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Abstract: In this paper, we discuss whether data collected from monitoring software 

developers' logs can be considered big. We hypothesize that it falls within the category of 

Big Data. The main topic of our paper however, is how to facilitate analysis of such data. 

Due to the specificity of the monitored activity, the analysis is at least partially explorative 

in its nature. We hypothesize that visualisation can be a productive approach in such a 

case. We present several visualisation schemes (diagram types) and show those applied to 

explorative analysis of data gathered within one four year project that we have been 

participating in. 
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1 Introduction 

Let us consider a serious creative human activity, which is supposed to result in 

developing a very complex technical product. The human activity is inherently 

individual by definition and at the same time, due to the nature of the task, it can 

rarely be accomplished by a single person because of task complexity, delivery 

time requirements, etc. Thus, we envisage a complex process of multi-human 

activity that requires coordinated cooperation over a long period of time, with a 

collective very structured outcome. 

There are many occasions during the development of a software product, when it 

is desirable to know what a particular developer was doing and how they 

performed, what they were doing with a particular part of the product being 

developed, or any other similar question. But perhaps, the nature of the technical 

product is such that it evolves over time or users of the product change their 

expectations. This translates to modifications of product requirements and 

specifications, and thus, onward to redeveloping the product, which may be a very 
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complicated endeavour. Certain questions arise, such as “Who of the original 

developers should be assigned the task?” or “In which place should they attempt 

to make an amendment?” 

To find answers to these and similar questions, we need to know more about the 

developers' activity. But do we know exactly what the required information is? On 

the side of data, assume that the development process takes place for several 

months and there are several, or even a few dozen developers involved. Let us 

consider that we are able to monitor developer’s activity at the granularity of 

elementary steps taken once a few seconds if not more frequently. No matter how 

small the single record is, recording it every few seconds over a period of time, for 

example, several months for several developers will definitely surpass any 

reasonable volume of data storage available for the usual data processing tasks. 

More importantly, that would not be a reasonable modus of operation. The data 

are required to be processed in real-time so that we have the information when 

needed. Recently, it has become fashionable to describe such data as Big Data [5]. 

The outcome of software development is a software system, which is by itself a 

very complex product. The development process as a rule involves activities of 

several programmers, or more generally software developers, over a period of 

several months, sometimes years. Their work is essentially writing or modifying 

texts in a source programming language, and also writing a documentation, 

solving problems that occur during development, or communicating with each 

other. However, their actions can be logged at a very low level, way below the 

level of the programming language, not to speak of the level of developers' 

actions. 

Currently, it is technically feasible to monitor not only when and which text 

(source code) they write, but also how they write it and which information and 

communication technology tool they employ. Monitoring generates a lot of data. 

In this paper, we discuss if data collected from monitoring software developer’s 

logs can be considered big. We hypothesize that it falls within the category of Big 

Data. The main topic of our paper is, however, how to facilitate analysis of such 

data. Due to specificity of the monitored activity, the analysis is at least partially 

explorative in its nature. We hypothesize that visualisation can be a productive 

approach in such a case. We present several visualisation schemes (diagram types) 

and show those applied to an explorative analysis of data gathered within one four 

year project that we have been participating in. 

The rest of the paper is structured as follows. In Section 2, we discuss whether 

data collected on software development can be considered Big Data. We identify 

so-called interaction data to be such data. In Section 3, we discuss what 

information could be extracted by visualising data and by what approaches this 

can be accomplished. We present our approach in Section 4. First, we describe 

what data is potentially the most interesting in the logs, and then we show our 

visualisation schemes. We evaluate the approach in Section 5. The paper is 

concluded in Section 6 where we also suggest some possibilities for future work. 
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2 Big Data in Software Engineering 

In order to evaluate actual status and progress of a software project, it is required 

to monitor it on a suitable level of detail, from the lowest hardware interactions up 

to the highest level with performed development tasks [10]. Current research in 

empirical measurements and evaluation of software development focuses on 

monitoring developers on the level of interactions, which brings us into dealing 

with Big Data in software engineering. More precisely, interaction data fulfils the 

4 Vs rule of Big Data [24] and also occurs in real-time, thus the sensible approach 

is to represent this as a data stream that may be computationally analysed to reveal 

patterns [12], trends, and associations, especially related to human behaviour and 

interactions [21]. The motivation for gathering, processing and evaluating such 

streams of interaction data in software engineering is to get a detailed overview of 

the developers' work [14], to understand how they behave individually or in 

groups, and to avoid problems in development. 

