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Abstract: The paper presents a new methodology for the lateral control of autonomous 
vehicles. The proposed cascade structure realizes two main components: a model 
predictive control (MPC)-based outer loop and an internal model control (IMC) based 
inner loop. In the outer loop, a unique model predictive control is introduced that 
eliminates the tuning parameters of the system by introducing a hierarchical optimization 
system. Each cost function of the hierarchical optimization focuses on minimizing a 
physical phenomenon. The inner loop handles system dynamics and nonlinearities, 
providing a robust system against external disturbances and parameter changes. After 
presenting the proposed structure, proper comparisons were performed: firstly, to see the 
advantages of the tuning parameter-free method and secondly, to highlight the benefits of 
the IMC-based method. Finally, the whole system is compared to a reference controller, 
available in MatLab. 
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1 Introduction 

The lateral control problem of vehicles is one of the main emphasized questions of 
autonomous vehicles. One of the biggest goals of autonomous vehicles is to 
increase safety on roads. That means the vehicle control methods should be 
prepared to handle unexpected or unmeasured effects such as external 
disturbances, parameter changes, and suddenly changing environments. Therefore, 
the nonlinearities and the dynamics of the vehicle should be considered, giving a 
solution that is universal under all circumstances. It is supposed that the path is 
given as a reference, e.g., calculated by a receding horizon control algorithm [1] or 
a dynamic optimal control problem [2], so the path planning part of the problem is 
not included in this paper. 
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Several solutions handle the nonlinearities, parameter uncertainties, and dynamics 
of the vehicle, even using machine learning or fuzzy techniques [3, 4]. Adaptive 
control methods manage model imperfections using the multivariable fixed point 
iteration method [5]. An iterative feedback tuning controller can handle the strong 
nonlinearities of systems [6]. Integral backstepping control realizes a feedback 
control rule for the problem [7], ensuring stability based on the Lyapunov theory. 
Two parameters are weighting the lateral position and the orientation errors for the 
feedback loop that should be tuned for the controller. The feedback linearization 
method leads to a chained system that can be handled by a linear matrix 
inequalities problem using the peak-to-peak performance approach [8]. However, 
this method includes a trial-and-error-based parameter tuning method, which 
provides knowledge of the behavior of the system only in the tested cases. 
Another feedback solution, the potential-field-based method, was introduced in 
[9], but only a proportional-derivative controller is tuned for the feedback control. 
This method also lacks the usage of existing knowledge of the model.  
The flatness-based method deals with the dynamics of the vehicle, but only linear 
tire models are included [10, 11]. The proper knowledge of the nominal model 
parameters is crucial in this method, and a tuning process should also be 
performed on the gains. The main disadvantage of the different feedback-based 
methods [8] is that system noises can result in unnecessary control actions 
compared to methods that consider future references. 

The feedforward-feedback method was introduced in [13], which is a virtual 
potential field-based solution. However, the steering control signal is determined 
from three independent signals (yaw damping, lane-keeping, and feedforward 
branch), which are hard to handle if the system reaches its rate limit or final value 
limit. A path planning and tracking algorithm realizes both feedforward and 
feedback parts of the control, but separately. The physical limitations are handled 
by the curve-based feedback loop [14]. 

The model predictive controller (MPC) is a method that integrates the feedforward 
and feedback loops into one system. This method can determine the control signal 
based on optimization, using the existing knowledge about the system: its model 
with accurate complexity (including nonlinearities and dynamics) and its 
parameters [15]. The methods presented in [2] and [16] use linearization around 
the prescribed nominal trajectory to gain a real-time solvable problem. However, 
this method operates with more than a dozen of parameters, and the control 
structure excludes direct feedback, so the reaction of the controller to sudden 
disturbances or changes could be improved. The parameter changes can be 
handled with an adaptive MPC [17], but the adaptation rule presupposes that 
specific parameters are measured. The MPC method can be formulated based on 
the input-output variables and internal states such as yaw-rate [18]. The advantage 
of the second approach is that the behavior of the vehicle can be controlled 
directly, concerning the states, despite the indirect methods. 
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The main contributions of this paper include a methodology that can eliminate the 
intuitively tuned parameters from MPC controllers, providing non-specific control 
rules. The optimization is performed based on physical phenomena instead of 
summing up different expressions with weighting coefficients in the cost function. 
The proposed algorithm includes a novel hierarchization method that ensures 
feasibility for the parameter-free approach. This method is placed in a cascade 
control structure [19, 20], formulating the outer loop. The inner loop handles the 
dynamics and the nonlinearities of the system, providing robustness against 
external disturbances and parameter changes. The proposed control approach is 
compared with the classical MPC methods to see its advantages. The parameter-
free method is examined in the simulation, comparing the outer loop. Then, the 
inner loop is compared to see the performance of the IMC structure. The whole 
structure was compared to the lane-keeping assist (LKA) reference controller 
available in MATLAB. 

