
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 159 –

Visualising Software Developers' Activity Logs

to Facilitate Explorative Analysis

Alena Kovarova, Martin Konopka, Lukas Sekerak,

Pavol Navrat

Slovak University of Technology, Ilkovicova 2, 84216 Bratislava, Slovakia

alena.kovarova@stuba.sk, martin_konopka@stuba.sk, xsekerakl1@stuba.sk,

pavol.navrat@stuba.sk

Abstract: In this paper, we discuss whether data collected from monitoring software

developers' logs can be considered big. We hypothesize that it falls within the category of

Big Data. The main topic of our paper however, is how to facilitate analysis of such data.

Due to the specificity of the monitored activity, the analysis is at least partially explorative

in its nature. We hypothesize that visualisation can be a productive approach in such a

case. We present several visualisation schemes (diagram types) and show those applied to

explorative analysis of data gathered within one four year project that we have been

participating in.

Keywords: Activity log; log stream; Programmer; Software development; Visualisation;

Big data

1 Introduction

Let us consider a serious creative human activity, which is supposed to result in

developing a very complex technical product. The human activity is inherently

individual by definition and at the same time, due to the nature of the task, it can

rarely be accomplished by a single person because of task complexity, delivery

time requirements, etc. Thus, we envisage a complex process of multi-human

activity that requires coordinated cooperation over a long period of time, with a

collective very structured outcome.

There are many occasions during the development of a software product, when it

is desirable to know what a particular developer was doing and how they

performed, what they were doing with a particular part of the product being

developed, or any other similar question. But perhaps, the nature of the technical

product is such that it evolves over time or users of the product change their

expectations. This translates to modifications of product requirements and

specifications, and thus, onward to redeveloping the product, which may be a very

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 160 –

complicated endeavour. Certain questions arise, such as “Who of the original

developers should be assigned the task?” or “In which place should they attempt

to make an amendment?”

To find answers to these and similar questions, we need to know more about the

developers' activity. But do we know exactly what the required information is? On

the side of data, assume that the development process takes place for several

months and there are several, or even a few dozen developers involved. Let us

consider that we are able to monitor developer’s activity at the granularity of

elementary steps taken once a few seconds if not more frequently. No matter how

small the single record is, recording it every few seconds over a period of time, for

example, several months for several developers will definitely surpass any

reasonable volume of data storage available for the usual data processing tasks.

More importantly, that would not be a reasonable modus of operation. The data

are required to be processed in real-time so that we have the information when

needed. Recently, it has become fashionable to describe such data as Big Data [5].

The outcome of software development is a software system, which is by itself a

very complex product. The development process as a rule involves activities of

several programmers, or more generally software developers, over a period of

several months, sometimes years. Their work is essentially writing or modifying

texts in a source programming language, and also writing a documentation,

solving problems that occur during development, or communicating with each

other. However, their actions can be logged at a very low level, way below the

level of the programming language, not to speak of the level of developers'

actions.

Currently, it is technically feasible to monitor not only when and which text

(source code) they write, but also how they write it and which information and

communication technology tool they employ. Monitoring generates a lot of data.

In this paper, we discuss if data collected from monitoring software developer’s

logs can be considered big. We hypothesize that it falls within the category of Big

Data. The main topic of our paper is, however, how to facilitate analysis of such

data. Due to specificity of the monitored activity, the analysis is at least partially

explorative in its nature. We hypothesize that visualisation can be a productive

approach in such a case. We present several visualisation schemes (diagram types)

and show those applied to an explorative analysis of data gathered within one four

year project that we have been participating in.

The rest of the paper is structured as follows. In Section 2, we discuss whether

data collected on software development can be considered Big Data. We identify

so-called interaction data to be such data. In Section 3, we discuss what

information could be extracted by visualising data and by what approaches this

can be accomplished. We present our approach in Section 4. First, we describe

what data is potentially the most interesting in the logs, and then we show our

visualisation schemes. We evaluate the approach in Section 5. The paper is

concluded in Section 6 where we also suggest some possibilities for future work.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 161 –

2 Big Data in Software Engineering

In order to evaluate actual status and progress of a software project, it is required

to monitor it on a suitable level of detail, from the lowest hardware interactions up

to the highest level with performed development tasks [10]. Current research in

empirical measurements and evaluation of software development focuses on

monitoring developers on the level of interactions, which brings us into dealing

with Big Data in software engineering. More precisely, interaction data fulfils the

4 Vs rule of Big Data [24] and also occurs in real-time, thus the sensible approach

is to represent this as a data stream that may be computationally analysed to reveal

patterns [12], trends, and associations, especially related to human behaviour and

interactions [21]. The motivation for gathering, processing and evaluating such

streams of interaction data in software engineering is to get a detailed overview of

the developers' work [14], to understand how they behave individually or in

groups, and to avoid problems in development.

