | | | end-if

31: | | | | | ()

32: | | | | end-if

33: | | | | () () , ,

This includes management of chance nodes , added after each -long action-

combination (()) to represent possible probabilistic outcomes. The set

of choice nodes in the next state level corresponding to these outcomes, ,

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 39 –

connected to , is produced by CHOICE_NODES_FROM_P_SUCC_STATES. It

generates all possible successor states via all possible consistent and executable

action-subsets of (()) as described in the end of Section 3.1, except that

the consistency of (joint)actions depends on every variation of their effects.

The CONVERT method in Sections 3.1-3.3 is of constant-time complexity in the

number of possible state/action-trajectories within a finite horizon , however the

number of these trajectories is super-exponential in the number of agents., i.e.

optimization is needed. The following 4 steps reduce the redundancy of .

1. From top to bottom each edge of potentially not executable and no-op

actions should be deleted from together with their complete sub-graph.

2. If a chance node has only 1 outgoing edge, then it should be deleted, and its

parent action node should be connected directly to its child state node .

3. Starting from the last state-level the cloned nodes should be deleted

together with the edges from their parents.

4. If the last remaining outgoing edge of a node is being deleted, then the node

should be replaced with the end-vertex of that edge, if it exists. Otherwise, if

it is an action-node, it should be deleted with all edges from its parents.

3.4 Example

A one-card poker problem is formulated in MA-PDDL based on pp. 37-40 in [10].

It is then converted to an extensive-form game, which is solved, and the solution

is projected back to the MA-PDDL level. The example is best read and understood

in conjunction with the original definition of MA-PDDL in [2] and Appendix 1-3.

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 40 –

There are 2 agents, player1 and player2, playing a simple poker game. Before

the play, both put 1 coin in the pot. Then they both receive their cards. player1

receives a winning hand with a probability of ½, and then it either raise the bid (to

2 coins) or fold. If it folds (shows its cards), then if it has a winning hand, then it

wins the pot. Otherwise player2 wins. But if player1 raises, then player2 can

either meet this bid (also put 1 more coin in the pot) or pass. If it decides to pass,

then player1 wins the pot. But if player2 meets, then if player1 has a

winning hand, then player1 wins the pot. Otherwise player2 wins the pot.

Both agents try to maximize their profit (i.e. the difference of their income and

investment), but player2 is in a worse position, since it is unable to observe the

hand of player1. So player2 decides between meeting or passing by chance.

To solve this problem it is first converted to an extensive-form game. Since Poker

is non-cooperative game, a non-cooperative solution concept can be used, e.g.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 41 –

Perfect Bayesian Equilibrium [13], since the game is of incomplete information.

The horizon of the conversion is trivially . There are 2 possible initial states

depending on whether winning-hand-player1 is true with probability ½. A

chance node, , is created with 2 edges to . Every action-combination

is considered for steps, and since both decentralized agents have 3 actions

(including no-op), there are 9 combinations, so a resulting game-graph with

423 nodes emerges, which can be reduced to 11 nodes by using the optimization

steps at the end of Section 3.3 (see. Fig. 1). Finding the PBE of this game leads to

a unique mixed NE, according to which player1 should raise if it has a winning

hand, otherwise it should fold with probability
2
/3 or raise (bluff) with probability

1
/3, while player2 should meet with probability

2
/3 or pass with probability

1
/3.

This is a rational joint-solution of the above non-cooperative MAP problem.

Figure 1

Extensive-form of the one-card poker problem (as shown also in Fig. 2.2 on p. 40 in [10])

The above (reduced) game may seem small, but this is only due to the simplicity

of the example. More complex MAP problems can induce much larger games,

which may need reduction or solution approximation [9]. Furthermore, the

example given was non-cooperative, but MA-PDDL can also describe inherently

cooperative situations, e.g. cf. the example in [2], where the only solution is for

the self-interested agents to cooperate to achieve their common goal. Thus beyond

using cooperative solution concepts, cooperation can be achieved even that way.

Conclusions

Algorithms for converting fully- and partially-observable probabilistic MA-PDDL

descriptions to extensive-form games were proposed in order to solve multi-agent

planning problems in general. Partial-observability and probabilistic effects were

introduced as separate, additional extensions to MA-PDDL. Depending on the

multi-agent planning problem at hand and the solution concepts used to solve the

resulting game, both cooperative and non-cooperative behavior can be achieved.

Limitations include the discrete nature of converted descriptions, and that each

agent needs to execute exactly one action at a time. In the future this could be

extended to durative cases without the limit on the number of concurrent actions.

