
Acta Polytechnica Hungarica Vol. 11, No. 4, 2014 

 – 21 – 

Causal Analysis of the Emergent Behavior of a 

Hybrid Dynamical System 

Marcel Kvassay
1
, Ladislav Hluchý

1
, Peter Krammer

1
, Bernhard 

Schneider
2
 

1
 Institute of Informatics, Slovak Academy of Sciences 

 Dubravska cesta 9, 845 07 Bratislava, Slovakia 

 e-mails: {marcel.kvassay, hluchy.ui, peter.krammer}@savba.sk 

2
 EADS Deutschland GmbH 

 Landshuter Straße 26, 85716 Unterschleißheim, Germany 

 e-mail: bernhard.schneider@cassidian.com 

Abstract: This paper reviews selected concepts and principles of structural causal analysis 

and adapts them for exploratory analysis of a hybrid dynamical system whose continuous 

dynamics are described by ordinary nonlinear differential equations. The proposed method 

employs partial derivatives in order to calculate “causal partitions” of the system’s state 

variables, which make it possible to quantify the extent to which various causes can be 

considered “responsible” for the emergent behavior of the simulated system. Causal 

partitions can be processed by machine learning techniques (e.g. clustering and 

classification), and so facilitate meaningful interpretations of the observed emergent 

behaviors. The method is applied to the simulated emotions of fear and anger in humans, in 

a hybrid agent-based model of human behavior in the context of EDA project EUSAS. 
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1 Introduction 

This article is a report of work in progress extending our earlier paper [3]. From 

one point of view it can be considered a case study of one hybrid dynamical 

system. From a wider perspective, it is an attempt to introduce a new kind of 

analysis inspired by structural causality into the field of simulation studies. We 

demonstrate how structural causality facilitates meaningful interpretations of the 

emergent behaviors of complex systems and helps pinpoint their causes. 

The paper is organized as follows: the rest of the Introduction provides a brief 

outline of structural causal analysis, while Section 2 adapts and applies its 

principles to the hybrid system under consideration. Section 3 details the 
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simulation scenario selected for the experimental verification of the proposed 

approach. Section 4 describes the clustering and classification methods used to 

analyze the data and establish the relevance of causal partitions. Section 5 

discusses these findings, proposes further improvements to our approach, and 

presents the first tentative results after the improvements were implemented. 

1.1 An Outline of Structural Causal Analysis 

Causality is one of the perennial topics in philosophy. Relatively recently, it has 

matured into a mathematical theory with significant applications in various fields 

of science. Although there are several competing accounts of causation, this paper 

focuses primarily on the comprehensive structural approach formulated by Judea 

Pearl and others [9, 1, 2], which subsumes and unifies the probabilistic, 

manipulative, counterfactual, and other specialized approaches. This section 

broadly follows the account given by Pearl in [9, 8, 11]. A detailed guide on how 

to perform structural causal analysis in practice is provided in [10]. 

According to Pearl
1
 in his seminal book on causality [9], causal analysis can be 

applied to systems described by equations of the form 

xk = fk (pak, uk),   k = 1…n, 

where pak stands for the set of “parent variables” of xk directly determining its 

value through an autonomous mechanism captured by fk, and uk stands for the 

effect of omitted factors. The autonomy of the mechanisms means any of them 

can be changed by external intervention without affecting the others. A set of such 

equations is called a “structural model.” If, in addition, each variable (apart from 

the error terms uk) appears on the left-hand side of some equation, then the model 

is called a “causal model.” The error variables uk are also termed exogenous or 

background; they are simply considered as given. The variables xk are termed 

endogenous, i.e. determined by the equations within the system. A given value-

assignment to the background variables constitutes a world or context in which the 

solution to the model equations is sought. In this paper, we restrict our attention to 

the recursive systems (systems without feedback loops), which possess a unique 

solution for each context. The equality sign in structural equations is endowed 

with directionality and is closer to the assignment operator in programming 

languages than to the standard algebraic symbol of equality. 

Each causal model is associated with a causal diagram – a directed graph in 

which, for each equation, arrows point from ui and the parent variables in pai 

toward their child, the dependent variable xi. In fact, certain questions are more 

easily answered from the diagram than from the equations. In order to illustrate 

                                                           
1
 J. Pearl, Causality: Models, Reasoning and Inference 2nd Ed. 2009, p. 27 © Judea Pearl 

2000, 2009, published by Cambridge University Press, reproduced with permission 

(1) 
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this, here is an example with three pairs of equations reproduced from the 

Epilogue
2
 to J. Pearl’s book on causality [9]: 

  Y = 2X 

  Z = Y + 1 

  X = Y/2 

  Y = Z - 1 

  2X – 2Y + Z – 1 = 0 

  2X – 2Y – 3Z + 3 = 0 

These three pairs are algebraically equivalent, in the sense of having the same 

solutions, but only the first two pairs (2a) and (2b) qualify as structural models. 