2.1 Interaction Data in Software Development 

Traditional methods of evaluating progress on software projects are based on 

monitoring completion of development tasks by developers in task management 

systems. Developers are given tasks to complete, or they identify the tasks 

themselves, and then update the status of a task in the course of the work [14]. 

Team leaders are able to observe progress on a project, communicate the current 

status with developers, or reason upon it. However, this approach fails to identify 

causes of developers’ mistakes, faults, or delays in completion of tasks. A more 

detailed approach is to monitor and evaluate a software project on the level of 

source code [14]. However, this still does not resolve the aforementioned 

problems. 

Practical research in software engineering requires the monitoring of software 

developers in a greater detail [1, 10]. Evaluating software projects and developers 

through tasks and source code is limited to observing the results of the work only, 

not the processes that led to those results. Software developers interact with tools 

to fulfil a task assignment and are affected and surrounded by several different 

contexts. We summarize this information under the name interaction data [14]. 

The main sources of interaction data are tools and systems that developers work 

with during software development and maintenance, such as IDE – integrated 

development environments (Microsoft Visual Studio, Eclipse), revision control 

systems (Git, Microsoft Team Foundation Server, SVN), task management 

systems (Redmine, Atlassian Jira), software CASE tools (Sparx Enterprise 

Architect, IBM Rational Software Architect), operating systems and many other 

tools, e.g., a web browser, instant messaging, or e-mail client, note-taking 

software, etc. 
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As pointed out by the authors in [14], interaction data encompasses mainly the 

following four types of data: 

 Interactions – observable actions of a developer within tools, e.g., 

navigation in source code, code editing, mouse movements, committing 

changes to a source code repository, etc. 

 Artefacts – entities that a developer interacts with, e.g., source code 

documents, documentation web pages, physical artefacts or even people. 

 Tools – software applications and systems that a developer works with. 

 Contexts – decisions, reasons and other circumstances of developer’s 

work, e.g., what, when, how, and why affected them during their work. 

As can be seen, interaction data cover almost everything that developers may 

come into interaction with, and also how they interact in that situation. Although 

developers’ interactions are monitored at the lowest possible level of detail, they 

can still be used to track development tasks (as artefacts) in task management 

systems/tools, as well as source code (artefacts) and changes (interactions) within 

revision control systems/tools. Recording this amount of data about software 

developers allows us to attempt to identify their expertise or familiarity with code 

[13, 14], to annotate source code with important information [19], or even search 

for unknown or hidden connections between source code documents [11]. Several 

other approaches based on utilizing interaction data nowadays arise using the 

proposed systems [14], although always with predefined assumptions. 

2.2 Monitoring Software Developer’s Activity 

Many approaches and systems have been proposed for monitoring interaction data 

in software development [1, 6, 10, 18]. However, many operate at different levels 

of detail. We can observe developers’ activity at the following levels [21] (starting 

with the lowest level): 

 Hardware interactions, e.g., mouse moves, key presses, touch gestures. 

 Widget interactions – a developer interacts with areas (widgets) of a tool. 

o Single widget interactions, e.g., scrolling in code editing 

window in an IDE, copying code fragments, selecting a text. 

o Multi widget interactions, e.g., searching for references of 

a source code entity and using them in a code editing window. 

 Activities – enclosed parts of developer’s work on a task, e.g., studying 

a code, adding a new code, debugging, documenting completed work. 