2.1 Interaction Data in Software Development

Traditional methods of evaluating progress on software projects are based on

monitoring completion of development tasks by developers in task management

systems. Developers are given tasks to complete, or they identify the tasks

themselves, and then update the status of a task in the course of the work [14].

Team leaders are able to observe progress on a project, communicate the current

status with developers, or reason upon it. However, this approach fails to identify

causes of developers’ mistakes, faults, or delays in completion of tasks. A more

detailed approach is to monitor and evaluate a software project on the level of

source code [14]. However, this still does not resolve the aforementioned

problems.

Practical research in software engineering requires the monitoring of software

developers in a greater detail [1, 10]. Evaluating software projects and developers

through tasks and source code is limited to observing the results of the work only,

not the processes that led to those results. Software developers interact with tools

to fulfil a task assignment and are affected and surrounded by several different

contexts. We summarize this information under the name interaction data [14].

The main sources of interaction data are tools and systems that developers work

with during software development and maintenance, such as IDE – integrated

development environments (Microsoft Visual Studio, Eclipse), revision control

systems (Git, Microsoft Team Foundation Server, SVN), task management

systems (Redmine, Atlassian Jira), software CASE tools (Sparx Enterprise

Architect, IBM Rational Software Architect), operating systems and many other

tools, e.g., a web browser, instant messaging, or e-mail client, note-taking

software, etc.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 162 –

As pointed out by the authors in [14], interaction data encompasses mainly the

following four types of data:

 Interactions – observable actions of a developer within tools, e.g.,

navigation in source code, code editing, mouse movements, committing

changes to a source code repository, etc.

 Artefacts – entities that a developer interacts with, e.g., source code

documents, documentation web pages, physical artefacts or even people.

 Tools – software applications and systems that a developer works with.

 Contexts – decisions, reasons and other circumstances of developer’s

work, e.g., what, when, how, and why affected them during their work.

As can be seen, interaction data cover almost everything that developers may

come into interaction with, and also how they interact in that situation. Although

developers’ interactions are monitored at the lowest possible level of detail, they

can still be used to track development tasks (as artefacts) in task management

systems/tools, as well as source code (artefacts) and changes (interactions) within

revision control systems/tools. Recording this amount of data about software

developers allows us to attempt to identify their expertise or familiarity with code

[13, 14], to annotate source code with important information [19], or even search

for unknown or hidden connections between source code documents [11]. Several

other approaches based on utilizing interaction data nowadays arise using the

proposed systems [14], although always with predefined assumptions.

2.2 Monitoring Software Developer’s Activity

Many approaches and systems have been proposed for monitoring interaction data

in software development [1, 6, 10, 18]. However, many operate at different levels

of detail. We can observe developers’ activity at the following levels [21] (starting

with the lowest level):

 Hardware interactions, e.g., mouse moves, key presses, touch gestures.

 Widget interactions – a developer interacts with areas (widgets) of a tool.

o Single widget interactions, e.g., scrolling in code editing

window in an IDE, copying code fragments, selecting a text.

o Multi widget interactions, e.g., searching for references of

a source code entity and using them in a code editing window.

 Activities – enclosed parts of developer’s work on a task, e.g., studying

a code, adding a new code, debugging, documenting completed work.

 Tasks – described with a goal which a developer is about to accomplish,

e.g., fix a bug no. 324, added service endpoint ABC.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 163 –

Based on the employed level of interactions, we encounter problems with the

collecting, processing and storing of interaction data [14]. For example,

Mylyn [10] aggregates interaction events in an IDE into five pre-selected types of

activities, the IDE++ project [6] records even the key presses and mouse events.

However, although authors of IDE++ record almost every event in Eclipse IDE,

they do not attempt to store them due to a high volume of data. PerConIK [1]

records various interaction events in an IDE. At first, authors in PerConIK

attempted to persistently store compressed keyboard button presses and mouse

events, but later left them out for the same reasons, despite it being the finest

grained data. Such data could help us determine user activity duration or some

individual characteristics of either the user or the domain. IDE++ alternatively

records all available data and redirects it to other connected tools that examine

these events.

Monitoring a developer on the hardware and widget levels is possible thanks to

available application programming interfaces in operating systems and

development tools. However, identification of activities is not possible with tools

because of a vague notion of what an activity in fact is. The authors in [19]

attempted to automatically identify activities using Hidden Markov Models,

because this technique matched attributes of difference between activity and

interaction. Activity is composed of interactions, but only those of a certain

intention for a developer, which they had to undertake during their work on a task.

From the automation viewpoint, we are not able to unambiguously distinguish

between types of activities, e.g., adding a new functionality or refactoring.

Because a developer’s interactions occur in real-time, we may attempt to

incrementally identify developer’s activities in real-time as well [12]. The

motivation behind identifying activities is to better describe development tasks or

untangle them when they appear to be overlapping [12, 20].