In the following, in Section 2, the system modeling approaches are detailed. After, 
Section 3 introduces the solution of the proposed structure for dynamics handling 
together with the custom solution. The classical and the proposed model 
predictive approaches are detailed in Section 4. The controllers developed for the 
comparison-based evaluation are introduced in Section 5. The proposed and the 
reference controllers are compared and evaluated in simulation, and the results are 
written in Section 6. Finally, the conclusions are gathered in Section 7. 

2 Modeling Considerations for Lateral Vehicle 
Control 

In this section, the modeling considerations are presented. The proposed controller 
uses the kinematic model in the outer and the dynamic model in the inner loop. 
The simulation framework uses the nonlinear dynamic bicycle model. 

2.1 Kinematic Model and the Frenet Frame 

The kinematic unicycle model can determine the planar behavior of the vehicle. 
This model is described in the Frenet frame, as can be seen in Fig. 1. This frame 
defines the states of the vehicle in a path-based coordinate system with three 
parameters: the distance from the reference path (d), the orientation compared to 
the orientation of the reference path (ψp), and the distance taken along the 
reference path (s). The kinematic behavior of the vehicle can be described by a 
nonlinear state equation system [21]: 

 (1) 
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where ux is the longitudinal speed, r is the yaw-rate (r=ψ, where ψ is the 
orientation of the vehicle), and C(s) is the curvature of the path. 

 

Figure 1 

The unicycle in the Frenet frame 

It is assumed that the vehicle goes with constant velocity to make the latter 
controller comparison methods clearer by omitting the longitudinal dynamics. 
Also, the small-angle assumptions and the first-order Taylor-series approximation 
can be used on this model [20]. The derivative of the yaw-rate  is 
chosen to be the control signal since it describes the control effort performed 
during the maneuver. By using ρ, the linear state equation can be derived for the 
Frenet frame model: 

 (2) 

This linear equation system can be used for state prediction. The future state 
values of the model can be determined by using a pre-known input vector and the 
initial state values [20]. 

2.2 Dynamic Bicycle Model 

The dynamic nonlinear bicycle model is needed to have proper knowledge of the 
behavior of the vehicle. This model can be seen in Fig. 2. The state equations of 
this model can be derived by writing up the forces and moments balance on the 
center of the gravity (COG): 

 (3) 
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where uy is the lateral speed, Fyi, i={F, R} is the lateral tire force for the front (F), 
and the rear (R) wheels, m is the mass of the vehicle, Iz is the inertia around axis z, 
a is the distance between the front axle and the COG, b is the distance between the 
rear axle and the COG, and δ is the road wheel angle. 

 

Figure 2 

The bicycle model of the vehicle 

The nonlinear tire model is created by a two-parameter approximation [22] of the 
Pacejka tire model [23] to determine the lateral tire forces: 

  (4) 

where clat is the shape factor, and blat is the stiffness factor, αi is the tire sideslip, 
and Fzi is the vertical force, calculated from the geometry of the model: 

  (5) 

The tire sideslips can be determined based on geometrical considerations: 

 (6) 

It is common to handle the vehicle with the linearized model, which can be gained 
by the small angle assumptions and substituting the tire model to a linear one. This 
linear tire model can be described by only one parameter, the cornering stiffness 
Fyi = CiFzi, i={F, R} [17]. This way, the linearized dynamic model can be derived 
from Eq. 3: 

 

 (7) 

The nominal values of the vehicle model used in the simulation can be found in 
Table 1, together with the parameter names and units. 
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3 Handling Model Dynamics 

Two ways of handling the dynamics of the system are presented in this paper.  
The widespread method among model predictive controls is that the model with 
its dynamics is included in the prediction. It means that the linearized dynamic 
model should have the problem manageable with the convex optimization 
methods, or global nonlinear solvers should be included to handle the model 
without linearization. The other way is that the dynamics are not included in the 
prediction, only the kinematics, creating a cascade structure. In this structure, 
there is an outer loop for handling the predictive control with a kinematic 
approach (considering limitations derived from the system dynamics) and an inner 
loop driving the dynamics of the system. 