 Tasks – described with a goal which a developer is about to accomplish, 

e.g., fix a bug no. 324, added service endpoint ABC. 
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Based on the employed level of interactions, we encounter problems with the 

collecting, processing and storing of interaction data [14]. For example, 

Mylyn [10] aggregates interaction events in an IDE into five pre-selected types of 

activities, the IDE++ project [6] records even the key presses and mouse events. 

However, although authors of IDE++ record almost every event in Eclipse IDE, 

they do not attempt to store them due to a high volume of data. PerConIK [1] 

records various interaction events in an IDE. At first, authors in PerConIK 

attempted to persistently store compressed keyboard button presses and mouse 

events, but later left them out for the same reasons, despite it being the finest 

grained data. Such data could help us determine user activity duration or some 

individual characteristics of either the user or the domain. IDE++ alternatively 

records all available data and redirects it to other connected tools that examine 

these events. 

Monitoring a developer on the hardware and widget levels is possible thanks to 

available application programming interfaces in operating systems and 

development tools. However, identification of activities is not possible with tools 

because of a vague notion of what an activity in fact is. The authors in [19] 

attempted to automatically identify activities using Hidden Markov Models, 

because this technique matched attributes of difference between activity and 

interaction. Activity is composed of interactions, but only those of a certain 

intention for a developer, which they had to undertake during their work on a task. 

From the automation viewpoint, we are not able to unambiguously distinguish 

between types of activities, e.g., adding a new functionality or refactoring. 

Because a developer’s interactions occur in real-time, we may attempt to 

incrementally identify developer’s activities in real-time as well [12]. The 

motivation behind identifying activities is to better describe development tasks or 

untangle them when they appear to be overlapping [12, 20]. 

Whether we monitor developers’ interactions, activities or tasks, the motivation 

remains the same: to understand how developers approach work on a software 

project individually and/or cooperatively, how they progress, and how they 

identify issues with respect to finishing their work in the desired quality and on 

time. Interaction data occurs in real-time and may be used for identifying patterns, 

trends or associations in developers’ interactions and activities. 

2.3 Software Developer Interaction Data Can Become Big 

Interaction events occur very fast during a developer’s work, from the finest level 

of granularity with recording of every keystroke, up to recording changes in 

source code contents after every widget interaction, e.g., navigation or scrolling in 

a document. Using the 4 Vs characteristics of Big Data, we may look upon 

interaction data as Big Data as well [24]: 

 Volume – recording interactions in tools, e.g., every change in a source 

code document after navigation, mouse button presses and moves. 
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 Velocity – multiple interactions may occur within a second, or changes in 

mouse coordinates may be recorded with high frequency (1000 positions 

per second), multiplied by large development teams. 

 Variety – monitoring various keystrokes, mouse, or events in an IDE, 

e.g., from opening a source code document, through to adding a new line 

of code, to identifying changes in abstract syntax trees of source code. 

 Veracity – monitoring of IDE events cannot be predicted – a developer 

may study code while not interacting with tools or a computer in any 

way, thus unexpectedly not generating any data. 

Our work is part of the research project PerConIK [1] where we monitor software 

developers at a medium size software company. Besides, we monitor students of 

Masters study programmes in Software Engineering and Information Systems who 

develop their semester projects. For the monitored interaction events within the 

infrastructure of PerConIK, see section 3.1. Also, note that we do not monitor 

mouse movements and key strokes that IDE++ does (but without storing them) 

[6], only interactions in tools because of the high volume which has to be stored if 

doing so. As an example of a possible data flow, consider the following statistics 

even for 10 developers monitored within the PerConIK project during 38 

workdays in February and March 2015: 

 Average velocity if any interaction event occurred in a time frame: 

o 3.682 per second and 18.893 per minute, 

 Average velocity if over 10 interactions occurred in that time frame: 

o 71.351 per second and 42.849 per minute. 

