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Abstract: A bot is one of the main elements of all computer video games, frequently used 

for the creation of various opponent characters within a game. Opponent modeling is the 

problem of predicting the agent actions in a gaming environment. This paper proposes and 

describes the implementation of a bot as a personal opponent in a small educational game. 

In order to increase the efficiency when using such a small educational application/module, 

artificial intelligence was added in the form of a bot competing with the students. 

Pedagogical elements of the intelligent learning system are introduced through the 

pedagogical model and the student model. This paper demonstrates the use of the student 

model to present the player model built by the experience of a human teacher, with 

true/false questions incorporated with the bot strategy into the opponent model. The 

authors use the Monte Carlo approach in this implementation, known as artificial 

intelligence technique and a best-first search method used in most video games, but to the 

best of their knowledge, it has not been used for prediction in educational games based on 

bot strategy. The results highlight that the Monte Carlo approach presented via the BFTree 

classifier provides the best classification accuracy compared with other predictive models 

based on data mining classifiers. It was shown that the training data from the human 

player can help in creating a bot strategy for a personalized game-based learning system. 

The Help option can be used for the assessment of the students’ current knowledge by 

counting the number of Help option accesses, the player relies on Help as a ‘source of 
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knowledge’ needed to complete the game task successfully. The obtained results show that 

the bot (personal opponent) stimulated players to replay the game multiple times, which 

may contribute to the increase of the students’ knowledge. 

Keywords: knowledge personalization and customization; educational games; intelligent 

tutoring systems; personalized e-learning  

1 Introduction 

Depending on the type of game playing, video games may be associated with 

positive cognitive outcomes [1]. Simple games are mainly intended for one player. 

Therefore, the personal opponent developed as a game bot might have an 

important role in them. Game bots as ‘automated programs with or without 

artificial intelligence that help players enhance, accelerate, or bypass some 

routines in the game’ [4] are generally approved by the gaming community. 

Artificial intelligence (AI) depends both on knowledge about the world, and 

algorithms to intelligently process that knowledge. Three key understandings 

about the world, called ‘models’, used by intelligent systems in education, are the 

pedagogical model, the domain model, and the learner/student model. The 

application of artificial intelligence to education (AIED) has been the subject of 

many academic studies focusing on pedagogical agent realization [5, 6] or 

personalized educational game [7]. They are mostly based on a student model and 

teaching strategies implemented by agents technology including pedagogical 

features (pedagogical model) in an intelligent e-learning systems [8].  

For the effective integration of educational games into the teaching material, 

Singh and Sivaswamy [2] proposed concentration on developing simple and small 

games instead of creating highly complex game systems where the student is then 

left alone to figure out the relations. Multimedia Interactive Modules for Learning 

– MIMLE is an E-learning system with many small education modules that 

comprises game elements [3]. It is a set of 2D interactive modules which showed 

significant success with teenage students. Through the Help window in the 

MIMLE system, the student is provided with textual messages in the form of a 

theorem or a definition, vital for successfully solving the problem given in the 

current module level. From a pedagogical aspect, the MIMLE system stimulates 

students to draw conclusions based on the accuracy of the achieved steps in 

solving the entire task on their own. Adding time as a game element contributing 

to the player’s higher ranking in the game, also results in an increase of 

knowledge, as well as the improvement of the skills acquired through the easier 

levels. In order to keep the player as long as possible in the game, there is a need 

for some stimulation of his/her competitive spirit (in competition with themselves 

or with other players). The MIMLE system evaluates the player through his 

interaction with the system in the form of keeping count of the correct or incorrect 
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answers and tracking the Help option activation. Appropriate changes are made in 

the student model based on the recorded player performance. The conversion of 

the student model with teaching strategies so as to create a player model with 

agent strategies is not an easy task in the process of designing and developing 

educational games. The bot or opponent in the given e-learning system should 

assume the role of an intelligent agent aiming not to demoralize the student as a 

player by playing better or worse than the player does. Instead, the bot should 

closely match the student’s performance, thereby continuously forcing him to 

compete.  