While each equation in the third pair (2c) can be expressed as a linear combination 

of the equations in the preceding pairs, neither qualifies as structural, because it is 

not clear which variable is the dependent one (the child) and which are the 

independent ones (its parents). Moreover, even the first two pairs (2a) and (2b) do 

not describe the same causal model: their circuit representations using adders and 

multipliers shown in Fig. 1 make it obvious that the flow of causality in the 

second pair (Fig. 1b) is reversed with respect to the first (Fig. 1a). As such, we get 

different predictions from these two models concerning hypothetical interventions, 

e.g. “What happens if we set the value of the middle variable Y to 0?” 

 

Figure 1 

Circuit representations of equations (2a) and (2b) before and after an external intervention – setting Y 

to 0 (adapted from J. Pearl, Causality: Models, Reasoning and Inference 2nd Ed. 2009, pp. 416-7 © 

Judea Pearl 2000, 2009, published by Cambridge University Press, reproduced with permission) 

In the first pair (2a), manipulating Y will affect Z, while in the second (2b), 

manipulating Y will affect X and leave Z unconstrained. This is shown both 

graphically and symbolically in Fig. 1c and 1d. Symbolically, the external 

intervention on Y means replacing the equation in which Y is the dependent 

variable with a new equation, in this case a straightforward value substitution Y = 

0. The modified equations are then solved algebraically in order to determine the 

                                                           
2
  J. Pearl, Causality: Models, Reasoning and Inference 2nd Ed. 2009, pp. 416-7 © Judea 

Pearl 2000, 2009, published by Cambridge University Press, reproduced with 

permission 

(2a) 

(2b) 

(2c) 
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response of the model to the intervention. The first model (Fig. 1c) gives Z = 1, 

while the second gives X = 0 (Fig. 1d). In this way the structural approach 

provides a clear and unambiguous definition of causality. In Pearl’s own words: 

"Y is a cause of Z if we can change Z by manipulating Y, namely, if after 

surgically removing the [original structural] equation for Y, the solution for Z will 

depend on the new value we substitute for Y." In contrast, the third pair of 

equations (2c) provides no causal structure or “intervention” guidance at all: it 

simply represents two general constraints on three variables, without telling us 

how the variables influence each other. 

The directionality of causality has been one of the main obstacles to capturing 

causality satisfactorily in purely logical and purely statistical frameworks. The 

notion of cause can be further refined by distinguishing the necessary and 

sufficient aspects of causation, and the type-level from token-level causation. 

Another important concept linked with the token-level causation is that of an 

“actual cause” [1, 2]. For the purposes of this paper, however, these distinctions 

are not crucial. We shall therefore proceed with an example taken from [11], 

which demonstrates the use of structural models for various kinds of inference and 

for evaluating the effects of interventions. 

The example, titled “The Impatient Firing Squad,” analyses a fictitious scene just 

before the execution of a prisoner. The firing squad comprises a Captain and two 

riflemen. For the purposes of this analysis, the situation is modeled by 5 binary 

propositional variables: U (“Court orders the execution”), C (“Captain gives the 

signal”), A (“Rifleman-A shoots”), B (“Rifleman-B shoots”), and D (“The prisoner 

dies”). It is assumed that both the riflemen are law-abiding (i.e. they will only 

shoot if the Captain gives the signal) and competent (i.e. if any of them shoots, the 

prisoner will die). Likewise, the captain will signal only if ordered to do so by the 

court. These dependencies, expressed in the form of Boolean structural equations, 

lead to the following causal model: 

C = U 

A = C 

B = C 

D = A v B 

In this model, U is exogenous, because it does not have its own structural equation 

in which it would appear on the left-hand side. Because this is a recursive system 

without feedback loops, the value of U uniquely determines the values of the 

remaining (endogenous) variables C, A, B, D. The causal diagram associated with 

this model is depicted in Fig. 2a. 

It is obvious that in this model there exist just two consistent truth valuations of its 

variables: either they are all true, or they are all false, which greatly simplifies the 

task of evaluating the truth or falsity of the following “test” sentences: 

(3a) 

(3b) 

(3d) 

(3c) 
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S1: A => D (“If rifleman-A shot, the prisoner is dead.”) 

S2: ¬D => ¬C (“If the prisoner is alive, then the Captain did not signal.”) 

S3: A => B (“If rifleman-A shot, then rifleman-B shot as well.”) 

S4: ¬C => DA (“If the captain gave no signal and rifleman-A decides to 

 shoot, the prisoner will die.”) 

 

Figure 2 

Causal diagrams for “The Impatient Firing Squad” example: a) original model, b) modified model after 

intervention (adapted from [11]) 

S1 is prospective inference from causes to effects (prediction), S2 retrospective or 

diagnostic inference from effects and back to causes (abduction), and S3 inference 

through common causes (transduction). Sentences S1 – S3 do not involve 

modifications of the original model and can be proved by purely logical means. 

Taking advantage of the fact that either all the variables are true, or they are all 

false, it is enough to check the truth values of S1 – S3 in these two settings. Since 

they all hold in both, we can conclude that they are entailed in the model. 