Whether we monitor developers’ interactions, activities or tasks, the motivation

remains the same: to understand how developers approach work on a software

project individually and/or cooperatively, how they progress, and how they

identify issues with respect to finishing their work in the desired quality and on

time. Interaction data occurs in real-time and may be used for identifying patterns,

trends or associations in developers’ interactions and activities.

2.3 Software Developer Interaction Data Can Become Big

Interaction events occur very fast during a developer’s work, from the finest level

of granularity with recording of every keystroke, up to recording changes in

source code contents after every widget interaction, e.g., navigation or scrolling in

a document. Using the 4 Vs characteristics of Big Data, we may look upon

interaction data as Big Data as well [24]:

 Volume – recording interactions in tools, e.g., every change in a source

code document after navigation, mouse button presses and moves.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 164 –

 Velocity – multiple interactions may occur within a second, or changes in

mouse coordinates may be recorded with high frequency (1000 positions

per second), multiplied by large development teams.

 Variety – monitoring various keystrokes, mouse, or events in an IDE,

e.g., from opening a source code document, through to adding a new line

of code, to identifying changes in abstract syntax trees of source code.

 Veracity – monitoring of IDE events cannot be predicted – a developer

may study code while not interacting with tools or a computer in any

way, thus unexpectedly not generating any data.

Our work is part of the research project PerConIK [1] where we monitor software

developers at a medium size software company. Besides, we monitor students of

Masters study programmes in Software Engineering and Information Systems who

develop their semester projects. For the monitored interaction events within the

infrastructure of PerConIK, see section 3.1. Also, note that we do not monitor

mouse movements and key strokes that IDE++ does (but without storing them)

[6], only interactions in tools because of the high volume which has to be stored if

doing so. As an example of a possible data flow, consider the following statistics

even for 10 developers monitored within the PerConIK project during 38

workdays in February and March 2015:

 Average velocity if any interaction event occurred in a time frame:

o 3.682 per second and 18.893 per minute,

 Average velocity if over 10 interactions occurred in that time frame:

o 71.351 per second and 42.849 per minute.

Although data of 10 developers may not seem really big, we use them as a

representative sample from our dataset because of different work habits and

experiences that students have, and because the setup of the PerConIK

infrastructure has evolved over time. During this period, there were exactly 27,994

interactive minutes (i.e. minutes with at least 1 recorded interaction; if counting

only interactive seconds, there were exactly 29,628 of such seconds). Pointedly,

monitoring more developers for a longer time would increase these numbers in

orders of magnitude.

Because of complying with the 4 Vs characteristics, interaction data and

developers' activity are often subject to visualisation. Omoronyia et al. provide a

good overview of 12 tools [18] visualising developers’ activity. One example is

the visualisation tool Team Tracks that displays the current activity of a developer,

or which files are currently edited and who altered them. Their plugin to an IDE

monitors which files were frequently visited and assumes that these files can be

problematic. However, none of the mentioned tools [18] dealt with the

visualisation of software development from a perspective similar to ours. This

paper indicates the importance of capturing data for tracking developers' activity

and, of course, the visualisation of this data.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 165 –

3 Visualisation of Software Developers’ Activity

In order to record huge amounts of data, it is usually required to choose a form of

representation that facilitates eliciting important information. The information

may be in the form of patterns, trends or associations found in raw data. There

exists a variety of methods for acquiring such information based on statistics,

artificial intelligence, machine learning, or formal concept analysis. In most of the

cases, we need two things to choose the right method – 1. to have the data, and 2.

to know what we are looking for in the data (either exact or abstract). For

example, we can track certain quantities of events, or find certain patterns in them,

and so on. But there are moments when we do not know the data and/or we do not

know what we are looking for – we just want to find something new. Existing

methods often fail if they do not have a goal set beforehand. In such a case, an

explorative analysis (visual data mining) can be very useful. In general, it is the

first step on the following path (see Figure 1):

 Step 1: In the case that data contains unknown information, it is

visualised using different graphs or visualisation approaches. One can

find, by inspecting them, something interesting and set it as an

assumption.

 Step 2: In the case that there has been formulated an assumption (either

resulting from the first step or simply from knowing a domain), this can

be verified either by an experiment or by broader systematic data

analysis. This verification can either support or refute the assumption and

thus can be reformulated or accepted for the next step (e.g. as a new part

of user or domain model).

 Step 3: In the case that it is already known what information is contained

in the old data (either resulting from the first two steps or simply from

knowing the data domain), there is a chance that it will be contained in

the new data. To find it there, one can reason upon the live (streaming)

data, and log only the found (derived) information – metadata.

In our work, we deal only with the first step of this (meta) information retrieval.