The bot as a personal opponent in the modules of the MIMLE system, follows the 

interaction of the student with the system, and subsequently compiles its own set 

of answers requested in the game. Therefore, the bot and the student compete with 

each other. Based on the detected player performance, the appropriate changes are 

then made in the student model. In order to achieve better results than his bot, the 

student will start the game, over and over again, thus getting a chance to open the 

Help option several times and, in that manner, increase his knowledge. In this 

paper, the authors propose to design a personal opponent approach for the 

intelligent agent – bot in an MIMLE system. Machine learning is a technique by 

which the computer ‘learns’ from the set of given training data, and then the set is 

able to predict the result of new data. The machine learning algorithms are 

designed to identify patterns based on different characteristics or ‘features’ and 

then make predictions about the new, unclassified data based on the patterns 

‘learned’ earlier. Many classification techniques are implemented on the 

educational datasets used to build a player model in most video games. The Monte 

Carlo tree search is a method for making optimal decisions in numerous artificial 

intelligence problems, especially for the personal opponent approach into 

combinatorial games. The Monte Carlo approach presented as a form of data 

mining classifier can give very good classification accuracy in predictive models 

for designing the bot strategy. 

The current state-of-the-art options in teaching strategies for evaluating students' 

knowledge and existing opponent techniques in playing are shown in Section 2. 

Section 3 describes the conceptual framework of small game-based modules, 

addressing the problem of a player modeling based on student model in small e-

learning module [3]. The knowledge discovery techniques presented in Section 4 

are used for developing the bot strategy based on the data analysis of the player’s 

answers and player’s interaction with the Help option. Also, the methodology of 

searching for hidden connections between the gaming data is presented in the 

form of data mining algorithms and classifiers to create the best bot strategy. The 

experimental results, presented in Section 5, confirmed the validity of the 

described bot strategy (called MIMLeBot) and the authors’ policy in setting up 

possible states in the player model that the player/student could experience in a 

special class of educational games, justifying its implementation in such a type of 

e-learning system. 
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2 State of the Art 

Exams are commonly used assessment and evaluation tools in universities and 

there are numerous types of exam questions, generally categorized into 7 types 

[9]. One of them is the true-false (T/F) question type. With this type there are only 

two options for answering: “True” and “False”. This question provides students 

with a 50% chance of guessing the correct answer. Due to this fact T/F questions 

are suited for evaluating students' knowledge of specific facts and concepts, 

therefore true/false games are usually used as educational games. The student, as a 

player, is offered a task sequence (as a picture or text) and is expected to select the 

T/F item. For a simple T/F item, each student has a 50/50 chance of correctly 

answering the item even without any knowledge of the item's content [10, 11]. 

The teaching strategy for game completion is created, by monitoring the student’s 

response to the T/F items.  In this paper, a simple educational game is developed 

in the described T/F manner, where a sequence of rectangles, i.e. ‘boxes’ 

represents T/F items. 

Intelligent tutoring systems and agent-based learning environments also provide 

students with individualized practice rather than static sets of tasks. Many 

Intelligent Virtual Teaching Environments (IVTEs) include pedagogical features 

that are based on the student model and teaching strategies [12]. A student model 

(which reflects the state of knowledge), is applicable if its present state can be 

utilized by a certain interpreter to simulate the behavior of the modeled student 

when the student is solving training problems. The three-tier architecture of a 

typical agent IVTE system consists of a domain model, a student model and a 

pedagogical model [13]. Teaching an opponent model can be approached as a 

pattern recognition task, where the model is taught based on the history of the 

players’ previous actions [14]. However, this paper proposes a different approach. 

