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Abstract: Processing the textual scripts of computer languages is an important field in 

software development, which has been growing in popularity, recently. It is applied both 

for general-purpose programming languages and for domain-specific languages. There is a 

wide range of typical algorithms and patterns that are used to syntactically parse formal 

languages, each having specific characteristics and implying different software 

architectures. If we develop parsers at a higher abstraction level, it simplifies the problem 

domain and facilitates developing more robust software quicker, but there are always some 

tradeoffs to consider. The main guideline of this paper is abstraction: how to increase it in 

different patterns, how it helps parser development and what kind of tradeoffs are implied. 

The presented architectural design patterns are organized in a pattern catalog ordered by 

their abstraction level. This catalog is intended to assist developers in the industry in 

designing efficient parser software. 
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architectural patterns 

1 Introduction 

The complexity of systems is growing at a rapid pace, which promotes the use of 

modeling and formal methods in today’s software environment. When modeling is 

used for a well-defined field and has a limited expressive nature, we usually speak 

about domain-specific modeling [1] [2]. This limited expressive potential reduces 

the problem domain and thus simplifies and facilitates software engineering. We 

can express models in two common ways: with graphical or textual 

representations. The latter has led to processing of textual scripts and formal 

language theory being used more widely than in the past [3]. Writing parsers for 

computer languages was formerly a very specific knowledge that was only 

necessary to design and implement compilers but was not a commonly required 
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skill. This situation has changed recently as software developers are more 

frequently facing the problem of processing textual representations of models. 

Although processing of domain-specific modeling languages is usually based on 

the theoretical background of compilers for general-purpose programming 

languages, their limited expressive power sometimes can lead to a simpler syntax, 

which allows other, often simpler, parsing approaches. This work presents 

processing methods of both types. 

Despite the increasing use of domain-specific languages, we still lack catalogs that 

collect best practices for this field. Since the introduction of design patterns in [4], 

developers have a catalog of generally applicable object-oriented best practices 

and a universal terminology to refer to commonly used software recipes. This 

book had a great influence on the software development area, but it only contained 

a wide or general focus. Catalogs of more specialized patterns are still very much 

in demand, in order to collect more ideas and to create a common vocabulary 

among developers. In the field of domain-specific languages, [1] provides a 

pattern catalog, covering several different aspects of domain-specific languages. 

This is a rich source of information but it has a more general view than this paper 

and does not provide such a systematic organization of architectural patterns used 

in parsing as intended herein. Apart from this, [5] provides some practical uses of 

general object-oriented design patterns in recursive descent parsers and [6] 

describes how a parser generator uses object-oriented design patterns. These are 

just specific uses of general design patterns and these papers do not include more 

specialized patterns specific to parsers. 

The goal of this paper is to fill the gap and provide a pattern catalog of design 

patterns that can be used to design parser software. We focus on architectural-

level design patterns, which determine the software components and their 

interaction. Although some of the patterns described herein result in an identical 

runtime component structure, we judged that it was practical to describe them, 

because the development techniques and workflow that they suggest are very 

different. This also leads to deviating consequences, so we extended the notion of 

architectural design pattern to possibly include some aspects of development 

workflow. In fact, [1] also distinguishes some patterns that result in an identical 

runtime structure, though it does not explicitly merit this generalization. When 

creating the pattern catalog, we examined the interests of all actors within the 

industry that are concerned with parsing software: end-users, domain specialists, 

developers and tool developers. They have different focuses and goals, which 

were taken into account in the description of patterns, so that all actors can benefit 

from using this catalog. 

The rest of this paper is organized as follows. In Section 2, the theoretical 

background is explained, which is necessary to understand the concepts outlined 

in the paper. In Section 3, the actual pattern catalog is presented. We provide an 

introductory section that summarizes its deliverables to different actors of the 

industry and then patterns are listed according to their level of abstraction. We 
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have intentionally avoided the terms maturity and evolution and consider it 

important to explicitly highlight that a higher level of abstraction does not 

necessarily guarantee a specific pattern is consistently more effective or practical. 

Higher abstraction usually means that less development work is necessary, but 

sometimes it may also include less flexibility. 

2 Background 

In the following, we summarize the principal concepts of parsing. This theoretical 

background is explained in more detail in [7] and [8]. 