S4 (“action”) is an instance of “true” causal thinking – it is like prediction except 

that it must be evaluated in a modified model. S4 states that rifleman-A shoots 

without Captain’s signal, which implies that the equation (3b) no longer holds. 

This is graphically depicted in Fig. 2b, where the link between C (the Captain’s 

signal) and A (the rifleman-A’s shot) is severed. Instead, the variable A is assigned 

the value representing the rifleman-A’s new behavior: A = True. At the same time, 

S4 stipulates that the Captain did not signal, i.e. C = False (¬C for short).  Since 

S4 does not indicate any departure from the norm for the Captain, we assume that 

(3a) holds, i.e. U is false. Likewise, by (3c), B is false as well. However, equation 

(3d) still makes DA true because A = True (the subscript “A” in “DA” denotes the 

value of D in the minimally modified model, in which the equation for A was 

replaced with substitution A = True). In this modified setting, S4 holds, because 

both its antecedent and its consequent are true. It needs to be kept in mind that, 

while evaluating S4, no other hypothetical modifications to the original causal 

model besides those explicitly stipulated by S4 are permitted. 
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This example also illustrates the distinction between events and actions. In the 

context of the model (3a) – (3d), if rifleman-A shoots in response to Captain’s 

signal, it is an event, not an action. Events represent model variables assuming 

particular values from their allowed range. Thus, if the equations (3a) – (3d) yield 

the result “A = True”, this would denote the event “Rifleman-A shoots,” while “A 

= False” would denote the event “Rifleman-A does not shoot.” The term “action” 

(or “intervention”) is reserved for happenings that entail the modification of the 

model itself. For example, in the “action” sentence S4, the rifleman-A’s decision 

to shoot without Captain’s signal implies a disruption of one of the causal 

mechanisms – equation (3b) – and its replacement by another (in this case by a 

straightforward value substitution “A = True”). This is different from A assuming 

the value “True” under “normal” conditions described by (3a) – (3d). 

These principles can be used to analyze dynamic situations as well. For dynamic 

analysis, however, the state variables describing the system need to be discretized 

with respect to time. Pearl in [9] and [11] provides an example of two forest fires 

advancing toward a house. In that example, the discretization is both temporal and 

spatial, since the changing state of the forest over time is conceptualized as a 

directed graph (causal diagram), in which each node represents the state of one 

patch of forest at a certain location x and time t. Pearl demonstrates a technique of 

“causal beams” through which it is possible to determine which of the two forest 

fires is the actual cause of the destruction of the house. This dynamic example 

hints at the potential value of structural causal analysis for simulation studies in 

general. In the model of human emotions that we analyze below, we apply these 

principles to ordinary nonlinear differential equations and the discrete dynamics 

that comprise our hybrid system. 

2 Causal Analysis of a Hybrid System 

The first point that needs to be addressed is whether our human behavior model 

(described in more detail in section 2.1) meets the criteria set for structural causal 

models. The main difference is that this model includes a particular kind of 

ordinary nonlinear differential equations with first derivatives with respect to time 

t on the left-hand side. In general, following the notation used in the definition (1), 

such equations can be written as 

dyk/dt = gk (pak’, uk)       k = 1…n (5) 

where the function gk can be nonlinear. Another difference is that the dependent 

variable yk typically influences its own time derivative, i.e. it belongs to its own 

“parent set”: yk ϵ pak’. In order for such models to qualify as “causal”, the 

differential equations need to be converted into difference equations, e.g. by 

replacing the derivatives with difference quotients: 
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(yk, j - yk, j-1)/(tj - tj-1)= gk (pa’k, j, uk, j)      k = 1…n, j = 1…m (6) 

where k indexes the original variables yk and j indexes the discretized moments of 

time tj, so that yk,j stands for the value of variable yk at time tj. Denoting tj - tj-1 as 

∆t, this can be rewritten as 

yk, j = yk, j-1 + ∆t . gk (pa’k, j, uk, j)      k = 1…n, j = 1…m (7) 

In this form the relationship to (1) becomes clear. Variable yk, j at the left-hand 

side of (7) corresponds to the variable xk in (1), which means that in this 

“structural form” the value of a given variable yk at a given point of time tj is 

considered a separate “structural” variable, distinct from the value of the same 

variable yk at other points in time. Similarly, the whole right-hand side of (7) 

corresponds to fk (pak, uk) of (1). Thus the relationship between the parent sets of 

(1) and (7) can be formulated as pak = pa’k, j ں {yk, j-1}. Most importantly, in this 

form the parent set of the variable yk, j no longer contains this variable, but only the 

preceding values of yk in time, which are now considered different variables. Thus, 

after the discretization, no “structural” variable depends on itself. Therefore we 

can conclude that our human behavior model, after the discretization, does qualify 

as a structural causal model, as defined in [9]. Because we are interested in 

developing a general method for causal analysis of this kind of systems, we shall 

not go into details of our equations for fear and anger, but rather show a 

numerical solution for the general case. Yet, in order to understand our simulation 

experiments, an overview of the dynamics of our simulated agents will be helpful. 