The authors determined a posterior distribution (using Bayes’ rule) for two 

specific states when the student’s answer is an accidental hit or miss, to gain 

appropriate (defined) bot action for those states. With this approach for T/F items, 

the use of the Help option plays a significant role in successfully completing the 

game. It may increase the students' knowledge of specific facts and concepts. For 

example, if the first answer is correct, and the second answer incorrect, then the 

probability that third answer will be correct is > 50% if the student opts for using 

the Help option. 

In the game proposed here the player selects a color box out of a choice of four so 

as to complete a task, in this case it is a trick-taking game with players selecting a 

card sequentially. In addition, in trick-taking games, the player has one optimal 

strategy and should play the cards in a specific order. In many games the optimal 

opponent strategy is based on different search methods. Monte Carlo Tree Search 

(MCTS) is a best-first search method that builds a search tree iteratively. MCTS 

has been used in several single player games [15] such as the puzzles SameGame 

or Morpion Solitaire. The authors in [16] applied MCTS in the context of mini-
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max game trees, since they are encountered in incomplete information games such 

as Poker, where the opponent’s actions cannot simply be predicted as value 

minimization actions. Using a back propagation strategy, they are evaluated as a 

part of a complete Poker bot (kind of MCTS bots). MCTS is a search algorithm 

based on random play-outs. It has been observed that MCTS is successful for 

trick-taking card games, but rather not suitable for poker-like card games. The 

question the present authors are set to answer is whether or not MCTS can be 

applied in an educational game, as well, e.g. by creating the bot strategy as a 

personal opponent. 

3 Game-based Learning Modules for Computer 

Science 

The authors created a module as special modules into the MIMLE system, which 

combined different types of the existing interactive multimedia environments for 

learning mathematics, physics and electronics. The game concept is based on two 

components: a) students have to obtain the course information through its 

interpretation in the game world; b) students have to see the results of this 

algorithm in a game context. Also, apart from placing a game interface into the 

learning environment, the authors also applied basic game elements, such as: 

result, time and difficulty levels. These new modules, named game-based modules 

[17], which include game elements, represent research multimedia learning 

applications and are intended for Computer Science students. This module was 

deployed as a learning environment for topics in the field of Computer Science. 

To increase the engagement and interest of students for this type of teaching 

material, the authors included game characteristics in this environment. Students 

need to have appropriate knowledge to successfully solve the tasks given as part 

of the game, and to advance from one game level to the next. The MIMLE system 

is presented as an e-learning system based small two-level game-based modules 

for a single player.  

When experiencing any difficulties in task solving on a certain level, the Help 

option can accelerate the student’s finding the right solution. Help option 

activation enables the students to learn the rules and apply them in practice on the 

presented examples. Therefore, the formulation of definitions and theorems within 

the Help is a crucial moment in designing the entire application. 

3.1 Simple Module for Teaching Z-buffer Algorithm 

The possibility of a visual representation of the task solving method for practicing 

the material in the Computer graphics module enabled their implementation as a 

small game-based module into the MIMLE system. The ‘Z-buffer’ module in the 
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MIMLE system was designed to help students learn basic terms referring to the 

principle of the Z-buffer algorithm operations and apply them practically through 

solving the given examples with a randomly generated content of buffer registers. 

This game contains interactive tasks implemented in the graphic environment that 

are visually directly associated with the learning material. 

While analyzing the techniques for the first-class innovative testing 

select/recognize [18], the authors opted for giving the answers in MIMLE as a 

series of boxes to be clicked. The player must choose one out of 5 colors to 

represent a bit in the buffer registry the moment when the scanning line moves 

across the screen. Since the implemented buffer in the ‘Z-buffer’ algorithm uses 

15 bits, the task of this module is to determine the value of each bit (i.e. contents 

of the registry) in various situational polygons shown on the screen. By theoretical 

definition, the frame buffer is used to store the intensity value of color value at 

each position (x, y). The goal of the game is for the player to test the z - depth of 

each surface (sequence of box in one color) so as to determine the closest (visible) 

surface (sequence of box in another color). The player determines the Z-value 

presented in the game as T/F items in the screen buffer registry in the moment by 

moving the scanning line. The complete buffer registry should display the one 

(pixel by pixel) that has the smallest value from the camera. 