First, we discuss the processing of textual scripts, we must divide this process into 

two major steps: parsing and execution. Parsing [1] is described here as a step in 

which the input is read and mapped to an internal representation, the semantic 

model, which is more meaningful than any intermediate abstract representation. 

Execution refers to the actual processing of the model, which can mean running 

some executable steps or a transformation executed on the model. Before 

describing the actual patterns, we briefly discuss the possibility of parsing and 

executing languages with increasing levels of abstraction. In software engineering, 

we identify some kind of systematic organization or commonly applicable steps, 

factor them out as reusable units and parameterize them with the parameters that 

change from one use case to the other. Abstraction is increased in this way. Later 

on, we discuss how this applies to language processors. 

The least structured parser that we can imagine is a monolithic component, which 

reads an input and executes it immediately. One commonly used intuitive parsing 

solution that follows a more systematic approach is a delimiter-directed translation 

[1]. With this approach, the language is divided into chunks, called tokens, by 

identifying well-recognizable separator characters. Then the actual type of each 

token can be inferred from its position. For some simple languages, this is a quick 

and easy solution that can be developed. However, for a more complicated 

language, the notion of grammar [7] must be introduced. Grammar is a formalism 

that describes how the language constructs can be used together to create well-

formed words
1
. The grammar uses two kinds of symbols: a terminal symbol is a 

symbol that can occur in well-formed words, while a non-terminal symbol is only 

used for substitutions, in an attempt to derive well-formed words from the 

grammar. There is a special non-terminal, the start symbol, from which the 

derivation starts. A grammar is composed of production rules, which have two 

sides and express a possible substitution while deriving a well-formed word. The 

                                                           
1
  A well-formed word is a statement expressed in the language that is considered valid 

and meaningful. 
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left side is the series of symbols that are substituted from the right side. If we can 

find a derivation from the start symbol that uses the production rules and 

successfully derives the word we are validating, then the particular word is 

considered well-formed in the language. 

To simplify the process, production rules are usually phrased at the level of the 

tokens and not at the single characters. We construct a lexical analyzer (also called 

lexer or scanner) that creates a series of tokens from the input character stream. 

The syntactical analyzer then uses this token stream and a parsing algorithm to 

verify whether the word is well-formed in the language. While using the 

production rules to derive the input word, it also stores the parse tree or a 

simplified version of that, which is usually denoted as an abstract syntax tree. 

When the distinction between them is irrelevant, they are usually referred to as 

syntax trees. This phase is sometimes ambiguously referred to as parsing, identical 

to the entire process. With the help of the notion of grammar, we now have a more 

systematic method to build a parser: create a grammar, write a lexer that produces 

a token stream from the input and write the syntactical analyzer that uses the 

production rules of the grammar to decide whether the input belongs to the 

language. At the same time, it builds a syntax tree and if the derivation succeeds, 

this syntax tree can be used for the semantic analysis of the input. Figure 1 

summarizes how a script is processed. 

 

Figure 1 

The processing steps of parsing a language 

Since the parsing algorithms are generally applicable to a wide set of grammars 

(context-free grammars with some further limitations), the so called parser 

generators or compiler compilers (sometimes also referred to as compiler 

generators) have been developed to automatically generate parsers from a 

grammar in a well-specified notation. Using these tools, we can create a ready-to-

use parser that provides us with a syntax tree that can be used to further process 

the language. This highly simplifies the development effort for a parser. 

Nevertheless, the syntax tree is still not the semantic model (although in some 

cases it may be) so a third pass, a tree parser, is required. By further increasing the 

abstraction, it is possible to avoid manually developing the tree parser as well. 

Upon agreeing on the metamodel of the semantic model, it is possible to construct 

tools that directly generate a parser, that can map the input language to the 

semantic model. This entails that the grammar language has to be extended to 

include additional information about the methods for mapping language 

constructs, to model elements and their properties. This way, we can generate all 

components needed to parse the language and build the required semantic model. 
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3 Pattern Catalog 

The different approaches for the parsing process that have been presented in 

Section 2, can be described as architectural design patterns. This section provides 

a catalog of them using a format similar to [4]. Similarly, because of their higher-

level nature, these patterns do not have such a specific intent as general design 

patterns and therefore, the intent section has been renamed to Description. 