Therefore, to maximize the success of a search, the visualisation has to follow the

type by task taxonomy (TTT) of information visualisations proposed by

Shneiderman [23]. It has its roots in the Visual Information Seeking Mantra:

“Overview first, zoom and filter, then details-on-demand,” and contains the

following seven tasks:

 Overview: Gain an overview of the entire collection.

 Zoom: Zoom in on items of interest.

 Filter: Filter out uninteresting items.

 Details-on-demand: Select an item or group and get details when needed.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 166 –

 Relate: View relationships among items.

 History: Keep a history of actions to support undo, replay, and

progressive refinement.

 Extract: Allow extraction of sub-collections and of the query parameters.

Figure 1

Exploratory analysis of logged data involving assumption formation based on visualisation

On the other side, the goal of a visualisation must be clear. Maletic, et al. [15]

proposed that each software visualisation system supporting large-scale software

development and maintenance has to have the following five dimensions. These

dimensions reflect the why, who, what, where and, how questions to be addressed

for the developed software visualisation:

 Tasks – why is the visualisation needed?

 Audience – who will use the visualisation?

 Target – what is the data source to represent?

 Representation – how to represent it?

 Medium – where to represent the visualisation?

In our case we answer these questions: Tasks – find new information in the data

that could possibly improve software development, Audience – software

development analysts, researchers, possibly project managers, Target –

developers' interactions, Representation – graphs, Medium – computer monitor.

Searching for relevant information (metadata)

Logging

 Data

stream

 Logged

data

 1. Visuali-

sation
Assumption

2. Verifi-

cation

Important

information

3. Stream

reasoning
Logged

metadata

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 167 –

There are various approaches to visualisation in the domain of software

development. Most of them visualise code structure [9] and/or source code

metrics, and/or tasks (Gantt chart), e.g., Source Miner Evolution [17], YARN [8],

Forest Metaphor [4], ClonEvol [7], GEVOL [3], EPOSee [2]. Some visualisations

are even animated in time. DFlow [16] visualises developer’s interactions during

the development process, it is oriented only to navigating, writing, and

understanding the source code and thus miss the wider context of developers’

work. More complex tools, which are more similar to our solution, can be found in

the time management domain, e.g., ManicTime
1
 application.

3.1 Data Available on Software Developers' Activity

We monitor interaction events in tools that a software developer interacts with

during their work. Although we may record even elementary events such as key

presses or mouse movements that make our data big, we empirically selected only

some of the events provided by tools (Microsoft Visual Studio, Eclipse, Git, Bash

shell, and Mozilla Firefox). An interaction event is reported by a tool noting that a

developer performed a meaningful operation. For each developer we also log

which processes and applications were running in the operating system.

With a web browser we record navigation to URL addresses (through a link/URL

bar/bookmark/other), actions with tabs (switch to/open/close), saving a document

(and its name), or even creating a bookmark (with its name).

In an IDE we record interactions with source code documents (add, open, close,

switch to, remove, save, rename), projects and solutions (add, open, close, switch

to, remove, rename, refresh). We also record source code content interactions,

specifically code fragments manipulation (copy, paste, cut, paste from a webpage)

and searching in source code (searched expression, used search options, number

of searched documents and results). We are also interested in a work to Git

(commits) or Microsoft Team Foundation Server (check-ins). Because developers

also use bash shell during their work, thus we record executed bash commands.

Recording of interaction events in tools is realized by custom plugins that

communicate with local client application, called UACA, running on a

developer’s workstation. This application sends recorded data in chunks to a

centralized repository using REST web services. With this approach we are able to

monitor high quantities of interesting and very detailed data about software

development, but still use it for evaluation, visualisation, or further processing.

Further details on the PerConIK infrastructure can be found in [1].

Countless numbers of charts can be devised from the listed data and source code

of monitored software projects. In this paper, we cannot discuss all the devised

1
 http://www.manictime.com/

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 168 –

data or graphs, and in any case, we did not employ all of them. However, to

explain our visualisation approach in a simple and comprehensible manner, while

still showing the potential of such visualisations, we include only charts that

contain two activities – those of a developer interacting with a web browser and

with an IDE. These are not further fragmented. We also did not include activities

of bash commands because of their insufficient number. Answers to these

questions can be found in such graphs: When and which developer was the most

active? Is it always at the same time? Do all of the developers use a web browser

and IDE by the same share? Is there a pattern or dependency at work in a web

browser or an IDE? Which web sites were visited by developers the most? Is there

a relation between the amount of time spent in a web browser during a work in an

IDE, to the number of source code changes by a developer?

The graphs may also contain various metrics, e.g., for source codes: time spent by

a developer typing them, studying them (reading without changing them), number

of functions edited, how many times and how long a certain file was opened, the

number of time the file was changed, etc. For web browsing: the ratio between the

number of web pages related to work and private purposes, the ratio between the

time spent on work vs. private web pages, the absolute number of web pages or

absolute time spent on work/private web pages, correlation of these numbers with

other quantities, the number of copied elements, etc.