Although data of 10 developers may not seem really big, we use them as a 

representative sample from our dataset because of different work habits and 

experiences that students have, and because the setup of the PerConIK 

infrastructure has evolved over time. During this period, there were exactly 27,994 

interactive minutes (i.e. minutes with at least 1 recorded interaction; if counting 

only interactive seconds, there were exactly 29,628 of such seconds). Pointedly, 

monitoring more developers for a longer time would increase these numbers in 

orders of magnitude. 

Because of complying with the 4 Vs characteristics, interaction data and 

developers' activity are often subject to visualisation. Omoronyia et al. provide a 

good overview of 12 tools [18] visualising developers’ activity. One example is 

the visualisation tool Team Tracks that displays the current activity of a developer, 

or which files are currently edited and who altered them. Their plugin to an IDE 

monitors which files were frequently visited and assumes that these files can be 

problematic. However, none of the mentioned tools [18] dealt with the 

visualisation of software development from a perspective similar to ours. This 

paper indicates the importance of capturing data for tracking developers' activity 

and, of course, the visualisation of this data. 
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3 Visualisation of Software Developers’ Activity 

In order to record huge amounts of data, it is usually required to choose a form of 

representation that facilitates eliciting important information. The information 

may be in the form of patterns, trends or associations found in raw data. There 

exists a variety of methods for acquiring such information based on statistics, 

artificial intelligence, machine learning, or formal concept analysis. In most of the 

cases, we need two things to choose the right method – 1. to have the data, and 2. 

to know what we are looking for in the data (either exact or abstract). For 

example, we can track certain quantities of events, or find certain patterns in them, 

and so on. But there are moments when we do not know the data and/or we do not 

know what we are looking for – we just want to find something new. Existing 

methods often fail if they do not have a goal set beforehand. In such a case, an 

explorative analysis (visual data mining) can be very useful. In general, it is the 

first step on the following path (see Figure 1): 

 Step 1: In the case that data contains unknown information, it is 

visualised using different graphs or visualisation approaches. One can 

find, by inspecting them, something interesting and set it as an 

assumption. 

 Step 2: In the case that there has been formulated an assumption (either 

resulting from the first step or simply from knowing a domain), this can 

be verified either by an experiment or by broader systematic data 

analysis. This verification can either support or refute the assumption and 

thus can be reformulated or accepted for the next step (e.g. as a new part 

of user or domain model). 

 Step 3: In the case that it is already known what information is contained 

in the old data (either resulting from the first two steps or simply from 

knowing the data domain), there is a chance that it will be contained in 

the new data. To find it there, one can reason upon the live (streaming) 

data, and log only the found (derived) information – metadata. 

In our work, we deal only with the first step of this (meta) information retrieval. 

Therefore, to maximize the success of a search, the visualisation has to follow the 

type by task taxonomy (TTT) of information visualisations proposed by 

Shneiderman [23]. It has its roots in the Visual Information Seeking Mantra: 

“Overview first, zoom and filter, then details-on-demand,” and contains the 

following seven tasks: 

 Overview: Gain an overview of the entire collection. 

 Zoom: Zoom in on items of interest. 

 Filter: Filter out uninteresting items. 

 Details-on-demand: Select an item or group and get details when needed. 
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 Relate: View relationships among items. 

 History: Keep a history of actions to support undo, replay, and 

progressive refinement. 

 Extract: Allow extraction of sub-collections and of the query parameters. 

 

Figure 1 

Exploratory analysis of logged data involving assumption formation based on visualisation 

On the other side, the goal of a visualisation must be clear. Maletic, et al. [15] 

proposed that each software visualisation system supporting large-scale software 

development and maintenance has to have the following five dimensions. These 

dimensions reflect the why, who, what, where and, how questions to be addressed 

for the developed software visualisation: 

 Tasks – why is the visualisation needed? 

 Audience – who will use the visualisation? 

 Target – what is the data source to represent? 

 Representation – how to represent it? 

 Medium – where to represent the visualisation? 