2.1 Internal Dynamics of Civilian Agents 

A simplified diagram of our model is shown in Fig. 3. It represents the key factors 

affecting the behavior of civilian agents in the simulation scenario chosen for our 

case study. This model was used in project EUSAS financed by 20 nations under 

the Joint Investment Program Force Protection of the European Defence Agency. 

Interested readers can refer to a detailed exposition with a motivating example 

given in [5, 4]. Below we provide a brief summary of the model. 

In line with the PECS modeling methodology [14, 13] used in project EUSAS, the 

agent behaviors are conceptualized as sequences of atomic, uninterruptible 

actions, e.g. one step in a certain direction, a single provocation or a single threat. 

Each behavior pattern is activated when its triggering motive becomes the 

strongest. For aggressive behaviors, the typical (but not the sole) triggering motive 

is anger, for fearful ones (such as withdrawal or flight to safety) the motive is 

fear. Regarding the dynamics of the simulated motives fear and anger, a 

convenient starting point is the top left corner of Fig. 3: the number of people 

surrounding the agent, their actions and other events in the vicinity affect the 

agent’s motives (fear, anger) as well as its other internal parameters (arousal, 

readiness for aggression). Besides events and actions, there is also a direct social 

influence of other agents on the agent’s fear, anger and readiness for aggression. 
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This is modeled according to Latané's formula of strength, physical proximity and 

the number of influencing agents [7]. 

 

Figure 3 

Sociopsychological model for the emergence of collective aggression in the form of a causal diagram 

The internal arousal of the agent depends on the number of people in the vicinity 

and the violence of their actions. Speaking qualitatively, the higher the number 

and the more violent their actions, the sharper the increase of the agent’s arousal. 

De-individuation means the agent considers himself a part of the crowd and no 

longer a separate individual, so the higher the agent's arousal and the more he 

feels a part of the group, the higher the de-individuation. Readiness for aggression 

(RFA) is jointly affected by the norms for anti-aggression, de-individuation and 

social influence as follows: (a) the higher the norms for anti-aggression, the lower 

the RFA; (b) the higher the de-individuation, the higher the RFA; and (c) the more 

social influence tends towards aggression, the higher the RFA. Psychological 

theories make aggression depend primarily on the RFA: without it, even a very 

angry person would not behave aggressively. 

In [4] we tried to answer the question whether, in a scenario with this model, 

indirect social influence of nearby people was more important than external events 

in shaping the civilian agents’ behavior. The answer provided by the causal 

summary of the scenario indicated that external events were more important. In 

this paper we revisit the same scenario (see section 3 for details) with another, 

more difficult problem: while experimenting, we have noticed that for a particular 

parameter setting, the emergent collective behavior of the civilians developed 

along two sharply diverging trajectories. In some cases, almost all of them got 

afraid and left the scene, while in others, almost all got angry and joined the attack 

on the security forces. Because our model incorporates an element of randomness, 

a certain variation of the emergent behavior of the civilians was to be expected, 

but the extreme variation that we witnessed was unusual and called for an 

explanation. Since the leading question was “Why is this happening?” it provided 

a welcome opportunity to test the relevance and practical utility of our approach. 
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2.2 Causal Partitioning – A Brief Outline 

Following [4], we shall briefly illustrate causal partitioning on motive fear. Its 

continuous dynamics is driven by the equation 

dF/dt = f(F(t), IF(t)) (8) 

where F stands for Fear, IF for fear-related social influence, and f for a nonlinear 

function of these two arguments. In Euler numerical method this leads to 

F(t + ∆t) ≈ F(t) + ∆t . f(F(t), IF(t)) (9) 

where ∆t is the simulation time step. F(t + ∆t) stands for the new “continuous” 

value of Fear, to which the discrete part of the dynamics (EF) is yet to be added: 

FT(t + ∆t) = F(t + ∆t) + ∆EF (10) 

where FT stands for the new total value of Fear and ∆EF for the cumulative fear-

related impact of the external events perceived by the agent during the time 

interval (t, t + ∆t>. This means we model the external events as taking the effect 

at the end of the time interval during which they occur. 

Causal partitioning starts by linearizing the function f through its partial 

derivatives with respect to its two parameters F and IF: 

 fj ≈ fj-1 + ∂f/∂F . ∆F + ∂f/∂IF . ∆IF (11) 

where ∆F and ∆IF stand for the differences in the values of F and IF, respectively, 

between the start and the end of the time interval (t - ∆t, t>. For brevity we have 

switched to indexing, where fj represents the current value f(t) and fj-1 the previous 

one, f(t - ∆t). Next, we exploit the fact that ∆F over the time interval (t - ∆t, t> 

equals the sum of the discrete and the continuous changes during that period, i.e. 