Other potential graphs using mentioned metrics may answer the following

questions: Can we categorize developers according to their read/edit/copy/paste

behaviour? Can we evaluate their productivity? Is there any correlation between

different types of activities that help us to indicate developers’ experience, their

strengths and weaknesses? Is there any harmful behaviour occurring in specific

situations, e.g., introducing a bug by the end of a project? Is there any visible trend

or pattern between the number of source code changes and other situations?

Answers to some of these questions can be found only if data is from a long

enough period of time, which could take many years.

3.2 Graphs Devised from Software Developer’s Activity

In order to identify any information from interaction data, it is necessary to

combine events into higher level activities [12, 20] and then to visualise them. It is

not easy to determine which actions form an activity. One way to do so is to apply

a time threshold, as we describe in more detail in [22]. The visualisation graphs

themselves should be transparent, readable and adaptable. We propose three kinds

of graphs:

1) Timeline graphs, which depict selected type of activities – e.g., when and how

long a developer worked in a certain application (see ManicTime graph in

Figure 2); here it cannot easily be seen how many of them there are or how

much time is spent in total. This type of graph can be found also in [16]

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 169 –

2) Scatter graphs – the dependency of selected activities (see Figure 6)

3) Column graphs – the cumulative numbers of the selected types of activities:

a. One column is for one time step – e.g., it depicts number of web and

IDE activities done within an hour; columns are ordered by time and

have the same width (see Figure 3 and 4).

b. One column is for one type of activity – e.g., it depicts the number of

visits on stackoverflow.com domain; columns are ordered by height

and have the same width.

c. One column is for one block of activity – e.g., it depicts the number

of changed lines in source code; columns are ordered by time and

each block has a different width equal to the duration of a depicted

block (see Figure 5)

Our implementation of the visualisation allows the user an interactive modifying

time axis scale for each graph with a time axis. It is possible to choose time units

to be used for data accumulation in the graph. By clicking on a column in a graph,

a new graph with a finer time scale will open.

4 Evaluation

In order to be able to evaluate our proposed approach, we devised a prototype tool

IVDA (Interactive Visualisation of Developers' Actions). It is implemented as

a service that provides visualisations of logged data [22]. The visualisations are

shown directly on the web browser, while computation takes place on the server.

There are tools that are able to monitor a software developer, but not to visualise

their activity. There are also tools, on the other hand, that visualise software

development but do not monitor the software developer so closely. Since our tool

IVDA is no exception to this, some experiments are by design not fully supported.

For comparison with existing systems, we compared our tool with several other

similar tools that were compared in [18]. Moreover, we also include the tool

ManicTime in the comparison.

The tool is not from the domain of software development, but from the more

general domain of time management. It monitors computer usage in any work. It

is oriented toward applications or environments used, and documents (context)

that the user is working within the given application (see Figure 2). The tool

monitors how long activities lasted. Recorded data can be seen on the time axis.

They serve the user as an overview of their work with the computer. The tool also

offers cumulative results, albeit only in numerical form.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 170 –

Figure 2

Timeline in ManicTime interface

See Table 1 for results of the comparison with our IVDA tool with existing tools

mentioned in [18] that monitor developers' work, along with ManicTime. The

comparison is done by classification based on workspace awareness elements and

does not take into account visualisation ability. The number of individual elements

across all 14 tools represents the need of developers to know that information. As

we can see, IVDA offers the five most wanted elements. ManicTime offers three

of them, although this tool is not specific to the domain of software development.

Table 1

Omoronyia, et al. [18] classification of visualisation tools with added IVDA and ManicTime

Tool I
d

en
ti

ty

 L
o

ca
ti

o
n

 A
ct

iv
it

y
 l

ev
el

 A
ct

io
n

s

 I
n

te
n

ti
o

n
s

 C
h

an
g

es

 O
b

je
ct

s

 E
x

te
n

ts

 A
b

il
it

ie
s

 I
n

fl
u

en
ce

 E
x

p
ec

ta
ti

o
n

s

TagSEA x x x x

Jazz x x x x x x

Expertise browser x x x x x

Sysiphus x x x x

Hipikat x

Palantír x x x x x

FASTDash x x x x x

Team tracks x x x

CASS x x x x

Augur x x x x

Ariadne x x

Mylyn x x x x x x

ManicTime x x x

IVDA x x x x x

14 tools 12 6 6 2 5 10 8 3 1 3 2

To proceed with the evaluation of our approach, we performed a user test aimed at

its visualisation quality. The tools from Table 1 do not provide visualisation as

IVDA or ManicTime. Therefore we needed to choose other tools. As we already

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 171 –

mentioned, there are tools, which visualise code structure and/or source code

metrics, and/or tasks [2, 3, 4, 7, 8, 9, 16, 17], but they do not visualise

programmer’s activities with their context. This led us to find a tool for

visualisation of activities, but from another domain, e.g., ManicTime, and to

compare it with IVDA. The test included 10 test cases (TC) of differing difficulty

(see Table 2). We conducted this test with 7 participants (4 males and 3 females)

ages 19-35, with a university degree in an engineering field. None of them had

previous experience with visualisations or tools that monitor time spent with

a computer, and they use a web browser for 2 to 8 hours a day.