In our case we answer these questions: Tasks – find new information in the data 

that could possibly improve software development, Audience – software 

development analysts, researchers, possibly project managers, Target – 

developers' interactions, Representation – graphs, Medium – computer monitor. 
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There are various approaches to visualisation in the domain of software 

development. Most of them visualise code structure [9] and/or source code 

metrics, and/or tasks (Gantt chart), e.g., Source Miner Evolution [17], YARN [8], 

Forest Metaphor [4], ClonEvol [7], GEVOL [3], EPOSee [2]. Some visualisations 

are even animated in time. DFlow [16] visualises developer’s interactions during 

the development process, it is oriented only to navigating, writing, and 

understanding the source code and thus miss the wider context of developers’ 

work. More complex tools, which are more similar to our solution, can be found in 

the time management domain, e.g., ManicTime
1
 application. 

3.1 Data Available on Software Developers' Activity 

We monitor interaction events in tools that a software developer interacts with 

during their work. Although we may record even elementary events such as key 

presses or mouse movements that make our data big, we empirically selected only 

some of the events provided by tools (Microsoft Visual Studio, Eclipse, Git, Bash 

shell, and Mozilla Firefox). An interaction event is reported by a tool noting that a 

developer performed a meaningful operation. For each developer we also log 

which processes and applications were running in the operating system. 

With a web browser we record navigation to URL addresses (through a link/URL 

bar/bookmark/other), actions with tabs (switch to/open/close), saving a document 

(and its name), or even creating a bookmark (with its name). 

In an IDE we record interactions with source code documents (add, open, close, 

switch to, remove, save, rename), projects and solutions (add, open, close, switch 

to, remove, rename, refresh). We also record source code content interactions, 

specifically code fragments manipulation (copy, paste, cut, paste from a webpage) 

and searching in source code (searched expression, used search options, number 

of searched documents and results). We are also interested in a work to Git 

(commits) or Microsoft Team Foundation Server (check-ins). Because developers 

also use bash shell during their work, thus we record executed bash commands. 

Recording of interaction events in tools is realized by custom plugins that 

communicate with local client application, called UACA, running on a 

developer’s workstation. This application sends recorded data in chunks to a 

centralized repository using REST web services. With this approach we are able to 

monitor high quantities of interesting and very detailed data about software 

development, but still use it for evaluation, visualisation, or further processing. 

Further details on the PerConIK infrastructure can be found in [1]. 

Countless numbers of charts can be devised from the listed data and source code 

of monitored software projects. In this paper, we cannot discuss all the devised 

                                                           

1
 http://www.manictime.com/ 
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data or graphs, and in any case, we did not employ all of them. However, to 

explain our visualisation approach in a simple and comprehensible manner, while 

still showing the potential of such visualisations, we include only charts that 

contain two activities – those of a developer interacting with a web browser and 

with an IDE. These are not further fragmented. We also did not include activities 

of bash commands because of their insufficient number. Answers to these 

questions can be found in such graphs: When and which developer was the most 

active? Is it always at the same time? Do all of the developers use a web browser 

and IDE by the same share? Is there a pattern or dependency at work in a web 

browser or an IDE? Which web sites were visited by developers the most? Is there 

a relation between the amount of time spent in a web browser during a work in an 

IDE, to the number of source code changes by a developer? 

The graphs may also contain various metrics, e.g., for source codes: time spent by 

a developer typing them, studying them (reading without changing them), number 

of functions edited, how many times and how long a certain file was opened, the 

number of time the file was changed, etc. For web browsing: the ratio between the 

number of web pages related to work and private purposes, the ratio between the 

time spent on work vs. private web pages, the absolute number of web pages or 

absolute time spent on work/private web pages, correlation of these numbers with 

other quantities, the number of copied elements, etc. 