Furthermore, the sections on alternative names and related patterns have also been 

removed. In Description, the main idea of the discussed architectural structure is 

explained. Motivation describes the main factors for choosing the pattern. 

Applicability enumerates the criteria required for the pattern to be relevant when 

applied. In Structure, the composition and collaboration of the parser components 

are explained and represented with a summarizing figure. The Consequences 

section highlights the deliverables and warns about potential disadvantages of the 

pattern. In particular, the following aspects are examined: (1) the intermediate data 

structures used in the pattern and their memory consumption; (2) the clarity of the 

resulting component structure and the ease of modifications and extensions; (3) 

the level of expressiveness in the language that the pattern allows; (4) the 

reusability; (5) the extent of required compiler-specific knowledge; (6) the amount 

of code to be hand-written and the development time required and (7) the effort 

required to build and integrate the components in the system under construction. 

Implementation provides some guidelines or best practices to consider when 

employing the architecture. Last but not least are the Known Uses section, it 

presents an example and provides references, so that the application and 

implementation of the pattern can be grasped and later studied more efficiently. 

Table 1 can be consulted for a short summary of the actors in the field of 

computer languages and their motivation in using this pattern catalog. 

The figures included in the pattern descriptions use a loosely formalized, but 

intuitive graphical notation that explains the component structure and the data 

flow among components. We have not found a standard notation for this purpose 

that was intuitive enough. Our notation uses the following conventions: Program 

components are represented with rounded rectangles that include a “meshed gear 

or cogwheel” icon. Components supplied by third-party vendors have a double 

border. Generated components have a dashed border. Components that have to be 

hand-written have a single border. Input and output artifacts and intermediate data 

structures are represented by an arbitrary icon and are explained in the caption. 

Arrows show the information flow between components. Arrows with the gear 

icon denote that a component generates another. 
 

In the following, these patterns will be discussed: 

1. Ad-hoc Parser 

2. Delimiter-Directed Parser 
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3. Multiple Pass Parser 

4. Common Carrier Syntax 

5. Parser Generator 

6. Semantic Mapper Generator 

Table 1 

Motivations of actors in using the pattern catalog 

 

3.1 Ad-hoc Parser 

Description The parser is a single monolithic unit. There is no explicit notion of 

grammar nor are there consecutive subtasks. 

Motivation The complexity of the language does not require a higher-level 

pattern and it is desirable to avoid the development overhead of that. 

This solution is often applied, if the performance of the system is so critical that 

higher-level patterns cannot be used because of their additional runtime overhead. 

Applicability This kind of parser is only applicable with simple languages. If the 

language is such that it can be executed on-the-fly, we can keep memory usage 

low. On-the-fly processing means that the fragments of the script can be processed 

immediately, as they are read, and there is no need to store significant information 

about the context. 

Structure The parser itself is a single unit that reads the input and processes it. It 

does not contain any common structural units. Figure 2 depicts an ad-hoc parser. 
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Figure 2 

An ad-hoc parser 

Consequences Because the parser is a single unit, there is no need for 

communication among components or building intermediate data structures. This 

reduces memory consumption and execution time. 

Because of the lack of inner structures, the parser code may be difficult to 

understand, maintain and extend. If the language is likely to change in the future, 

the maintenance cost of monolithic parsers drastically increases. 

The lack of inner structures and a systematic engineering process also implies that 

only low-complexity systems can be developed in this way. This greatly limits the 

expressiveness of the language. 

The parser does not have reusable components but the low complexity leads to 

less time spent on its development. 

Building an ad-hoc parser does not require specific knowledge in language theory 

or compiler engineering. 

Implementation Because of the ad-hoc nature of the solution there is no general 

implementation structure. The specifics of the processed language must be 

checked in order to realize a practical implementation. 

Known Uses In [9] Brian Kernighan demonstrates a simple implementation of the 

grep command-line utility. The grep utility expects a regular expression and looks 

for matching lines in the given input. The implementation explained by Brian 

Kernighan uses a limited subset of standard POSIX regular expressions but solves 

the matching problem on the fly with a minimal memory footprint. The code is 

apparently easy to understand because of the low complexity of the problem but 

once more advanced regular expression features are required, extension becomes a 

difficult task. 

3.2 Delimiter-Directed Translation 

Description The parser searches for separator symbols that separate the tokens of 

the input language script. The type of each token is then inferred by its position. 