 

Figure 1 

Interface of the ‘Z-buffer’ module 

The correct answer which fills the content of one bit is one of the proposed 

answers presented to the students in the form of a box to be selected. These cubes 

(i.e. the offered answers), are presented in two ways. In Level 1 of the module, the 

answers are offered in the form of a 15-box column. When a certain buffer box is 

selected from the scanning line (moving from left to right), the box falls down and 

fills the content of the active bit (one sequence) in the buffer. Determining the 

buffer register contents is a task in Level 2, only during this time, does the player 

see polygons having some level of transparency. In comparison to Level 1, Level 

2 is more challenging because it requires the player to determine the final color of 
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the buffer cube which presumes additional knowledge of mixing two colors with 

different percentage of visibility. 

3.2 Player Modeling Based on Teaching Strategies   

A common characteristic of many intelligent tutoring e-learning systems is that 

they can recognize whether or not the students understand the given lessons and 

thus adjust the learning process in accordance to the students’ needs. This kind of 

reasoning is also known as setting a diagnosis, revealing the students’ level of 

knowledge [19]. The students’ current level is represented by the student model. 

The teachers do not simply consider the students’ answers in the exam, but also 

the sequence of the players’ actions during the exam (e.g. the students make a 

mistake, then correct themselves and give the right answer). They remember the 

number and type of the students’ mistakes, as well as the number of the questions 

or some other type of help used to move them away from a “deadlock”. The 

teachers grade the students’ knowledge based on all these details. 

The player’s success in the learning system is often seen as a sequence of the 

given answers [20]. Based on the sequence of correct and incorrect answers, the 

system can make the decision about whether or not the player was successful. In 

the ‘Z-buffer’ module the authors used a diagnostic technique called model tracing 

[21]. Monitoring the player’s interaction with the system has been reduced to the 

player’s last three steps and the system keeps track of the values of their 

combinations (i.e. the situations that result from the last three events are 

observed). As stated earlier in the paper, the player has only three options: the 

correct answer, the incorrect answer and asking for help. The states that the player 

can find within ‘Z-buffer’ module are shown in the last column of Table 1. Their 

determination is based on tracking the last two answers and the appearance of a 

Help window that was opened by the player before providing the second answer. 

The possible states of the player dependent on the events are shown in Table 1. 

Table 1  

Possible states of a player, depending on the events 

Answert-1/ At-1 Answert/ At Helpt / Ht Statet/ St 

Ic Ic N Does not know 

Ic C N Accidental hit 

Ic Ic Y Does not know 

Ic C Y Knows 

C Ic N Does not know 

C C N Knows 

C Ic Y Accidental miss 

C C Y Knows 

Abbreviations used in Table 1 are: Correct – C, Incorrect – Ic, Yes – Y andNo – N 
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The intelligent agent – bot exclusively decides its own actions based on the action 

of the state in which a player is. Depending on his interaction with the ‘Z-buffer’ 

module (Figure 1), the player can find himself in one of the four states: knows, 

does not know, accidental hit, accidental miss, therefore, S = (Knows, Does not 

know, Accidental hit, Accidental miss).  

4 Implementation of the Bot in Game-based Modules 

of the MIMLE System 

The authors chose modules of the MIMLE system as the environment where the 

bot will be implemented as a personal opponent. Possible decisions are presented, 

the bot’s answers, as ‘Correct’ or ‘Incorrect’. An MIMLE bot is a kind of a reflex 

agent which plays fully automatically according to the player model built by the 

human teacher (in the present case, by the authors of this paper). Playing against 

human players is the best way to test the player’s knowledge. The first issue 

needed to model a strategy, is to obtain data from the games between human 

players. Intelligent agents in combination with fuzzy logic can help increase the 

quality and amount of interaction in a computer game.  