Other potential graphs using mentioned metrics may answer the following 

questions: Can we categorize developers according to their read/edit/copy/paste 

behaviour? Can we evaluate their productivity? Is there any correlation between 

different types of activities that help us to indicate developers’ experience, their 

strengths and weaknesses? Is there any harmful behaviour occurring in specific 

situations, e.g., introducing a bug by the end of a project? Is there any visible trend 

or pattern between the number of source code changes and other situations? 

Answers to some of these questions can be found only if data is from a long 

enough period of time, which could take many years. 

3.2 Graphs Devised from Software Developer’s Activity 

In order to identify any information from interaction data, it is necessary to 

combine events into higher level activities [12, 20] and then to visualise them. It is 

not easy to determine which actions form an activity. One way to do so is to apply 

a time threshold, as we describe in more detail in [22]. The visualisation graphs 

themselves should be transparent, readable and adaptable. We propose three kinds 

of graphs: 

1) Timeline graphs, which depict selected type of activities – e.g., when and how 

long a developer worked in a certain application (see ManicTime graph in 

Figure 2); here it cannot easily be seen how many of them there are or how 

much time is spent in total. This type of graph can be found also in [16] 
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2) Scatter graphs – the dependency of selected activities (see Figure 6) 

3) Column graphs – the cumulative numbers of the selected types of activities: 

a. One column is for one time step – e.g., it depicts number of web and 

IDE activities done within an hour; columns are ordered by time and 

have the same width (see Figure 3 and 4). 

b. One column is for one type of activity – e.g., it depicts the number of 

visits on stackoverflow.com domain; columns are ordered by height 

and have the same width. 

c. One column is for one block of activity – e.g., it depicts the number 

of changed lines in source code; columns are ordered by time and 

each block has a different width equal to the duration of a depicted 

block (see Figure 5) 

Our implementation of the visualisation allows the user an interactive modifying 

time axis scale for each graph with a time axis. It is possible to choose time units 

to be used for data accumulation in the graph. By clicking on a column in a graph, 

a new graph with a finer time scale will open. 

4 Evaluation 

In order to be able to evaluate our proposed approach, we devised a prototype tool 

IVDA (Interactive Visualisation of Developers' Actions). It is implemented as 

a service that provides visualisations of logged data [22]. The visualisations are 

shown directly on the web browser, while computation takes place on the server. 

There are tools that are able to monitor a software developer, but not to visualise 

their activity. There are also tools, on the other hand, that visualise software 

development but do not monitor the software developer so closely. Since our tool 

IVDA is no exception to this, some experiments are by design not fully supported. 

For comparison with existing systems, we compared our tool with several other 

similar tools that were compared in [18]. Moreover, we also include the tool 

ManicTime in the comparison. 

The tool is not from the domain of software development, but from the more 

general domain of time management. It monitors computer usage in any work. It 

is oriented toward applications or environments used, and documents (context) 

that the user is working within the given application (see Figure 2). The tool 

monitors how long activities lasted. Recorded data can be seen on the time axis. 

They serve the user as an overview of their work with the computer. The tool also 

offers cumulative results, albeit only in numerical form. 
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Figure 2 

Timeline in ManicTime interface 

See Table 1 for results of the comparison with our IVDA tool with existing tools 

mentioned in [18] that monitor developers' work, along with ManicTime. The 

comparison is done by classification based on workspace awareness elements and 

does not take into account visualisation ability. The number of individual elements 

across all 14 tools represents the need of developers to know that information. As 

we can see, IVDA offers the five most wanted elements. ManicTime offers three 

of them, although this tool is not specific to the domain of software development. 