The parser may build a semantic model in the memory, but it may also be possible 

to execute the language script on the fly. 



G. Kövesdán et al. Architectural Design Patterns for Language Parsers 

 – 46 – 

Motivation The simple structure of the language does not warrant building a full-

fledged parser that creates a substantial syntax tree in the memory. This can save 

memory and reduce execution time. The development overhead of syntax-directed 

parsers is also avoided. 

Applicability The language can easily be split into tokens by looking for 

separator symbols and tokens can easily be interpreted by their position. 

Structure The parser remains a major component, but it may also build a 

semantic model and pass it to an execution component. Figure 3 shows the 

structure of a delimiter-directed parser. 

 

Figure 3 

A delimiter-directed parser 

Consequences The parser is fast, simple and has a minimal memory footprint 

because the lack of separate components avoids communication overhead and 

creating intermediate data structures. 

Its code is somewhat easier to maintain, extend and understand when compared to 

ad-hoc parser since there is already a stream of clearly distinguished tokens, which 

are usually reflected in the code as array indexes. Although most languages use 

several different delimiters, if the syntax is more complex, it is not really easy to 

capture it with the delimiter-driven approach and the code also becomes difficult 

to read and modify. This limits the expressiveness of the language under design. 

The parser does not have significantly reusable components but the low 

complexity leads to less time spent on coding. If structured well, the tokenizer 

may be reused. 

Building a delimiter-directed parser does not require specific knowledge in 

language theory or compiler engineering. 

Implementation Delimiter-directed parsers are frequently coded with a loop that 

reads statements one by one. This usually means reading the input line by line. 

Then, within a loop, the lines are split into tokens that are practically stored in an 

array or a list structure. Most programming languages also provide tokenizer 

functions. This may be followed either by populating a semantic model or a direct 

function call that processes the tokenized information. 

Known Uses Comma-separated values (CSV) is a common file format that 

enumerates properties of entities. Each entity is described by its own line and the 

property values follow a specific order and are separated by commas or 

semicolons. Such a file can easily be processed by a delimiter-directed parser. 
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3.3 Multiple Pass Parser (Syntax-Directed Translation) 

Description The notion of grammar is used to systematically create the parser that 

attempts to derive the input word from the production rules. The parser is usually 

divided into different logical components that prepare and perform this derivation 

and then map the resulting syntax tree to the semantic model. The number of the 

components may vary from parser to parser. 

The development of the parser is driven by the grammar of the language but it is 

possible that the resulting code does not explicitly express the grammar. 

Motivation The language is too complex, and parsing it with an ad-hoc parser or a 

delimiter-directed parser would be challenging. 

Facilities for better maintenance and extensibility are required. 

Applicability The pattern is always applicable; nevertheless the specific parsing 

algorithms have different limitations regarding the type of grammars they can 

handle. In general, a large subset of context-free grammars can be handled by 

choosing the appropriate algorithm. Parsing algorithms have different attributes 

with regard to the generality of the grammar, performance and memory 

consumption. 

Structure The parser is composed of several components, and the following three 

are the most common: (1) the lexical analyzer, (2) the syntactic analyzer and the 

(3) tree parser. 

A lexical analyzer provides a token stream for a syntactic analyzer, which in turn, 

builds a syntax tree. The syntax tree is quite a low-level construct that reflects the 

structure of the language itself but usually not the semantic meaning of the model. 

A third component may be used to map the syntax tree to the semantic model. 

Most often, a semantic model is provided although in some cases, the syntax tree 

may function as a semantic model as well. In Figure 4, we can see the workflow 

between the components of a multiple-pass parser. 

Consequences Implementing the parser requires knowledge in compiler 

development. 

Based on the chosen algorithm, the code may not explicitly reflect the grammar. 

The parser can handle a wide subset of context-free grammars, the concrete 

limitations of which depend on the particular algorithm. 

Based on the theory of formal languages, the parser can be algorithmically 

efficient. However, there are intermediate data structures used between the 

consecutive passes, which means that building them requires computational time 

and they increase the memory footprint. 
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Figure 4 

A multiple pass parser 

Because of the systematic construction facilitated by the notion of grammar, the 

code is easier to maintain, to extend and to understand. The code may not always 

explicitly reflect the grammar, so the cost increases with future changes. 