The acquired knowledge is usually represented in the form of ‘if-then‘ prediction 

rules. This representation is preferable for being a high-level, symbolic knowledge 

representation, contributing to the comprehensibility of the knowledge acquired. 

These decision rules can be placed in a decision queue (DQ) [22], which entails 

that they must be applied in a specific order. With this policy, the number of rules 

may be reduced because the rules could be one inside or another. The knowledge 

manager decides which representation provides the highest level of accuracy, 

while producing the smallest number of rules. DQ presents the following structure 

[23]:  

If conditions then class Else if conditions then class Else if conditions then class 

Else ‘unknown class’                                                                                             (1) 

The discovered rules can be evaluated according to several criteria, such as the 

degree of confidence in the prediction, classification accuracy rate on unknown-

class examples, comprehensibility, cost, etc. Since each feature, used as part of the 

classification procedure, can increase the cost and running time of a classifier 

system, as well as reduce the accuracy of the result, there is a strong motivation to 

design and implement systems using small feature sets. 

A decision or classification tree can be described as ‘a tool representing an 

algorithm in the form a graph or binary, tertiary or n-ary tree with each node and 

branch having a certain associated outcome, weight in terms of outcome, and 

probability’ [24]. It is easy to implement, understand and customize. It is 

considered as one of the fastest in terms of learning and classification among 
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machine learning techniques, where it can be seen as a predictive model which 

makes decisions on a branching series of Boolean tests. In computer logic terms, it 

can be viewed as a series of nested ‘if-else’. 

 

Figure 2  

A decision tree for the bot’s answers problem 

Figure 2 shows a sample decision tree of the bot’s answers. Here, the variable to 

be predicted or the ‘target variable’ is the Answert+1 –‘At+1’ variable. Given the set 

instances, each with same values for Answert-1 –‘At-1’, Answert –‘At’ and Helpt –

‘Ht’ and the resulting value is Knows, a tree is constructed as shown. Further, 

when given an instance with values for At-1, At and Ht, the machine learning 

system ought to be able to predict the value for the bot’s answer (Answert+1) 

variable by traversing through the tree, based on the conditions in the given 

instance. The target variable At+1 may have accidental states with the same values 

of predictors. Usually, one accidental variable is identified as independent (x), and 

the other one as dependable accidental variable (y). The set of statistical methods 

that explores interlinks of statistical labels and appearances (direction, strength, 

shape) is called the theory of correlation, and the basic indicators of correlation 

links are equation of regression and correlation coefficient. 

In the domain of machine learning, a classification problem involves machine 

learning attempting to predict to which class/group/category a new observation 

would most likely belong to, based on the training data set, which contains the 

already classified data. The classification of a given object is based on finding 

similarities with previously determined objects belonging to different classes, 

whereas the similarity of two objects is determined by analyzing their 

characteristics [25]. 

4.1 The Built Predictive Model 

Classification is performed through supervised learning. After extracting the game 

variables, the lists were used along with Weka (a collection of machine learning 

algorithms for data mining tasks) to train different classifiers [26]. The classifiers 
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were evaluated and it was determined which one was more suitable for this 

domain. 

A total of 240 records were extracted from the ‘Z-buffer’ MIMLE database for 

analysis. The discarded records were related to the players who had only started 

the module, but then failed to perform any further activities. The analysis included 

25 representative players and their activities. The original data vector contain 30 

typical activities for each player (15 answers and 15 registered contacts with the 

Help option), and they represent attributes - independent input variables for a 

predictive model. By applying a discretional filter, numerical values of the At+1 

attribute were transformed to nominal and two intervals were determined 

(‘Correct-C’, ‘Incorrect-Ic’). At+1 attribute was labeled as a class attribute, 

representing the dependent variable for a predictive model.  