∆F = ∆EF + fj-1 . ∆t. Substituting this into (11) yields 

fj ≈ fj-1 + ∂f/∂F . (∆EF + fj-1 . ∆t) + ∂f/∂IF . ∆IF (12) 

which can be rewritten as 

fj ≈ C1 . fj-1 + C2 . ∆EF + C3 . ∆IF (13) 

with C1, C2 and C3 representing the weighting factors that equal, respectively, 

1+∆t.∂f/∂F,  ∂f/∂F, and ∂f/∂IF. These factors can be evaluated numerically. As we 

explained in [4], this formula is the basis for our algorithm for causal partitioning 

of fear into causal partition vectors, where each vector component represents the 

quantitative contribution of one “causing” factor. The first derivative of fear f at 

any moment is then represented by the causal partition vector (fE, fI), whose 

components sum up to f. The first component fE stands for the cumulative 

contribution of the external events EF, the second fI for the cumulative 

contribution of fear-related social influence IF. Analogously, the value of fear F 

can be represented by the partition vector (FE, FI) whose components sum up to F. 

The causal partitioning algorithm proceeds roughly as follows: 
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To get the current partition of the first time derivative of fear (fj), take its previous 

partition fj-1 = (fE, j-1, fI, j-1), multiply its members by C1, then add the contributions 

of the external events and social influence over the interval (t - ∆t, t> as per (13) 

to their respective partition components fE and fI. 

Next, to get the new partition for Fear (Fj+1), take its current partition (Fj) and add 

to it, component by component, the increment as per equation (9) using the current 

partition of its first time derivative fj. The increment is a vector (∆t . fE, j, ∆t . fI, j). 

Last, add the cumulative value of the external events perceived during the new 

step (∆EF for time interval (t, t + ∆t>) directly to the FE component. 

In this simplified account we have assumed the zero initial value of Fear (F0). If it 

is non-zero, it qualifies as a separate causal factor and requires a dedicated 

component in the causal partition vector (FF0). Thus, the value of Fear is in fact 

partitioned into a casual partition vector (FF0, FE, FI). 

The analysis of Anger proceeds analogously. The continuous part of its dynamics 

is driven by the equation 

dA/dt = g(A(t), L(t), IA(t)) 

where A stands for Anger, L for Arousal, IA for anger-related social influence, and 

g for a nonlinear function of these arguments. The Euler method then leads to  

A(t + ∆t) ≈ A(t) + g(A(t), L(t), IA(t)) . ∆t 

Again, to this new “continuous” value of Anger, the discrete anger-related impacts 

of the events perceived during the time interval (t, t + ∆t> have to be added: 

AT(t + ∆t) = A(t + ∆t) + ∆EA 

A process of causal partitioning analogous to that for Fear then partitions AT, the 

new total value of Anger, into a casual partition vector (AA0, AE, AI, AL) 

In general, a causal partition of a model variable X is a vector-like structure (X1, X2 

... Xn) whose components sum up to X and where each component represents the 

portion of the value of X attributed to one specific factor. This makes it possible to 

quantify the extent to which various factors can be considered “responsible” for 

the value of X at any given moment in a given simulation scenario. 

Concerning the simulation experiments in this paper, by a causal summary of a 

simulation run we mean the causal partition vectors representing the final values 

of fear and anger averaged over all the civilian agents in the scenario. This data, 

supplemented with a few other attributes, is then passed on to the machine 

learning algorithms for further analysis. 

(14) 

(15) 

(16) 
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3 Simulation Experiment Scenario 

As mentioned, we revisit the scenario from [4], in which a crowd of civilians is 

looting a shop, and the approaching soldier patrol is supposed to stop the looting 

and disperse the crowd. The scene is shown in Fig. 4. Black areas represent 

buildings and barriers unreachable to agents. The rectangle with gray interior near 

the top is the shop being looted. It is surrounded by dots, each representing one 

agent. The dark ones are the looters; the light-colored ones are the violence-prone 

individuals, whose intention is to attack the soldiers. The soldiers are represented 

by the three medium gray dots in the bottom part of the figure. 

 

Figure 4 

Initial stage of the simulation scenario 

Civilian agents are endowed with one “default” motive and a matching behavior 

by which they try to satisfy it. For looters this leads to “looting” and for the 

violence-prone individuals to stone-pelting the soldiers. Additionally, the agents 

monitor what happens around them, which may excite fear or anger, in which case 

they start behaving fearfully (i.e. run away) or aggressively. As the patrol nears, 

this may induce fear in some looters who then start leaving the scene. The 

violence-prone individuals, however, do not get afraid but attack the patrol. The 

violence may impact the remaining looters in two possible ways – they may either 

get afraid and leave, or get angry and join the attack. How many get afraid and 

how many get angry depends on various parameter settings. The key ones are the 

initial values of fear and anger (which were set to F0 = 0.3 and A0 = 0.2) along 

with the main event impacts summarized in Table 1. 