The separation of concerns achieved by the decomposition of the parser requires a 

lot of coding efforts and these components are only moderately reusable. 

Implementation The lexical tokens are usually described by a regular language, 

which has limited expressiveness but this still increases abstraction and thus 

facilitates the implementation of the syntactic analyzer. The syntactic analyzer 

works with context-free languages and therefore can capture more aspects of the 

language than the lexical analyzer. In automata theory, context-free languages are 

recognized by push-down automata. It is not surprising that many 

implementations therefore use a stack data structure. A large set of algorithms 

uses a table-driven approach that requires a parsing table, which determines the 

action to take by examining the topmost stack symbol and the current input token. 

Other algorithms use recursive calls to capture a LIFO (Last In First Out) 

behavior, such as the recursive descent parser or the recursive ascent parser [10] 

[11]. 

Known Uses Most hand-written parsers of complex languages use multiple passes 

to simplify parsing and parser generators usually generate code using this 

abstraction. 
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3.4 Common Carrier Syntax (Syntax-Directed Translation) 

Description The language syntax is composed of a limited set of language 

constructs, which makes it possible to reuse an existing parser. The available 

language constructs have a general nature so that a wide range of domain-specific 

languages can be expressed with it. An optional grammar description can further 

limit the syntax. In this context, such optional grammar will be referred to as 

vocabulary or schema. The parser then may have two inputs: the script to be 

processed, and its schema description. 

Motivation The reuse of the fixed set of language constructs also makes the 

toolchain heavily reusable. 

Using more uniform syntaxes among different languages facilitates 

standardization of the syntax and lowers the learning curve for new users. 

The limited set of language constructs can be defined in such a way that facilitates 

efficient parsing. 

Applicability The syntax of the language under design fits into the syntax that 

available common carrier syntaxes provide. This is usually the case when the 

language is read more often than modified. In this case, conciseness, in which 

these syntaxes usually fail, is not such an important aspect. 

Identical or similar carrier syntax is used for other domain-specific languages in 

the environment where the language under construction is being developed. End 

users of the language are already familiar with the carrier syntax, which lowers the 

learning curve of the new language and the existing toolchain can be reused when 

it comes to processing scripts of a new language. 

Structure From an architectural viewpoint, the inner design of the parser is 

irrelevant. It can be considered as a black box that has one or two inputs: the 

optional schema and the language script to parse. Depending on the intent of the 

tool, it may provide rich functionality of processing and transformations or simply 

the minimum required to transform the script into a syntax tree or any other 

language-independent data structure that will reflect how the elements of the 

language script relate to each other. Figure 5 shows how common carrier syntaxes 

are used to process textual scripts. 

Consequences Implementing a language in common carrier syntax is easy; it 

consists of specifying how the previously defined syntax will be used to express 

model elements. This can be done with an informal description or with a schema 

language that places further limitations on the syntax, depending on the 

functionality provided by the underlying common carrier syntax. 

Common carrier syntaxes may sometimes be too verbose, since the fixed elements 

of the syntax add some syntactic noise. This also has a negative effect on the 

readability by humans. The extent of this depends greatly upon the actual common 
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carrier syntax. This is often unwanted and a more concise and intuitive syntax is 

preferred despite the advantages of using a common carrier syntax. 

 

Figure 5 

A parser of a common carrier syntax 

Languages implemented in common carrier syntaxes are very easy to extend by 

modifying the (implicit or explicit) schema. 

Using a common carrier syntax allows heavily reusing the parser and other tools 

used for language processing. Depending on our choice of the common carrier 

syntax, there may be numerous free and commercial implementations of parsing 

and processing tools. Because of the generality and constant development, these 

tools tend to be quite mature and efficient. Nevertheless, different processing 

libraries may have different APIs and different tools may be invoked with 

different options. This can make it practical to use a build management tool to 

integrate components. If there are good third-party tools available, coding may be 

required only for integration. 

The standardization lowers the learning curve for each actor involved in the 

development and use of the software product under construction. 