There are various techniques to test/estimate the performance of a predictive 

model. For the case described in this paper, the MIMLE dataset divides the 

training set into two parts (usually 1/3 and 2/3) where the larger part is used for 

training the model and the other one for validating it. Having the data ready, the 

next step is to use classifiers so as to learn the tactics presented on them. The 

following classifiers were used: Bayesian Networks (BayesNet), Best First Search 

Tree (BFTree), C4.5 Search Tree (J48), Multilayer Perceptron Neural Network 

(MultilayerPerceptron), Naive Bayes (NaiveBayes), Random Forest Search Tree 

(RandomForest) and SMO (SMO).  

Table 2 presents the classification of the MIMLE dataset in which the BFTree, 

J48, Multilayer Perceptron, SMO algorithms show 75 % of correctly classified 

instances, followed by Bayes Net, Navie Bayes and Random Forest with 74.17% 

of correctly classified instances. 

Table 2  

Classification of MIMLE dataset using Weka 

 

Bayes                   

Net 

Naïve            

Bayes 
BFTree J48 

Random                    

Forest 

Multilayer                         

Perceptron 
SMO 

Correctly 

Classified 

Instances 

178 

(74.17%) 

178 

(74.17%) 

180  

(75%) 

180  

(75%) 

178 

(74.17%) 

180  

(75%) 

180 

 (75%) 

Incorrectly 

Classified 
Instances 

62 

(25.83%) 

62  

(25.83%) 

60 

(25%) 

60 

(25%) 

62  

(25.83%) 

60 

(25%) 

60 

(25%) 

Kappa 

statistic 
0.3393 0.3393 0.4143 0.4184 0.3342 0.4184 0.4184 

Mean 

absolute 
error 

0.3268 0.3377 0.3348 0.3594 0.3395 0.3383 0.25 

Root mean 

squared 

error 
0.4187 0.4163 0.4091 0.4239 0.4097 0.4106 0.5 
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Relative 

absolute 

error 
74.90% 77.39% 76.72% 82.37% 77.80% 77.54% 57.30% 

Root 

relative 

squared 
error 

89.70% 89.19% 87.64% 90.81% 87.76% 87.95% 107.11% 

Total 

Number of 

Instances 
240 240 240 240 240 240 240 

Confusion               

Matrix 

a     b              

147  16 |               

46  31 | 

a     b              

147  16 |            

46  31 | 

a     b              

136  27 |            

33  44 | 

a     b              

135  28 |            

32  45 | 

a     b              

148  15 |            

47  30 | 

a     b              

135  28 |            

32  45 | 

a     b              

135  28 |            

32  45 | 

 

The measure of the dataset between the categorization of the predicted and 

observed is called Kappa Statistic. If the predicted and observed values are 

identical, then the Kappa Statistic value equals 1. The classifiers were evaluated 

through one of two error rates. The average values of Root mean squared error 

(RMSE) and Mean Absolute error (MAE) are determined in order to select the 

best predictive model. If both error values are higher, the accuracy is lower and 

vice versa. Kappa statistics for J48, Multilayer Perceptron and SMO showed the 

maximum. The MAE is low for SMO. The RMSE is low for BFTree. It is not 

possible to claim that MAE is a better indicator for model performance than 

RMSE because it is smaller. The chart in Figure 3 demonstrates the average error 

rate for each classifier. 
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Figure 3  

Average error rate 

As can be seen both in Table 2 and Figure 3, the classifiers that performed better 

for this predictive model were the search trees, more specifically, the BFTrees 

with an average error of approximately 32.7%. The errors are relatively high, as 

was to be expected since the MIMLE bot tends to change tactic during the game, 

making it difficult to find a pattern with a small error. 
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4.2 Creating the Bot Strategy 

In order to determine the likeliness of the possible states the player could fall into 

after three interactions with the game, the authors compared the results acquired 

through the predictive model with the parameters set up by the authors (on the 

basis of teaching experience) in Table 1. This paper shows that deploying 

classifiers for the prediction model design can be used as a method for detecting 

undefined players conditions, for which the target variables do not have values in 

the players model table (‘Accidental miss/hit’).  