Table 2

10 test cases (TC1-TC10) conducted for evaluation of the IVDA tool

TC1 Inspect activity of any developer over the previous week.

TC2 Determine by inspection, for any developer, what activities prevailed during

the previous day.

TC3 Find out which processes were run on the user’s computer on a given day.

TC4 During which part of the last 3 days was the developer most productive?

TC5 Which files and environments did the developer work with yesterday?

TC6 Which particular file has been the most frequently modified one by

a developer during the whole previous year?

TC7 Did the developer write source code over the last week more frequently in the

mornings or in the evenings?

TC8 For how long did the developer use the browser after 11 o’clock?

TC9 Try to identify some habit in the developer’s behaviour within the last month.

TC10 There are a developer’s activities that do not relate to the actual development.

If they indeed occur, find out when they started, how long they lasted and

what is their nature. Choose a single August day in 2014.

Table 3 shows the success rates of tasks completion (within the allotted time limit)

– the test participants completed most of the required tasks on time for both of the

compared tools. Moreover, we noticed that the test participants frequently had

problems with initial tasks, which took them longer than expected. This may be

caused by a lack of intuitiveness of the tool in the initial phase. Keeping the main

goal of this research in mind, i.e., to facilitate explorative analysis, the TC9 task

was the most critical one. Our IVDA tool has higher potential to analyse

monitored and visualised data, and to seek new information from it. Moreover,

IVDA offers information, which other visualising tools do not. One of the

interesting feedbacks from one participant was that she became curious after

experiments and started to explore the data herself to answer her own questions.

In Figure 3, the graphs reveal information about the logged developer “Puma”. It

appears “Puma” mostly writes code during working days. There are a few days

when “Puma” works really hard (maybe refactoring some code since a lot of lines

of the code were changed). But there are also days (and even weeks), when

“Puma” uses only the web browser. The gap in August suggests that Puma was on

vacation.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 172 –

F
ig

u
re

 3

O
v

er
v
ie

w
 o

f
w

o
rk

 b
y

 a
 d

ev
el

o
p

er
 “

P
u
m

a”
 w

it
h

in
 a

 t
im

ef
ra

m
e

o
f

6
 m

o
n

th
s

–

co
lu

m
n

s
in

 g
ra

p
h

s
d
ep

ic
t

cu
m

u
la

te
d
 n

u
m

b
er

 o
f

v
is

it
ed

 d
o

m
ai

n
s

an
d
 e

d
it

ed
 l

in
es

 o
f

co
d
e

p
er

 d
ay

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 173 –

Table 3

Success rate of tasks TC1-TC10 completion in IVDA and ManicTime (%)

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10

IVDA 85 100 85 100 57 100 100 85 100 100

ManicTime 100 100 100 57 100 85 85 85 57 71

Graphs in Figure 4 show that different developers work differently during the

same time period. “Jaguar” edited hundreds lines of code during selected days.

“Puma” worked a lot with a browser – probably searching for something. In both

graphs it is clearly visible that both of them are more active during the day and

resting during the night. No regularities like lunch breaks, meetings, etc. can be

found in this part of a year, but in our dataset there are other time periods, where

such events are visible.

Figure 4

Comparison of two developers “Puma” and “Jaguar” over one week –the number of visited domains

together with the number of edited lines, both cumulated per hour

Graphs in Figure 5 depict columns of different widths since the activities are

cumulated per continuous activity (either continuous in a web browser or

continuous in IDE). This type of visual representation helps the explorer quickly

find the most active periods in a developer’s working day – the highest and the

widest columns. As the example of the developer “Puma” shows, developers' days

can vary widely – there is a different time of day for the highest number of edited

lines of code, different amounts of visited domains and different ratios of these

two activities. Although these three days look so different, they have also

something in common – the Pareto principle also plays a role here: it looks like

the most active periods cover 20% of the developer’s working day and during

these peaks, 80% of their activities are completed.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 174 –

In another type of graph one can try to find an answer to the following question:

“Does the number of edited lines of the code depend on the time the developer

spent using a web browser when writing it?” As we can see in Figure 6, there is no

dependency. However, we can postulate that when this developer spends more

than 20 minutes using a browser, they are probably not writing a code.