Implementation One well-known standard for common carrier syntaxes is the 

eXtensible Markup Language (XML) [12]. It has several schema languages 

available to define the vocabulary of our domain-specific languages, although not 

all of them are supported in each parser. It has a high number of related standards 

that assist in the transformation and processing of XML documents: XSLT [13], 

XPath [14], XQuery [15], and so on. XML is frequently criticized because of its 

verbose syntax, which is not the most convenient to write or read manually 

without specific tooling. On the other hand, its broad support and rich 

functionality make it a stable foundation for domain-specific languages. 

Two possible alternatives to XML are YAML [16] and JSON [17]. Their syntax is 

more concise and they are also standardized. However, they lack the 

accompanying transformation and processing standards, and that highly reduces 

their functionality. They also lack standard means of specifying a schema, 

although there are third-party solutions to define constraints. 
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Known Uses MathML [18] is an application of XML to create a language that can 

describe mathematical formulae. The language itself is defined using the XML 

Document Type Definition (DTD) schema language. Browsers and rendering 

software that support MathML leverage existing XML parser libraries. Although 

the syntax of MathML is quite verbose, the XML nature of it makes it possible to 

simply embed formulae into web pages or to process them with XML tools. 

3.5 Parser Generator (Syntax-Directed Translation) 

Description A parser generator software is used to generate a multiple pass parser 

from the grammar description. The grammar is specified within the own notation 

of the parser generator and this description is used to generate a parser using a 

widely applicable parsing algorithm. Production rules in the grammar can usually 

contain the so-called semantic action routines that are code fragments written in 

the target programming language. These code fragments are generated into the 

output code and are run when a particular language element is recognized. It 

makes possible for the programmer to build a syntax tree or to populate a semantic 

model. 

Motivation The language is complex enough to warrant a syntax-directed parser; 

however, either the development team is not skilled in writing parsers or the 

parser does not need to be highly optimized or customized. Using a parser 

generator, the development time of the parser is usually low. 

Applicability The language can be parsed with the available general parsing 

algorithms and the performance of such a solution will suffice. Also, there are 

available parser generators that suit the requirements or building such is 

affordable. 

Structure The parser generator takes the grammar description, which may contain 

additional information about generation parameters, for example, target 

programming language in which the parser is implemented, the package name in 

case of Java code, and so on. The generator then outputs one or more software 

components that are used to parse scripts and build a syntax tree or a semantic 

model. In Figure 6, we can see a system that uses a parser generator. 

Consequences The build process of the parser is more complex because of the 

code generation step. 

The programmer must write the grammar that provides a higher-level view of the 

language and does not have to deal too much with the lower-level code. One 

exception is writing the semantic action routines if the default parse tree built by 

the generated parser needs to be customized. This lowers the learning curve, limits 

hand-written code and allows for the rapid development of parsers. 
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Semantic action routines are foreign code in the grammar description. Since they 

are factored out from their context, they cannot be properly validated. Besides, 

scattering also makes these code pieces difficult to understand. The overall effect 

of them may not be easily recognized, which can make the development process 

more error-prone and the debug process more difficult. 

The generated code is usually a multiple-pass parser, which means that the 

memory footprint will be high because of the large data structures used in the 

parsing process. 

The parser generator tool is highly reusable. 

 

Figure 6 

A parser system using a parser generator 

Implementation There is a vast diversity among parser generators. They differ in 

the target language(s) they generate, in the grammar notation used to specify the 

syntax and in the particular parsing algorithm they use (which also implies 

different limitations on the syntax). They may generate a lexer or may also 

support the use of a hand-written lexer. Some parser generators generate table-

driven code and fill in parsing tables according to the specified grammar while 

others may generate a recursive algorithm. Some parser generators may also 

support so-called syntactic predicates [19] which are additional notations 

intermixed with the grammar and can control certain parsing-time behavior that 

cannot be inferred from the production rules of the grammar. 

Known Uses ANTLR [20] [21] [22] is one of the most popular parser generator 

tools, which is implemented in Java but can generate parsers in several target 

languages. It generates an LL(*) [23] parser, which is a top-down parser with 

arbitrary look-ahead length, then implements it with a recursive descent approach. 

It handles a wide subset of context-free grammars, although, because of the top-

down nature, it cannot handle left-recursion. 
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3.6 Semantic Mapper Generator (Syntax-directed 

Translation) 

Description Suppose that we already have an appropriate metamodel and we want 

to use a parser generator because of the advantages discussed earlier. Since the 

metamodel is fixed, it is possible to build such a parser generator that also 

generates a tree parser, not just a syntactical analyzer. The grammar has to be 

extended with additional mapping notation that specifies how language constructs 

are mapped to elements of the semantic model. This solution allows us to define 

this mapping at a higher level and to generate code instead of manually 

developing the tree parser. 