Table 1 
Parameters of the vehicle 

Symbol Name Value 

m Vehicle mass 1523 kg 

Iz Inertia around z-axis 2330 kgm2 

a Distance between COG and front axle 1.5 m 

b Distance between COG and rear axle 1.2 m 

clat Shape factor 1.472 

blat Stiffness factor 10.87 

|δ|max Maximum of road wheel angle 1.05 rad 

|dδ/dt|max Maximum steepness of road wheel angle  1.35 rad/sec 

3.1 Linearized Dynamic Model 

The first presented method handles the dynamics by linearization. The linearized 
dynamic model can be written up in the Frenet frame, so the steering wheel angle 
can be determined directly from this model using an MPC formulation. The state 
equations are gained from the linearized Frenet frame (Eq. 2) and linearized 
dynamic model of Eq. 7 using the state vector xd = [d, ψp, uy, r]: 

 (8) 

The control structure of the MPC using the linearized dynamic model can be seen 
in Fig. 3. The localization block is responsible for determining the Frenet frame 
state variables and the curvature of the reference path for the prediction and 
control horizon. The dynamic MPC uses the model described in Eq. 8 for 
determining the requested control signal (δc). This MPC can be both the 
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parameter-free and the classical method in this approach (as these two types are 
detailed later in Section 4. It should be noted that in this structure, the errors are 
not fed back directly. Only the prediction-based part compensates for them, which 
naturally introduces a delay in the reaction. 

 

Figure 3 

Control structure using the linearized dynamic model 

3.2 Nonlinear Dynamic Model-based Feedback Structure 

In this section, a different dynamics model handling method is proposed. This 
method handles the problem in a cascade structure, as can be seen in Fig. 4.  
The outer loop is a model predictive method using the linearized kinematic model 
(Eq. 2), and the inner loop realizes an internal model control (IMC) structure.  
The kinematic-based MPC does not determine the required road wheel angle but 
determines the required ρ, which is the most important state variable of the system 
concerning the lateral behavior. This MPC can also use the parameter-free 
approach or the classical method detailed later. It should be noted that proper 
limitations should be used in the outer loop to ensure feasibility in this cascade 
structure. 

 

Figure 4 

 Control structure using kinematic and dynamic models in a cascade structure 

The inner IMC structure can be seen in Fig. 5. A realizable inverse is placed on 
the feedforward branch that can determine the required road wheel angle (RWA). 
Here, the physical limitations (rate limit and final value limit) of the given system 
can be enforced. The inverse of the model is calculated based on the nonlinear 
model of the vehicle (Eq. 3) by solving the nonlinear equation for ρref, using 
numerical approximation. The calculated RWA is then actuated in the vehicle and 
inputted to a model connected parallel with the plant. Then, the difference 
between the model and the plant is fed back through an autoregressive-like filter. 
This filter is responsible for noise suppression, using the following equation: 
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 (9) 

where af is the filter parameter, k is the discrete-time step-index, ρ is the value 
measured on the vehicle, and ρm is the value calculated by the model. The whole 
feedback loop is responsible for compensating the external noises and the effect of 
parameter mismatch. The presented structure exceeds the classical MPC method 
with a feedback loop. This system can react faster to the disturbances since the 
most critical internal state parameter is controlled in the inner loop. Additionally, 
this method can be extended to handle multi-actuator systems [19]. 

 

Figure 5 

The inner loop realizing IMC 

4 Model Predictive Control 

The model predictive control method is an advanced technique widely used in 
various fields of optimal control problems [24]. The Model Predictive Control 
approach mentioned above will be detailed in this section by presenting the 
classical MPC method. The paper focuses on the main disadvantage of the 
classical MPC methods: they have cost functions with mixing values by tuning 
weights. The proposed parameter-free, hierarchical method that answers this 
problem will be detailed in this section. 

4.1 Classical Model Predictive Control 

Model predictive control is the most common approach among predictive 
controllers. The most obvious use case of predictive controllers is the discrete-
time version with finite prediction and control horizon. For the sake of simplicity, 
the prediction and the control horizons are defined to be equal. 