Acknowledgement

This work was partially supported by the ARTEMIS JU and the Hungarian

National Development Agency (NFÜ) in frame of the R3-COP (Robust & Safe

Mobile Co-operative Systems) project.

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 42 –

References

[1] M. de Weerdt, B. Clement: Introduction to Planning in Multiagent Systems,

Multiagent Grid Systems, 5(4):345-355, 2009

[2] D. L. Kovacs: A Multi-Agent Extension of PDDL3.1, Proceedings of the

3
rd

 Workshop on the International Planning Competition (IPC), ICAPS-

2012, Atibaia, Brazil, 25-29 June 2012, pp. 19-27

[3] J. von Neumann, O. Morgenstern: Theory of Games and Economic

Behavior, Princeton, 1944

[4] H. W. Kuhn: Extensive Games and the Problem of Information, in: H. W.

Kuhn, A. W. Tucker, eds., Contributions to the Theory of Games, Vol. 2,

Princeton University Press, Princeton, 1953, pp. 193-216

[5] D. McDermott et al.: PDDL---The Planning Domain Definition Language,

Tech.Rep., TR98003/DCS TR1165, Yale Center for CVC, NH, CT, 1998

[6] M. Ghallab, D. S. Nau, and P. Traverso: Automated Planning: Theory and

Practice, Morgan Kaufmann, 2004

[7] S. J. Russell, P. Norvig: Artificial Intelligence: A Modern Approach (3
rd

edition) Prentice Hall, 2010

[8] T. Bylander: Complexity Results for Planning, Proc. of 12
th

 International

Joint Conference on Artificial Intelligence (IJCAI 91), Sydney, New South

Wales, Australia, 24-30 August 1991, pp. 274-279

[9] A. Gilpin: Algorithms for Abstracting and Solving Imperfect Information

Games, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, 2009

[10] R. B. Myerson: Game Theory: Analysis of Conflict, Harvard Univ., 1997

[11] J. F. Nash: Non-Cooperative Games, Annals of Maths, 54:286-295, 1951

[12] R. Selten: Reexamination of the Perfectness Concept for Equilibrium Points

in Extensive Games, Int. Journal of Game Theory, 4(1):25-55, 1975

[13] D. Fudenberg, J. Tirole: Perfect Bayesian Equilibrium and Sequential

Equilibrium, Journal of Economic Theory, 53:236-260, 1991

[14] M. Helmert: Changes in PDDL 3.1, Unpublished Summary from the IPC-

2008 Website, 2008

[15] D. L. Kovacs: BNF Definition of PDDL3.1, Unpublished Manuscript from

the IPC-2011 Website, 2011

[16] J. C. Harsanyi: Games with Incomplete Information Played by Bayesian

Players, Part I-III., Management Science, 14(3):159-182, 14(5):320-334,

14(7):486-502, 1967-1968

[17] M. Fox, D. Long: Modelling Mixed Discrete-Continuous Domains for

Planning, Journal of Artificial Intelligence Research, 27:235-297, 2006

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 43 –

[18] F. Müller, S. Biundo: HTN-Style Planning in Relational POMDPs Using

First-Order FSCs, Proc. of 34
th

 Annual German Conference on Artificial

Intelligence (KI 2011), Berlin, Germany, 4-7 October 2011, pp. 216-227

[19] H. L. S. Younes, M. L. Littman: PPDDL 1.0: an Extension to PDDL for

Expressing Planning Domains with Probabilistic Effects, Techical Report,

CMU-CS-04-167, Carnegie Mellon University, Pittsburgh, 2004

[20] F. Teichteil-Königsbuch: Extending PPDDL1.0 to Model Hybrid Markov

Decision Processes, Proc. of Workshop on A Reality Check for Plan. and

Sched. Under Uncert., ICAPS-08, Sydney, Australia, 15 September 2008

[21] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein: The

Complexity of Decentralized Control of Markov Decision Processes,

Mathematics of Operations Research, 27(4):819-840, 2002

Appendix 1. Extending MA-PDDL with partial-observability

Appendix 1-3 is best read in conjunction with the BNF (Backus-Naur Form)

grammar of MA-PDDL [2] and PDDL3.1 [15]. A new requirement is added to

MA-PDDL, :partial-observability. To capture partial-observability, the

addition of the following 6 rules is proposed to the BNF of MA-PDDL.