Table 1 

Main event impacts on fear and anger 

Impacts: Impact on Fear Impact on Anger 

Events: Direct Indirect Direct Indirect 

Effective shot 0.4 0.35 0.1 0.25 

Warning shot 0.3 0.3 0.1 0.1 

Stone thrown 0.002 0.002 0.18 0.15 
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The values of fear and anger are incremented by the event impacts shown in 

Table 1 every time the corresponding event is perceived by the agent. The “direct” 

values from Table 1 are used when the perceiving agent is the target of the event; 

otherwise the “indirect” values are used. What may seem counterintuitive at first, 

is that each event affects both fear and anger, but in different proportions. All the 

agent motives, including fear and anger, are real-valued and restricted to the 

closed interval <0, 1>. Looting motive is set to a constant value of 0.7, so fear or 

anger must cross this level in order to affect the agent behavior. Sensory 

perception of the agents is limited both spatially (by a radius of 50 m for throwing 

stones and 150 m for gun shots) and emotionally (if the average of fear and anger 

crosses the level of 0.5, further sensory perception of events is blocked). 

Unlike our civilians, our soldier agents are much simpler: they are just passing by 

and act in self-defense. Their rule of self-defense says that when a given civilian 

first throws a stone at a soldier, that soldier responds by a warning shot in the air. 

If the same civilian throws a stone at the same soldier a second time, the soldier is 

permitted to use an effective shot aimed at the legs of the attacker in order to 

immobilize him. That is, of course, an extreme simplification, but it proved useful 

in the early phases of project EUSAS for calibrating the civilian agents. 

As part of the present case study, we ran this simulation scenario 300 times with 

the simulation time step of 300 milliseconds, and then again 300 times with the 

time step of 100 ms. This enabled us to gauge the effect of the time step size (and 

of the resulting discretization errors) on the observed emerging behavior of the 

agents. Since the time-evolution of our scenario is rather fast, it was sufficient for 

each simulation to cover just 90 seconds of simulated time. At the end of this 

period, the average values of fear and anger were recorded and their causal 

partition vectors (along with other relevant data) were passed on to machine 

learning algorithms for further analysis. 

4 Machine Learning 

Regarding data structure and pre-processing, our data consisted of two data sets, 

one for 100 ms and another for 300 ms time step. Each set contained 300 records 

with 12 numerical attributes: 7 components of causal partitions of average final 

values of anger (AA0, AE, AI, AL) and fear (FF0, FE, FI), followed by 3 measures of 

effectiveness (MoE) used to evaluate scenarios in project EUSAS: NE (total 

number of effective shots), NW (total number of warning shots), and NS (total 

number of thrown stones). The last two attributes, A-count and F-count, stand for 

the cumulative numbers of times that anger and fear, respectively, became the 

strongest motives in some civilian agent. For scenarios that turn aggressive we 

expect a high A-count as well as high MoE values and a low F-count, while for the 

“timid” scenarios we expect a high F-count and a low A-count as well as low MoE 
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values. We have included MoE as a sort of “competition” to our causal 

summaries: it is evident that MoE can classify the scenarios well, since aggressive 

developments imply high numbers of thrown stones as well as gunshots. MoE, 

however, lack the explanatory power: they do not tell us anything about why a 

particular scenario took an aggressive or a timid turn. We have verified our 

expectations by the clustering exercise shown in Fig. 5. 

 

Figure 5 

Data clustering into two clusters for 100 ms and 300 ms data sets 

The charts have A-count on the x-axis, F-count on the y-axis and represent each 

simulation run as one data point. In order to improve readability, we have used the 

jitter method (adding noise with small amplitude). The left chart represents the 

100 ms data set, the right one the 300 ms data set. As expected, in both data sets 

there seem to be two distinct clusters: the compact one in the top left corner 

(“timid” scenarios), and the elongated one in the bottom right part (“aggressive” 

scenarios). The elongated shape of the “aggressive” cluster is due to the varying 

levels of fearful behaviors that appeared alongside aggression. The elongation 

points towards the “timid” cluster because an increase in fearful behaviors goes 

hand in hand with a reduction in the aggressive ones. In other words, although our 

agents can switch between fear and anger several times during one scenario, this 

is rare and most of them switch just once from their “standard” motive to either 

fear or anger. This explains why simulations tend to cluster near the diagonal. 

Both the clustering exercise and the classification experiments described below 

were executed in Weka [15], ver. 3.7.9, which uses expectation maximization 

algorithm. Clustering added a new attribute (cluster ID) to our data. On the scaled 

data thus pre-processed, we then trained several classification models, choosing 

the “cluster ID” as the target. Our classifiers were based on SVM (Support Vector 

Machine) with SMO algorithm (Sequential Minimal Optimization algorithm) [12]. 

Compared to other techniques, SVM is known to be more intuitively interpretable. 