In general, the cost functions of predictive controllers include two parts.  
The control signals and the reference tracking error are included in these cost 
functions [24]. Defining N as the length of the horizon, Nx as the number of the 
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states, Nu as the number of inputs, Ny as the number of outputs, x=[x1,x2,…,xNx] as 
the state vector, u=[u1,u2,…,uNu] as the input vector, and y=[y1,y2,…,yNy] as the 
output vector, the general MPC problem formulation can be given. Minimize: 

 (10) 

where ej(k) is the difference between the jth reference and the predicted state value 
at the kth time step (ej(k)=yj(k)-yj

ref(k)), and Wej is the corresponding weight. For 
the control signal, Δuj(k)2 corresponds to the control effort performed at the jth 
input at the kth time step, and Wuj(k) is the corresponding weight. 

The minimization should be performed subject to constraints coming from the 
state equations of the controlled system: 

 

 (11) 

and to the constraints derived from the limitations of the states, the inputs, and the 
outputs. 

It can be seen that this cost function formulation has Nꞏ(Ny+Nu) weighting 
parameters. These weights provide the possibility for the designers of the 
controller to determine different weighting strategies in the cost function.  
The simplest solution is when the weights are constant for the whole horizon for 
each input or output. In some cases, the cost concerning the final state is 
highlighted compared to the running cost. 

The existence of this amount of tuning parameters is twofold. On the one hand, 
the system performance can be maximized in predefined specific scenarios by 
finding the proper parameter tuning. On the other hand, the cost function 
including these parameters is a mixture of different values (considering physical 
meaning) on a different scale. Even if these values are normalized in some 
approaches, it is hard to interpret the real meaning of the cost function in the 
control environment, and it is not defined by physical law. However, there is no 
proper method given to find this parameter tuning. Additionally, there is no 
insurance that using the found parameter set, the performance of the system will 
remain if the test scenario or the system parameters change. 

Linear state equations are created in Eq. 11. In our case, the linearized kinematic 
or the dynamic model (Eqs. 2 and 8) can be used for the state prediction.  
The future states and outputs can be determined in a closed form, using the linear 
equations if the future inputs are known. The linearized problem results in convex 
quadratic programming (QP) optimization problem. The problem complexity is 
crucial concerning the real-time applicability of the control method [25]. Due to 
the improvement of the available computing capacities, this problem can be 
solved in real-time, so the MPC method has become a widespread solution [24]. 
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4.2 Parameter-free Model Predictive Control 

The proposed method eliminates the weights and creates a cost function that has a 
physical interpretation. This is reached by decomposing the mixed cost function 
presented in Eq. 10. For the actual lateral control problem, the cost function 
should be used with the following variables: 

 (12) 

According to the approach of a chauffeur, the path following is performed by 
minimizing the lateral and orientation error at a certain looking ahead distance.  
In the ideal case, these errors can be driven to zero during the control horizon so 
that these parts can be transformed to equality constraints. Finally, it results in that 
the remaining part includes only the control effort that was requested at the control 
input. 

If the case is not ideal, this transformation of the cost function may cause 
infeasibility. A hierarchic solver method is introduced in order to solve this 
feasibility problem. This method drives the system step-by-step towards 
feasibility. Each equality constraint is first introduced as a cost function to 
minimize the distance from reaching equality. If equality is reached, it is 
introduced as a constraint while the following constraint is transformed into a cost 
function. After introducing all constraints that continuously maintain feasibility, 
the original cost function minimizing the control effort can be used in the 
optimization. 

The outputs of the lateral control problem are formulating an integrator chain 
since the lateral error is connected to orientation via integration, as can be seen in 
Eq. 2. This chain determines the order of the introduction of the constraints: 
firstly, the orientation constraint is satisfied, then the position, to prevent 
overshoot. 

In the following, the optimization problems of the sequential algorithm are given 
for the kinematic model defined in Eq. 2. Using the notations ρ=[ρ1,ρ2,…,ρN], and 
the state vector x=[r,d,ψp], the first optimization can be formulated: 

 

 
,
 
 (13) 

where the limitations are considered for the yaw rate and its derivative, coming 
from the physics of the vehicle, and the state values are calculated in a closed 
form using the measured states and the linear models presented in section 2. After 
ensuring the orientational constraint, the lateral error is minimized by replacing 
the cost function with |dN(ρ)| and adding an equality constraint ψpN(ρ)=0 to 
equation (13). Finally, in the third optimization, the control effort is minimized, 
transforming the last goal into a constraint: 



Acta Polytechnica Hungarica Vol. 20, No. 2, 2023 

 – 195 –

  

 

 

 

.                  (14) 

In this hierarchical method, the algorithm performs the following optimization 
only if the minimization reaches zero, showing that the constraint is feasible. After 
the optimization, the first element of the optimal control vector is actuated, 
realizing the receding horizon approach. 