The above extension has the same semantics as events proposed in [17]. A

grounded observation holds in states where its conditions are satisfied, but it can’t

be referred to in conditions or effects of actions or anywhere else. Observations

can be used solely by the planners and/or incorporated in conditional plans. For

the sake of convenience the following 5 rules are also added to the grammar.

The above 5 rules allow the declaration of full-observability of individual

Boolean- and numeric-fluents. An fo atom can be placed as the first argument of

respective predicate- or function-definitions. The 1
st
 rule for <fo> is covers the

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 44 –

single-agent case, but if it is used in the multi-agent case, then every agent(object)

can observe the corresponding fluent (always, every value). The other two rules

for <fo> let us specify the type (or even a union of types) of those agents, which

always observe every value. If the type is not given, it is assumed to be object.

According to our current knowledge, the only work in literature addressing the

addition of partial-observability to PDDL is [18]. It adds observations to the

probabilistic extension of PDDL (PPDDL1.0) [19] via the addition of observation-

predicates that can be referred to in separate observation-effects of actions.

Although this concept is simple, it is not clear enough semantically. The partial-

observability extension of MA-PDDL proposed in this paper aims to clarify that.

Appendix 2. Further extending MA-PDDL with probabilistic-effects

Now probabilistic-effects are added to MA-PDDL beyond partial-observability

based on PPDDL1.0 [19] and its extension to probability-distributions [20]. First

the BNF of the effects of discrete actions should be modified to the following.

PPDDL1.0 [19] is different compared to PDDL3.1 [15] in that it allows when-

statements to be nested directly into each other. This is the only significant

difference. This allows for conditional probabilistic effects. Beyond this [20] adds

distribution-effects, which are also included above in a bit optimized form. They

are introduced in the Appendix of [20]. The difference here is that they are

parametric (thus grounded or lifted). E.g. the following distributions can be used.

PPDDL1.0 also introduced :rewards in form of reward-fluents which are not

part of the state. Moreover, in PPDDL1.0 <probability> was only <number>,

but in [20] it could be already a function-expression. We used the latter. A further

modification of the MA-PDDL grammar based on [19,20] is the following.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 45 –

Similarly to [19] reward-fluents are also added to the language in form of the

below 2 rules. The second rule allows reward-fluents to be defined for specific

agents (refered to as constants, variables or object-fluents) in the multi-agent case.

The first rule can be used only in the single-agent case.

A novelty in [20] was the addition of probability-distributions to [19]. A key of

this addition was the introduction of random variates, which are eventually the

actual random values of the distributions, that can be referred in functional-

expressions in the below form, after adding the below 2 rules to the grammar.

PPDDL1.0 and its extension in [20] were discrete, but their ideas can be applied in

a straightforward manner to the durative case by adding the following 10 rules.

Probabilistic- and distribution-effects can now define the value of observations

with the addition of the below 8 rules.

In case of continuous-time probabilities are normalized in runtime to guarantee

that they comply with the elementary properties of probability distributions.

D. L. Kovács et al. Converting MA-PDDL to Extensive Form Games

 – 46 –

Above the modified rule for describing problems is shown. The only change

beyond the previous changes is the addition of goal-rewards, similarly to [19].

If the first rule is used in case of :multi-agent, then it refers to all agents.

Inheritance/polymorphism of goal-rewards is similar to goals and metric in [2].

Similarly to [19] the above 3 rules are added. The 3
rd

 rule allows the goal-

achieved fluent of a specific agent in the metric of any agent. If the 2
nd

 rule is

used in MA-case then it is iff the goal of every agent was achieved at least once.

The following collection of rules is based on [20], and changes the hitherto

description of initial states mainly to optionally include uncertainty.

Acta Polytechnica Hungarica Vol. 10, No. 8, 2013

 – 47 –

Appendix 3. Summary of all additional new MA-PDDL requirements

 :partial-observability Allows observations in the domain

description. It is compatible with multiple agents and probabilistic effects.

 :probabilistic-effects Allows discrete probabilistic elements

in the effects of durative and non-durative actions and in initial states.

 :distribution-effects Allows probability distributions in

probabilistic effects of durative and non-durative actions and in initial states.

 :rewards Allows reward fluents in effects of durative and non-

durative actions and in the metric. It is compatible with :multi-agent.

 :mdp = :probabilistic-effects + :rewards

 :pomdp = :mdp + :partial-observability

 :dec-mdp = :mdp + :multi-agent

 :dec-pomdp = :pomdp + :multi-agent

I.e. MA-PDDL with partial-observability+probabilistic-effects can describe DEC-

POMDPs (DECentralized Partially Observable Markov Decision Processes) [21].