Table 1 

Omoronyia, et al. [18] classification of visualisation tools with added IVDA and ManicTime 
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TagSEA x    x x x     

Jazz x    x x x x  x  

Expertise browser x x    x   x x  

Sysiphus x x   x x      

Hipikat x           

Palantír x  x   x x x    

FASTDash x x  x  x x     

Team tracks   x       x x 

CASS x    x x x     

Augur x    x x x     

Ariadne x       x    

Mylyn  x x x  x x    x 

ManicTime x x x         

IVDA x x x   x x     

14 tools 12 6 6 2 5 10 8 3 1 3 2 

To proceed with the evaluation of our approach, we performed a user test aimed at 

its visualisation quality. The tools from Table 1 do not provide visualisation as 

IVDA or ManicTime. Therefore we needed to choose other tools. As we already 
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mentioned, there are tools, which visualise code structure and/or source code 

metrics, and/or tasks [2, 3, 4, 7, 8, 9, 16, 17], but they do not visualise 

programmer’s activities with their context. This led us to find a tool for 

visualisation of activities, but from another domain, e.g., ManicTime, and to 

compare it with IVDA. The test included 10 test cases (TC) of differing difficulty 

(see Table 2). We conducted this test with 7 participants (4 males and 3 females) 

ages 19-35, with a university degree in an engineering field. None of them had 

previous experience with visualisations or tools that monitor time spent with 

a computer, and they use a web browser for 2 to 8 hours a day. 

Table 2 

10 test cases (TC1-TC10) conducted for evaluation of the IVDA tool 

TC1 Inspect activity of any developer over the previous week. 

TC2 Determine by inspection, for any developer, what activities prevailed during 

the previous day. 

TC3 Find out which processes were run on the user’s computer on a given day. 

TC4 During which part of the last 3 days was the developer most productive? 

TC5 Which files and environments did the developer work with yesterday? 

TC6 Which particular file has been the most frequently modified one by 

a developer during the whole previous year? 

TC7 Did the developer write source code over the last week more frequently in the 

mornings or in the evenings? 

TC8 For how long did the developer use the browser after 11 o’clock? 

TC9 Try to identify some habit in the developer’s behaviour within the last month. 

TC10 There are a developer’s activities that do not relate to the actual development. 

If they indeed occur, find out when they started, how long they lasted and 

what is their nature. Choose a single August day in 2014. 

Table 3 shows the success rates of tasks completion (within the allotted time limit) 

– the test participants completed most of the required tasks on time for both of the 

compared tools. Moreover, we noticed that the test participants frequently had 

problems with initial tasks, which took them longer than expected. This may be 

caused by a lack of intuitiveness of the tool in the initial phase. Keeping the main 

goal of this research in mind, i.e., to facilitate explorative analysis, the TC9 task 

was the most critical one. Our IVDA tool has higher potential to analyse 

monitored and visualised data, and to seek new information from it. Moreover, 

IVDA offers information, which other visualising tools do not. One of the 

interesting feedbacks from one participant was that she became curious after 

experiments and started to explore the data herself to answer her own questions. 

In Figure 3, the graphs reveal information about the logged developer “Puma”. It 

appears “Puma” mostly writes code during working days. There are a few days 

when “Puma” works really hard (maybe refactoring some code since a lot of lines 

of the code were changed). But there are also days (and even weeks), when 

“Puma” uses only the web browser. The gap in August suggests that Puma was on 

vacation.  
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Table 3 

Success rate of tasks TC1-TC10 completion in IVDA and ManicTime (%) 

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 

IVDA 85 100 85 100 57 100 100 85 100 100 

ManicTime 100 100 100 57 100 85 85 85 57 71 

Graphs in Figure 4 show that different developers work differently during the 

same time period. “Jaguar” edited hundreds lines of code during selected days. 

“Puma” worked a lot with a browser – probably searching for something. In both 

graphs it is clearly visible that both of them are more active during the day and 

resting during the night. No regularities like lunch breaks, meetings, etc. can be 

found in this part of a year, but in our dataset there are other time periods, where 

such events are visible. 