This way, the weights are eliminated, but on the other hand, instead of one, three 
optimizations should be performed to ensure feasibility. Since the model is stable 
and the problem is feasible, the controller is stable [24]. However, using the 
linearized model, the optimization problems are created to be Convex problems, 
so they have unique solutions and can be solved in real-time [26]. 

5 MPC Controllers for Comparison 

Firstly, the outer and the inner loop of the proposed method will be examined 
separately, and then the whole structure will be compared to a nominal solution.  
In this section, the three MPC models used as a base for the proper comparison are 
presented to support the presented cost function and dynamics handling approach. 

5.1 Kinematic MPC with Mixed Cost 

In this case, the classical MPC with mixed cost function uses the kinematic 
bicycle model presented in Eq. 2, within the structure presented in Fig. 4. This 
controller is the reference for the outer loop comparison, denoted as MIXIMC. 
The optimization problem is formulated as follows: 

 

 

, (15) 

where Kd Kψp, and Kρ are the weights for the lateral error, orientation error, and 
yaw acceleration, respectively. 
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In this case, it should be noted that these weights are considered constant over the 
control horizon. However, in some cases, better performance can be reached by 
having weights that are changing over the horizon. It results that the cost function 
of the optimization problem in Eq. 14 may contain 3N parameters. 

5.2 Dynamic MPC with Parameter-Free Cost Function 

The second comparison focuses on the presented inner loop approach, the IMC 
structure. The reference controller for this comparison is created based on the 
linear dynamics model described in Section 3.1, using the structure presented in 
Fig. 3. This controller is denoted as PFD. Since the model includes the road wheel 
angle, it serves as an input for the system. The optimization problem is formulated 
similarly to the sequential, hierarchical approach presented in Section 4.2. 

Using the dynamic model, the MPC handles the system dynamics and determines 
the control signal, using the parameter-free approach, but without having feedback 
for the internal states of the system. The cost function is calculated similarly to the 
kinematic MPC, based on ρ for a proper comparison. The only difference is that 
the linear dynamic model is used instead of the kinematic model. However, this 
approach does not consider the nonlinearities in the system and does not have 
direct feedback for the dynamics behavior. 

5.3 LKA Subsystem 

The publicly available most complex and advanced controller is chosen for the 
complete comparison of the system. The lane-keeping assist (LKA) subsystem 
[27] includes the linearized dynamic model (Eq. 8) expanded with state estimation 
for handling the input-output disturbances. 

This is an adaptive model predictive control structure, implemented using the 
Frenet-frame. The MPC formulation of this system is quite similar to the one 
presented in the previous Section. The disturbance rejection is realized by 
estimating the plant model and the controller states based on a disturbance model 
and the measurement noise model, using a linear-time-varying Kalman filter 
(LTVKF). The state estimation introduces further tuning parameters since two 
gain matrices are needed for its algorithm. Additionally, this system uses scale 
factors that the controller designer should also specify. 

In this paper, the default values of this subsystem were used (estimator gains, 
scale factors, etc.). Only the cost function weights were tuned during the 
comparison method. 
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6 Simulation Results 

In this section, the simulation results will be presented. Firstly, the simulation 
environment and the evaluation methods are detailed, followed by the three 
comparisons for the inner loop, the outer loop, and the whole proposed structure. 

6.1 Simulation Environment 

The simulation environment was implemented in MatLab & Simulink. The plant 
was modeled using the nonlinear dynamic bicycle model using the nonlinear tire 
model, presented in Section 2.2, using the nominal parameters (Table 1).  
The simulation run with fixed step size (dt = 0.002 s), using the ode4 solver.  
The optimization problems were implemented as MatLab function blocks, using 
the Optimization Toolbox of MatLab. The controller runs on a lower frequency 
with fc =50 [Hz]. The horizon was set to be N = 15 (similar to the LKA reference 
controller), and the discrete step of the linear system prediction was set to be  
dtp = 0.05 [s]. The filter parameter (αf) was 0.3, which is sufficient against the 
numerical errors of the simulation. 