After training the selected predictive model on the basis of the game, with 240 

players, the acquired results confirm the validity of the players’ model (shown in 

Table 1) set up by the teachers. In the re-evaluation of the model with the data test 

set where all instances contained the values ‘?’ for all possible players conditions 

(Table 3), the same values were obtained as assumed and set up for the class 

attribute – target during the modeling process by the authors . 

Table 3  

Predictions on test set 

Instance# Actual Predicted Probability Distribution 

0,0,n ? 2:Ic 0.359 *0.641 

0,1,n ? 1:C *0.563 0.438 

0,0,y ? 2:Ic 0.167 *0.833 

0,1,y ? 1:C *0.857 0.143 

1,0,n ? 2:Ic 0.462 *0.538 

1,1,n ? 1:C *0.863 0.137 

1,0,y ? 1:C *0.5 0.5 

1,1,y ? 1:C *1 0 

Abbreviations used in Table 3 are: Correct – 1, Incorrect – 0, Yes – y andNo – n 

Bot strategy creation is based on a set of if-then-else decision rules, as well as on 

decision tables. The question is what action the bot should perform if the target 

remains in an unknown state. Once the model was trained based on the BFTree 

classifier, it can be used to classify as yet unseen MIMLE data as part player 

model, presented in Figure 4. First, the file with the cases to be predicted must 

have the same structure as the file with the training set used to teach the model. 

Prior to training the classifiers, it was necessary to create an ‘arff’ file so that 

Weka can recognize the data. Assuming that one has trained the decision tree 

using the MIMLE datasets with 8 instances, as shown in the Table 1 column 

called Statet/St, one receives the result of predictions obtained on test data. The 

predicted column contains ‘Correct’ or ‘Incorrect’ for each of the lines in the test 

file. The instances with data which show player’s states: ‘Accidental miss’ and 

‘Accidental hit’, predicted columns are marked as ‘Correct’ value. 
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Figure 4 

Generalizable opponent strategy approach in MIMLE modules 

After teaching the tactics, the next stage is to implement the bot strategy for its 

answers in the game. The idea behind the strategy is that the bot will follow the 

combinations that the player accomplishes with the MIMLE module and thereby, 

will fill in the answers in the game. The first and second answer is copied from the 

player, while the third answer is filled in on the basis of the assumed position the 

player currently holds (Table 1). The subsequent set of the answers is filled in by 

moving one step back so that the fourth answer is copied from the player while the 

fifth answer is given on the basis of the player’s condition caused by its third 

answer interpreted as the player’s third answer, the player’s fourth answer and 

option of asking for help during that time-frame. At the end of the game, the 

player can see the final set of answers given by the bot after each level (Figure 5). 

Further, the player can see the general success that he or she achieved, as 

portrayed by the accomplished scores (Figure 6). 

 Help option

Bot answers

Ap1

Hp2

Ap2 Ab3

Hp4

Ap4 Ab5

Hp6

Ap6 Ab7

Hp8 Hp10 Hp12 Hp14

Ap8 Ab9 Ap10 Ab11 Ap12 Ab13 Ap14
Ab15

Player answers

Ap1 Ap2 Ap3 Ap4 Ap5 Ap6 Ap7 Ap8 Ap9 Ap10 Ap11 Ap12 Ap13 Ap14 Ap15

 

Figure 5 

Bot strategy for the student’s answers in modules 
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Figure 6 

MIMLe Bot answers at game end of a level in the module 

5 Results and Discussion 

Decision trees are among the most popular classification techniques in data 

mining [27]. The classifier, whose average error value with MIMLE player data 

was shown as the lowest, was BFTrees. The performance of the BFTrees using 

different test options is presented and interpreted in Table 4. The performance is 

interpreted in terms of accuracy and error rate.  