Figure 5

Number of visited domains together with number of edited lines by developer “Puma”,

both cumulated per continuous activity, within three subsequent days

Figure 6

Scatter graph, where every point represents the duration of the web browser activity which was

immediately followed by a depicted amount of source code changes in IDE

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 175 –

Conclusions

The work presented in this paper contributes to the methods of better

understanding a software developer’s activities. Understanding them is vitally

important during software evolution. In development, a project manager can better

reassign tasks and allocate resources. In maintenance, any revealed code

dependencies suggest places for a possible remedy. Activities emerge as high level

outcomes of exploratory analysis of low level data, logging a developer’s rather

elementary actions. These elementary actions are such that many of them occur

within small periods of time. As a result, logging them also requires some kind of

pre-processing, since without reduction, storing them would be too prohibitive.

This is essentially one of the characteristics of Big Data.

Software development is a creative process, which together with maintenance are

the two most extensive elements of a software project. A software developer, as an

executor committed to bringing specifications and ideas into usable product, is

often difficult to monitor, evaluate and reason upon identified information, in

order to support the particular software project meeting the deadlines on time and

in acceptable quality. As we pointed out, this motivates current research in

software engineering to employ new approaches for monitoring software

development directly on the level of interaction events performed by developers in

tools that they use during their work.

Our contribution is to transform low level logged data into higher level

information on activities and then to attempt various schemes of visualisation in

order to facilitate better understanding of the data. We employ interactive

visualisation in a customizable manner to find answers to various interested

questions of team leaders or software developers. We understand visualisation as

a tool to open the way to explorative analysis of a software developer’s activity.

We described explorative analysis as a three step process, depicting the

importance of a proper visualisation tool. We devised a number of simple graph

schemes. They visualise the partially processed data and allow a human analyst to

make assumptions by generalising what they see in visualising graphs. We applied

the devised graph schemes to data gathered within the project PerConIK that we

have been participating in over the last four years. We devised and implemented

the interactive visualisation tool IVDA. User-defined graphs generated by the tool

show information about activities, developers' actions and their metrics, which a

team leader may use to identify possible causes of problems, delays in delivering

results, anomalies and trends in activities of developers in a team. Furthermore,

this tool may help any scientist to endorse or refute assumptions about a software

developer’s activity. By inspecting the visualised data, the analyst is able to gain

much useful information on the software development of a particular project.

Since data that can be received by logging is way below the level any analysis of

software development should be performed, one challenge for future work is to

further automate identification of developers' activities from interactive events.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 176 –

Such identification, especially when accomplished in real-time during

a developer’s work, may support not only a team leader or scientist in answering

hypotheses, but also developers themselves before committing their results to

revision control systems or when describing completed tasks in task management

systems. Developers often work on several development tasks, more or less

arbitrarily, that may tangle them into composite change (commit) in the end. Such

tangled changes in an RCS are difficult to review, describe, or merge with other

changes. Existing approaches attempt to identify and untangle such changes by

analysing a static snapshot of commit history. However, we argue that the

approach of doing so in real-time is required, to prevent a software developer from

tangling their changes even before committing them to an RCS.

Acknowledgement

This work was supported by the Research and Development Operational

Programme for the project Research of methods for acquisition, analysis and

personalized conveying of information and knowledge, ITMS 26240220039, co-

funded by the ERDF. This work was also partially supported by the Scientific

Grant Agency of The Slovak Republic, Grant No. VG 1/0752/14.

References

[1] Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J.,

Lacko, P.: Platform Independent Software Development Monitoring:

Design of an Architecture. In: Proc. of 40
th

 International Conference on

Current Trends in Theory and Practice of Computer Science (SOFSEM

2014) Springer-Verlag, 2014, pp. 126-137

[2] Burch, M., Diehl, S., Weissgerber, P.: EPOSee – A Tool For Visualizing

Software Evolution. In: Proc. of the 3
rd

 IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT 2005)

IEEE, 2005, pp. 1-2

[3] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.: A System for

Graph-based Visualization of the Evolution of Software. In: Proc. of the

2003 ACM Symposium on Software Visualization (SoftVis ’03) ACM,

2003, pp. 77-86

[4] Erra, U., Scanniello, G., Capece, N.: Visualizing the Evolution of Software

Systems Using the Forest Metaphor. In: Proc. of the 16
th

 International

Conference on Information Visualisation (IV 2012) IEEE, 2012, pp. 87-92

[5] Garzo, A., Benczur, A. A., Sidlo, C. I., et al.: Real-time Streaming Mobility

Analytics. In: Proc. of the 2013 IEEE International Conference on Big

Data, IEEE, 2013, pp. 697-702

[6] Gu, Z., Schleck, D., Barr, E. T., Su, Z.: Capturing and Exploring IDE

Interactions. In: Proc. of the 2014 ACM International Symposium on New

Ideas, New Paradigms, and Reflections on Programming & Software

(Onward! 2014) ACM, 2014, pp. 83-94

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 177 –

[7] Hanjalic, A.: ClonEvol: Visualizing Software Evolution with Code Clones.