For two clusters, an SVM model consists of a function describing the boundary 

hyperplane separating the clusters in the feature space. If the boundary function 

gives a positive value for some data point, then it belongs to one cluster, and if the 

value is negative, then it belongs to the other cluster. Zero value means the point 

lies on the boundary. In the exercise, we used the number of correctly classified 

instances as a quality measure in 10-Fold Cross Validation. 
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We start our classification along the lines of forward parameter selection in order 

to find out which of the causal attributes is the best standalone predictor of 

“cluster ID”. For each attribute X, SVM produces a classification model of the 

form aX + b. The value of X for which aX + b = 0 is the cut-off value defining the 

boundary: X = -b/a (for a ≠ 0). Models with a = 0 are trivial as they assign all the 

simulations to one cluster. The results of this exercise are shown in Table 2 (mark 

“--” in the place of a cut-off value means the model was trivial, having a = 0). 

Since all the attributes were normalized, all the cut-off values (so long as they 

exist) fall within the closed interval <0, 1>. For comparison, we have also 

included the “competing” SVM models based on MoE (NE, NW, NS). 

Table 2 

Forward selection of the most important attributes on the basis of SVM models 

Attribute: 

Measure: 
AA0 AE AI AL FF0 FE FI NE NW NS 

Cut-off value 100 ms 0.45 0.24 0.48 -- 0.52 0.39 0.47 0.22 0.37 0.12 

Accuracy [%] 100 ms 88.7 61.0 93.0 51.7 99.0 97.7 80.3 97.0 95.3 88.7 

Cut-off value 300 ms 0.70 0.78 0.01 0.44 0.59 0.40 0.39 0.31 0.35 0.20 

Accuracy [%] 300 ms 80.0 67.7 48.7 60.3 97.0 93.0 91.0 98.0 93.0 92.0 

The big surprise for us was the high prediction accuracy of the causal partition 

component corresponding to the initial value of fear (FF0): 99 % for 100ms dataset 

and 97 % for the 300ms dataset. If we were just looking for a high-quality 

classifier, we could have proclaimed our task finished at this point. For us, 

however, these classifiers are simply a source of hints about the underlying 

mechanism responsible for the observed divergence of the simulation trajectories 

(timid versus aggressive). And in this respect, as it turned out, things were much 

more complicated. In a straightforward interpretation the attribute FF0 being the 

best predictor indicates that the initial setting of the value of fear (F0) might be the 

underlying cause of the observed divergence of simulation trajectories. But we 

know this cannot be, since in all the 600 simulation runs this initial setting was 

kept the same (F0 = 0.3). Thus, the fact that FF0 does not remain constant must be 

due to other factors, most likely the other components of the causal partition of 

fear, to which it is tied by the partition definition constraint F = FF0 + FE + FI. 

This brings us to the question of mutual correlations among the attributes, which 

we show in Table 3. Its lower triangular portion shows them for the 100 ms data 

set, the upper triangular one for the 300 ms data set. We see that FF0 is indeed 

highly correlated with FE and FI in both data sets. We also note another redundant 

attribute AA0 (highly correlated with FE), which again cannot lead us towards the 

cause of the divergence, since the initial value of anger A0 was the same (A0 = 0.2) 

in all the simulations. Overall, this points towards FE as the primary factor, since it 

is also the second best standalone causal predictor of “cluster ID”, with 97.7% 

accuracy for the 100 ms dataset and 93% for the 300 ms one. Before delving into 

possible explanations, however, we shall first try to confirm this finding by a 

process similar in spirit to backward parameter selection. 
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Table 3 

Mutual correlations of attributes (lower-triangular section: 100 ms, upper triangular: 300 ms) 

 AA0 AE AI AL FF0 FE FI 

AA0 1 0.46 -0.34 0.22 0.49 -0.55 -0.32 

AE 0.54 1 -0.50 -0.28 0.44 -0.40 -0.41 

AI 0.44 0.13 1 0.19 0.31 -0.23 -0.28 

AL -0.17 -0.67 -0.14 1 0.44 -0.47 -0.41 

FF0 0.72 0.36 0.76 0.11 1 -0.89 -0.88 

FE -0.73 -0.32 -0.68 -0.14 -0.93 1 0.75 

FI -0.35 -0.33 -0.53 -0.12 -0.71 0.52 1 

The initial steps of backward parameter selection are shown in Table 4. We start 

with “complete” models with 7 causal attributes (top two lines) which reach 99% 

accuracy for both data sets. For comparison, we include the SVM models based on 

MoE in the next two lines. These perform slightly better for the 300 ms data set 

and slightly worse for the 100 ms one, thus confirming the quality of our causal 

models. We now remove the two “redundant” causal attributes FF0 and AA0, 

expecting that this should not impair the accuracy of our models, which is borne 

out by the last two lines in the table. Having got rid of high correlations, we can 

gauge the key factors among the remaining variables. In SVM models, these tend 

to be the ones whose coefficients in the boundary plane function have the highest 

absolute value. On this criterion, FE comes out as the most important attribute for 

both data sets – in total agreement with the first step of forward parameter 

selection in Table 2. In the 100 ms data set, the second and the third place belong 

to AI and FI, respectively; while for the 300 ms data set their ranking is reversed. 