Due to the structure of the simulation software, it is easy to modify the parameters 
of the plant, emulating the mismatch between the controller model and the plant. 
Also, external disturbances can be added to the model for testing the disturbance 
rejection performance of the controller. 

6.2 Evaluation Methods 

In this paper, two types of evaluation methods were used to compare. Scalar-based 
evaluation gives a scalar number as a result of a successful measurement.  
The scenario-based comparison is performed based on a higher level overlook on 
the system, where a single scalar value is not enough to characterize the system. 
The following integral and maximal values were considered for the scalar 
evaluation of the presented controllers: 

• Max error: emax = max|e(k)|, e={d,Ψp}, calculating the maximum absolute 
value of the error. The errors are the lateral and orientation deviation at the 
kth time step. 

• Error integral: eint = dt Σe2(k), e={d,Ψp}, the discrete-time integral of the 
squared value of the error. 

• Max control value: umax = max|u(k)|, the maximal value of the actual 
control input of the system (that is usually included in the mixed cost 
function or is at the end of the hierarchic solution). 

• Control integral: uint  = dt Σu2(k), the discrete-time integral of the squared 
value of the control input. 
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The scenario-based comparison is based on the examination of the behavior of the 
vehicle during different predefined test scenarios [28]. Concerning the lateral 
control, the overshooting and the setting ability of the reference tracking were 
investigated. Three test cases were defined for examining the controllers: straight-
line following with initial lateral error (dy), straight-line following with initial 
orientation error (dψ), and the lane change maneuver (LC). 

These tests can give a picture of the controller upon its state error rejection and 
path-following performance. Also, these tests were expanded with further 
examinations with disturbance rejection and handling the plant parameter changes. 

6.3 Comparison of the Cost Functions 

Firstly, the outer loops were compared, implementing the proposed IMC-based 
inner loop for the dynamics handling as it is described in Section 3.1. The tuning 
parameter-free (PF) method was compared with the MPC with the mixed cost 
function-based (MIX) method to examine the outer loop. The three parameters of 
the MIX controller were tuned so that during the lane-change maneuver, it reaches 
the same control effort as the PF has, resulting in the parameter tuning: Kd = 6,  
Kp  =0.5, Kψ =10. The performed maneuver can be seen in Fig. 6. 

 

Figure 6 

The trajectories of the Parameter-free and the Mixed MPC methods performing the lane change 

maneuver while using the same lateral control effort 

Another scenario was performed, using the same parameter set tuned for the lane 
change to see the sensitivity of the parameter tuning. The results of the lateral 
error test (dy) can be seen in Fig. 7. 
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Figure 7 

Comparison of lateral error elimination with the parameter set tuned for the lane change maneuver 

Table 2 

Maneuver evaluation of controllers 

Man. Cont.  uint  umax dint dmax Ψpint Ψpmax 

LC 
PF 1.263 1.271 2.10ꞏ10-2 1.43ꞏ10-1 7.76ꞏ10-4 2.84ꞏ10-2 

MIX 1.251 1.262 1.26ꞏ10-2 1.07ꞏ10-1 8.55ꞏ10-4 2.94ꞏ10-2 

dy 
PF 2.740 2.108 24.15 5 0.132 0.350 

MIX 7.437 2.220 20.51 5 0.288 0.571 

Both maneuvers were evaluated, and the results can be seen in Table 2. It can be 
seen that in the LC maneuver, as it was the goal, both controllers perform with 
almost identical control effort (uint). Also, in the first test case, the MIX controller 
performs better in all the evaluations corresponding to the control input and the 
lateral error. The PF controller beats only the orientation error. There is a big 
difference between the controllers in the second test case. The MIX controller has 
an aperiodic setting in the position and the orientation; therefore, the results of the 
evaluations are significantly worse. The parameter-free method is now shown to 
be independent of the test scenario, providing an aperiodic setting in all the test 
cases. This stability and reliability are a great advantage among predictive 
controllers, even when the MIX-based approach performs better concerning the 
errors or the control signal. 

6.4 Comparison of Dynamics Handling 

In this section, the dynamics handling solutions, presented in Section 3: the 
proposed tuning parameter-free (PF) method with IMC in the inner loop is 
compared with the method that uses the linearized dynamic model with the PF 
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method in the optimization problem formulation. Therefore, only the dynamics 
handling method differs between the two approaches. 