 

Figure 4 

Comparison of two developers “Puma” and “Jaguar” over one week –the number of visited domains 

together with the number of edited lines, both cumulated per hour 

Graphs in Figure 5 depict columns of different widths since the activities are 

cumulated per continuous activity (either continuous in a web browser or 

continuous in IDE). This type of visual representation helps the explorer quickly 

find the most active periods in a developer’s working day – the highest and the 

widest columns. As the example of the developer “Puma” shows, developers' days 

can vary widely – there is a different time of day for the highest number of edited 

lines of code, different amounts of visited domains and different ratios of these 

two activities. Although these three days look so different, they have also 

something in common – the Pareto principle also plays a role here: it looks like 

the most active periods cover 20% of the developer’s working day and during 

these peaks, 80% of their activities are completed. 
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In another type of graph one can try to find an answer to the following question: 

“Does the number of edited lines of the code depend on the time the developer 

spent using a web browser when writing it?” As we can see in Figure 6, there is no 

dependency. However, we can postulate that when this developer spends more 

than 20 minutes using a browser, they are probably not writing a code. 

 

Figure 5 

Number of visited domains together with number of edited lines by developer “Puma”,  

both cumulated per continuous activity, within three subsequent days 

  

Figure 6 

Scatter graph, where every point represents the duration of the web browser activity which was 

immediately followed by a depicted amount of source code changes in IDE 
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Conclusions 

The work presented in this paper contributes to the methods of better 

understanding a software developer’s activities. Understanding them is vitally 

important during software evolution. In development, a project manager can better 

reassign tasks and allocate resources. In maintenance, any revealed code 

dependencies suggest places for a possible remedy. Activities emerge as high level 

outcomes of exploratory analysis of low level data, logging a developer’s rather 

elementary actions. These elementary actions are such that many of them occur 

within small periods of time. As a result, logging them also requires some kind of 

pre-processing, since without reduction, storing them would be too prohibitive. 

This is essentially one of the characteristics of Big Data. 

Software development is a creative process, which together with maintenance are 

the two most extensive elements of a software project. A software developer, as an 

executor committed to bringing specifications and ideas into usable product, is 

often difficult to monitor, evaluate and reason upon identified information, in 

order to support the particular software project meeting the deadlines on time and 

in acceptable quality. As we pointed out, this motivates current research in 

software engineering to employ new approaches for monitoring software 

development directly on the level of interaction events performed by developers in 

tools that they use during their work. 

Our contribution is to transform low level logged data into higher level 

information on activities and then to attempt various schemes of visualisation in 

order to facilitate better understanding of the data. We employ interactive 

visualisation in a customizable manner to find answers to various interested 

questions of team leaders or software developers. We understand visualisation as 

a tool to open the way to explorative analysis of a software developer’s activity. 

We described explorative analysis as a three step process, depicting the 

importance of a proper visualisation tool. We devised a number of simple graph 

schemes. They visualise the partially processed data and allow a human analyst to 

make assumptions by generalising what they see in visualising graphs. We applied 

the devised graph schemes to data gathered within the project PerConIK that we 

have been participating in over the last four years. We devised and implemented 

the interactive visualisation tool IVDA. User-defined graphs generated by the tool 

show information about activities, developers' actions and their metrics, which a 

team leader may use to identify possible causes of problems, delays in delivering 

results, anomalies and trends in activities of developers in a team. Furthermore, 

this tool may help any scientist to endorse or refute assumptions about a software 

developer’s activity. By inspecting the visualised data, the analyst is able to gain 

much useful information on the software development of a particular project. 

Since data that can be received by logging is way below the level any analysis of 

software development should be performed, one challenge for future work is to 

further automate identification of developers' activities from interactive events. 
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Such identification, especially when accomplished in real-time during 

a developer’s work, may support not only a team leader or scientist in answering 

hypotheses, but also developers themselves before committing their results to 

revision control systems or when describing completed tasks in task management 

systems. Developers often work on several development tasks, more or less 

arbitrarily, that may tangle them into composite change (commit) in the end. Such 

tangled changes in an RCS are difficult to review, describe, or merge with other 

changes. Existing approaches attempt to identify and untangle such changes by 

analysing a static snapshot of commit history. However, we argue that the 

approach of doing so in real-time is required, to prevent a software developer from 

tangling their changes even before committing them to an RCS. 
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