Table 4  

Performance of BFTrees under different test options 

Test Options Accuracy Error Rate Kappa Statistic MAE 

UTS 75% 25% 0.4143 0.3348 

CV (10 folds) 71.7% 28.3% 0.3454 0.3444 

PS (66%) 74.4% 25.6% 0.357 0.3392 

 

Table 4 demonstrates that the performance is the best when tested with “use 

training set - UTS” followed by “cross validation-CV” with 10 folds (it would 

apply training on the first 9 parts and testing on the last part), then with 

“percentage split-PS” option (random percentage split of the dataset is going to be 

66% training data and 34% test data). In the BFTrees the selection of the best split 

is based on boosting algorithms [28] which are used to expand nodes in the best-

first order instead of a fixed order. The results of this study confirmed that the 

Monte Carlo approach presented via BFTree classifiers provides the best 

classification performances in a small educational game, which supports the 
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authors’ assumption that it can be successfully used in these kinds of educational 

games.  

The authors performed the analysis of the number of game activations with and 

without the bot. The efficiency of using the bot and its role in game-based 

modules by the MIMLE system was studied by analyzing the interaction of players 

with the system, as well as having an actual insight into their achievements at the 

end of the game. The analysis included 32 typical players for the Z-buffer module. 

The number of game activations was followed up for each player, as were their 

highest scores when the system did not contain a bot, and in the case when player 

competed with bot. It was established that the number of repetitions of the game 

increased in the case when the player competed with his personal opponent. The 

number of repetitions of the module the player performed with and without the use 

of the bot can be seen in Figure 7. The average value of module repetition without 

a bot was 3.78, while for the same player, the value increased to 6.47 for when he 

or she was playing against the personal opponent. It was also determined that the 

player made progress in his or her average value of the points. 

Figure 7 

The interaction of players with the game-based module Z-buffer 

In order to test whether or not a bot, personal opponent, has an impact on the 

number of game replays by the player, the authors formed two groups 

(experimental and control group), as shown in Figure 7, consisting of 32 players 

each. The results obtained using the (non-parametric) Mann-Whitney’s test, by 

conventional criteria, indicate a statistically significant means difference in the 

number of game activations with and without the bot. The realized U-value is 

309.5. The distribution is approximately normal, which indicated that the Z-value 

below should be used. The Z-Score is -2.71229. The p-value is .00672. The result 

is significant at p < .01. This result confirms the authors’ right attitude regarding 

the importance of using a personal opponent in the game since its existence 
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triggers a greater interest in the player, and motivates him or her to compete and 

achieve better results.  

Conclusions  

Many incorporated AIED and educational data mining (EDM) techniques are used 

for ‘tracking’ student’s behavior – for example, collecting data on class attendance 

and assignment submission in order to identify (and provide support for) students 

who are at risk of dropping out from their studies. Data mining methods provide 

automated predictions of the proposed solutions on the basis of well-known 

behavior patterns of the past, as well as the identification of previously unknown 

relationships, patterns and trends in very large databases. 

This paper outlines a part of a bot strategy based on EDM, and its implementation 

in a small game-based learning system. Machine learning algorithms in EDM are 

applied to the task of detecting a bot’s strategy before it is executed and predicting 

when a player will perform strategic actions. As researches in gaming try to draw 

conclusions about player characteristics from their actions in open-ended gaming 

environments, understanding players’ goals can help provide an interpretive lens 

for those actions. The idea behind the bot strategy is that the bot follows the 

combinations that player accomplishes with the MIMLE module: correct answer, 

incorrect answer and asking for help. Based on the present authors’ analysis, it can 

be concluded that in the case of a small training data set, the BFTree algorithm 

provides good prediction results if the data are a combination of numerical 

(ANSWER1 and ANSWER2) and category types (Help), where a class attribute 

can have one of two class values (ANSWER3). The performance of the BFTree 

algorithm on this dataset was better than C4.5 algorithm.  

Future work will focus on improving the precision of the bot’s strategy and 

implementing artificial intelligence in educational networking. For example, bots 

and students might be able compete with each other in social networks, thus 

maximizing the effectiveness of the learning process. 
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