The first test case was the orientation error rejection (dψ) under low-mu 
conditions. The parameters of the test case were: µ=0.5, ψ0 = π/6 [rad], and  
ux=10 [m/s] The results of this test can be seen in Fig. 8. 

 

Figure 8 

Comparison of the Dynamic model-based MPC and the kinematic-IMC-based controllers in low-mu 

situation 

The IMC-based controller can handle the nonlinearities of the bicycle model 
successfully, even if the vehicle to road coefficient changes. This induces that at 
steering movements with high amplitude, the vehicle gets closer to its limits.  
The linearized dynamic model-based method controller results in a periodic 
setting in the errors. However, the IMC-based method can handle the 
nonlinearities with an aperiodic setting. 

The second test was performed during straight-line following, examining the 
external disturbance handling ability of the controller. In this test case, the vehicle 
ran straight, with constant speed (ux=10 [m/s]), and then at time t = 0.5 [s], a 
constant torque disturbance (Md = 9000 [Nm]) around axis Z was added, inducing 
yaw moment into the system. The results of this test can be seen in Figure 9. 

Both controllers compensate for the disturbance by turning the steering wheel in 
the proper direction. Due to the IMC loop, the proposed algorithm can react much 
faster to the disturbance, resulting in total disturbance rejection, eliminating the 
position error of the vehicle. However, the dynamic model-based controller has a 
significant constant lateral error, resulting from its structure since only the output 
states are fed back within the MPC method. To sum up, the proposed IMC method 
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can handle the nonlinearities and parameter changes, together with the appearing 
unmeasured external disturbances of the vehicle. 

 

Figure 9 
Comparison of the Dynamic model-based MPC and the kinematic-IMC-based controllers under 

Torque disturbance 

6.5 Comparison with the LKA Subsystem 

Finally, the proposed controller structure is compared with the LKA subsystem. 
Since the LKA subsystem should have the same control frequency and prediction 
frequency, both were set to be fc = 50 [Hz], dtp = 0.05 [s]. The parameters of the 
LKA subsystem were tuned similarly to the method presented in Section 6.3.  
The weight of the manipulated variables rate was set to be 4, and the output 
variables weight (concerning the default scaling factor given by the subsystem) 
was equally 1. The test was the dynamic lane change test performed on low mu  
(µ = 0.6). The results of this test can be seen in Figure 10. and the scalar 
evaluations in Table 3. 

Table 3 
Numerical results comparison of LKA and PF-IMC under low mu 

Controller uint umax dint dmax Ψpint Ψpmax 

PF-IMC 2.112 1.538 1.524ꞏ10-3 3.591ꞏ10-2 2.634ꞏ10-2 1.516ꞏ10-2 

LKA 2.488 1.930 4.510ꞏ10-3 6.536ꞏ10-2 4.168ꞏ10-4 2.049ꞏ10-2 

The results show that both systems can sufficiently perform the maneuver. 
However, the LKA system has an overshoot at the end of the maneuver, resulting 
in a small oscillation in the control signal. Also, it is significant that the proposed 
controller performs better in all the points of comparison. 
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Figure 10 

Path comparison of LKA and PF-IMC under low mu 

Conclusions 

In this paper, a novel approach is presented for lateral vehicle control. This 
parameter-free model predictive control transforms the classical model predictive 
control problem into a series of optimization problems, where the cost functions 
are hierarchized. Therefore, each cost function consists of a physical phenomenon. 
Due to this formulation, there is no need for tuning parameters in the system. This 
method is combined with the IMC structure for handling the dynamics and the 
nonlinearities of the system and implementing robustness against parameter 
changes and external disturbances. 

The proposed method is compared with the well-known and widespread MPC 
methods. Three different comparisons were performed to see the advantages of the 
proposed method in detail, each focusing on a specified field of the proposed 
system. In Table 4, the main differences between the presented structure and the 
classical structure are gathered. 

Table 4 

Comparison table 

LKA system PF-IMC 

Weights tuned intuitively Hierarchical solver without weights 

Different tuning and evaluation goals Goal based on a physical phenomenon 

Scenario-specific parameters Consistent response overall scenarios 

Single optimization task Three optimization tasks 

Linearized dynamics Linear kinematics with nonlinear dynamics 

From the simulation results and the aspects described in Table 4, it can be seen 
that the proposed algorithm has an outstanding contribution considering the 
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predictive controllers. This method can be generalized so that the reduction of 
tuning parameters can be reached in other control problems where MPC is used. 
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