In: Proc. of the 1
st
 IEEE Conference on Software Visualization (VISSOFT

2013) IEEE, 2013, pp. 1-4

[8] Hindle, A., Ming Jiang, Z., Koleilat, W., Godfrey, M. W., Holt, R. C.:

YARN: Animating Software Evolution. In: Proc. of the 4
th

 IEEE

International Workshop on Visualizing Software for Understanding and

Analysis (VISSOFT 2007) IEEE, 2007, pp. 129-136

[9] Kapec, P.: Knowledge-based Software Representation, Querying and

Visualization. In: Information Sciences and Technologies. Bulletin of the

ACM Slovakia, Vol. 3, No. 2, Slovak University of Technology Press,

Bratislava, Slovakia, 2011, pp. 1-11

[10] Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer

Productivity. In: Proc. of the 14
th

 ACM SIGSOFT International Symposium

on Foundations of Software Engineering (SIGSOFT ‘06/FSE-14) ACM,

2006, pp. 1-11

[11] Konôpka, M., Bieliková, M.: Software Developer Activity as a Source for

Identifying Hidden Source Code Dependencies. In: Proc. of the 41
st

International Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM 2015) Springer-Verlag, LNCS 8939, 2015,

pp. 449-462

[12] Konôpka, M., Návrat, P.: Untangling Development Tasks with Software

Developer’s Activity. To appear in: Proc. of the 2
nd

 International Workshop

on Context for Software Development (CSD 2015) in companion with the

37
th

 International Conf. on Software Engineering (ICSE 2015) IEEE Press,

Florence, Italy, 2015, 2 p.

[13] Kuric, E., Bieliková, M.: Estimation of Student’s Programming Expertise.

In: Proc. of the 8
th

 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM ’14) ACM, 2014, Article

No. 35

[14] Maalej, W., Fritz, T., Robbes, R.: Collecting and Processing Interaction

Data for Recommendation Systems, in Recommendation Systems in

Software Engineering, Robillard, M. P., Maalej, W., Walker, R.J.,

Zimmermann, T. (Eds.) Springer Berlin Heidelberg, 2014, pp. 173-197

[15] Maletic, J. I., Marcus, A., Collard, M. L.: A Task Oriented View of

Software Visualization. In: Proc. of the 1
st
 Int. Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT 2002) IEEE, 2012, p.

32

[16] Minelli, R., Mocci, A., Lanza, M.: Visualizing Developer Interactions. In:

Second IEEE Working Conference on Software Visualization (VISSOFT

2014) IEEE, 2014, pp. 147-156

[17] Novais, R., Lima, C., de F. Carneiro, G., Paulo, R. M. S., Medonca, M.: An

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 178 –

Interactive Differential and Temporal Approach to Visually Analyze

Software Evolution. In: Proc. of 6
th

 IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT 2011)

IEEE, 2011, pp. 1-4

[18] Omoronyia, I., Ferguson, J., Roper, M., Wood, M.: Using Developer

Activity Data to Enhance Awareness during Collaborative Software

Development. In: Computer Supported Cooperative Work (CSCW) Vol.

18, Issue 5-6, Springer Netherlands, 2009, pp. 509-558

[19] Rástočný, K., Bieliková, M.: Enriching Source Code by Empirical

Metadata. In: Proc. of the 8
th

 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM ’14) ACM,

2014, Article No. 67

[20] Roehm, T., Maalej, W.: Automatically Detecting Developer Activities and

Problems in Software Development Work. In: Proc. of 33
rd

 International

Conference on Software Engineering (ICSE 2012) IEEE, 2012, pp. 1261-

1264

[21] Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C.: Monitoring User

Interactions for Supporting Failure Reproduction. In: Proc. of the 21
st
 IEEE

International Conference on Program Comprehension (ICPC 2013) IEEE,

2013, pp. 73-82

[22] Sekerák, L.: Interactive Visualization of Developer’s Actions. In: Proc. of

the 11
th

 Student Research Conf. on Informatics and Information

Technologies (IIT.SRC 2015) Slovak University of Technology Press,

Bratislava, Slovakia, 2015, pp. 281-286

[23] Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations. In: Proc. of the 1996 IEEE Symposium on

Visual Languages, IEEE, 1996, pp. 336-343

[24] Zhang, J., Huang, M. L.: 5Ws Model for Big Data Analysis and

Visualization. In: Proc. of 16
th

 IEEE International Conference on

Computation Science and Engineering (CSE 2013) IEEE, 2013, pp. 1021-

1028