Motivation Having a parser that directly outputs a semantic model increases 

abstraction and reduces hand-written code by leveraging generative programming 

[2]. 

Semantic action routines used in parser generators (see Section 3.5) lead to 

scattered code, which is difficult to read and the overall effect is not obvious; 

therefore this is an error-prone technique. Generating a parser that directly 

populates the semantic model overcomes this. 

Applicability The metamodel of the semantic model is known, and there exists a 

tool that can map the language elements directly to the semantic model or, if this 

is not possible, the development of such a tool is an affordable option. 

Structure The semantic mapper generator takes a grammar with semantic 

mapping information. It generates a semantic mapper that goes through the 

parsing process and builds an in-memory semantic model. This model is an 

instance of the used metamodel and also reflects the model information stored in 

the language script. The generated semantic mapper may be a monolithic unit or 

may be implemented as consecutive passes of parsing, like lexical analysis, 

syntactical analysis and tree parsing. The architecture that uses a semantic mapper 

generator is depicted in Figure 7. 

Consequences The build process of the parser is more complex due to the code 

generation step. 

Since the semantic model is built by the generated semantic mapper, there is no 

need for extra programming, such as using semantic action routines. This lowers 

the learning curve, eliminates hand-written code in the parsing phase and allows 

for rapid development of language parsers. 

The generated high-level code may impede customizing finer-grained, inner 

behavior and thus may have an average performance or memory footprint. 

The metamodel used by existing semantic mapper generators may be limiting and 

the alternative, developing a new semantic mapper generator for a custom 

metamodel may lead to (significantly) higher costs. 
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The generated code is usually a multiple-pass parser, resulting in a larger memory 

footprint for the data structures required for parsing. 

The semantic mapper generator tool is highly reusable. 

 

Figure 7 

A parser system using a semantic mapper generator 

Implementation Most consequences listed in Section 3.5 also apply to semantic 

mapper generator. Moreover, the grammar must be extended with extra notations 

that define how language constructs are mapped to the semantic model. Since 

general parsing algorithms build a syntax tree, designing such a notation has to 

practically account for the structure of the parse tree. An intuitive implementation 

idea is used by the Eclipse Xtext [24] project; it maps non-terminals at the left-

hand side of parser rules to entities and uses assignment operators, inside the same 

rules, to assign certain parts of the right-hand side of the rule to properties of the 

same entity. When these assignments refer to a terminal substitution, a property 

with a primitive data type will be inferred or when referring to a non-terminal 

substitution, an association is assumed. 

Known Uses The Eclipse Xtext project can be used to create languages. When the 

language scripts are parsed, it either populates an existing EMF
2
 [25] model or 

infers a new one. This existing or inferred model will be populated with modeling 

information obtained from the language script. In this case, the known metamodel 

is EMF; all of the entities, properties and associations are mapped to EMF 

constructs, which can later be processed with a wide range of tools that work with 

EMF models. 

                                                           
2  EMF is a metamodeling framework for the Eclipse platform. 
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Conclusions 

In this paper, we have provided a catalog of architectural-level design patterns that 

can be used to create parsers of computer languages. This catalog summarizes the 

most important characteristics, motivations and consequences, which can facilitate 

the engineering work with these kinds of software products. The focus has been 

limited to the field of parsing, which is a small but important subset of language- 

and model-processing. Consequently, only architectural-level patterns have been 

included into the pattern catalog. Table 2 summarizes the most important 

characteristics of the discussed patterns. We have also shown actors in the 

industry that are involved in parser development, what their motivations are, and 

how this pattern catalog can help them to achieve their goals. We believe that the 

pattern catalog can greatly assist those involved in the industry. Nevertheless, we 

are also aware that these patterns only help in commencing to design a parser, and 

do not provide information regarding the more specific details concerning 

implementation. Potential future work on design patterns for language parsing and 

modeling could include lower-level best practices in the field of parsing and other 

common subtasks of model-processing. 

Table 2 

A summary of the characteristics of the discussed patterns 
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