Although these additional attributes only add a few percent to the accuracy (since 

FE alone reaches 97.7% accuracy), we decided to explore in more detail the pair-

wise combinations for additional clues they might offer. 

Table 4 

Trained SVM models with causal attributes and MoE 

Time Step Function of the boundary plane 
Correctly 

Classified 

100 ms 
 - 0.10 * AL + 0.23 * AE + 1.44 * AA0 + 2.39 * AI - 2.10 * FE 

 + 3.21 * FF0 - 0.79 * FI - 2.22 
99.0% 

300 ms 
 - 0.77 * AL + 0.24 * AE - 0.69 * AA0 + 2.04 * AI - 1.65 * FE 

 + 4.51 * FF0 - 1.92 * FI - 0.78 
99.0% 

100 ms 4.53 * NE + 3.41 * NW + 1.98  * NS - 2.36 97.3% 

300 ms 3.23 * NE + 3.05 * NW + 1.49 * NS - 2.46 99.3% 

100 ms 0.47 * AL + 1.03 * AE + 3.16 * AI - 5.16 * FE - 1.61 * FI + 0.77 99.3% 

300 ms -0.43 * AL + 0.85 * AE + 2.96 * AI - 4.49 * FE - 4.16 * FI + 2.74 98.3% 
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Considering the five causal attributes AE, AI, AL, FE and FI, there are ten possible 

pairs. In the 100 ms data set only one of them (FE x AI) was found to outperform 

FE on its own. At the same time, this pair reached the same 99% accuracy as the 

full SVM model with seven causal attributes in Table 4. Thus, we can conclude 

that for the 100 ms dataset AI and FE together contain all the information present 

in the causal partitions regarding the aggressive versus the timid turn of our 

simulations. In the 300 ms dataset, the best pair is FI and FE reaching 97% 

accuracy, which comes close to the 99% accuracy of the full causal model. We 

discuss the implications of these results in the next section. 

5 Discussion 

Some of our causal SVM models reached very high quality, correctly classifying 

99% of simulations, which means the causal partitions are good predictors of their 

“aggressive” or “timid” turn. On this basis, we feel justified in affirming the 

relevance of causal partitions for human behavior model exploration. As for their 

practical utility, this is more challenging, because by practical utility we mean 

their ability to guide us toward the aspect of the model which, if modified, would 

bring about the disappearance of the diverging trajectories – “aggressive” versus 

“timid” – for one input parameter setting. We do not expect our method to directly 

“compute” the answer, but rather assist us in the process of formulating and 

testing hypotheses. Toward this end, we first need to identify and interpret the key 

factors behind the good performance of our “causal” classifiers. Exploration along 

the lines of forward and backward parameter selection pinpointed FE as the 

primary candidate for explanation. Additionally, the interpretation of the reduced 

models in Table 4 supplied the second and third most important factors: AI and FI. 

In general, we can therefore conclude that the most important factors influencing 

the trajectory of the simulations seem to be, first, external events acting through 

fear (FE), followed by social influence acting through both anger (AI) and fear (FI). 

This is the kind of hint that machine learning techniques could extract from our 

causal partitions. In order to proceed further, we needed to incorporate deeper 

technical knowledge of our simulation model in our hypotheses. 

Our initial hypothesis was that early in the scenario – as a result of some unknown 

process or a random fluctuation – there forms a nucleus of agents that are either 

angry or afraid (while the other agents are still under the influence of their 

standard motives) and this nucleus then “converts” the rest of the agents by their 

social influence. If this were the case, we would expect the social influence 

components AI and FI to be negatively correlated (i.e. working against each other) 

and at the same time to be the best predictors for classification. However, Table 3 

shows only a small (albeit negative) correlation and, moreover, they are not the 

best predictors, since their combined accuracy was only about 95%. At this point 
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of time our method was not yet so mature as to enable us to reject this hypothesis 

outright, but its likelihood certainly decreased. The main weakness of our 

approach was that we causally partitioned only the final values of fear and anger, 

while the really “decisive” period seemed to be the early part of the scenario. We 

needed to dynamically identify the moment in which the scenario divergence 

began and then apply the causal partition process at that point. 

Our second hypothesis dealt with FE and the early attack by the violence-prone 

individuals. There was an element of uncertainty as to how many stones they 

would be able to throw. They select the closest soldier as their target, and if they 

hit him twice, they are immobilized by an effective shot. Thus, in the worst case, 

they only throw two stones, while in the best case, four (with three soldiers, the 

fourth stone throw always results in immobilization). Given that stone throws 

incite more anger, while the effective shots more fear, the proportion of the stone 

throws versus effective shots in the early part of the scenario might be the tipping 

factor determining its subsequent aggressive or timid turn. If this hypothesis were 

true, then by adjusting the soldiers to use only warning shots we should force all 

the scenarios to take the aggressive turn. We tested this experimentally, permitting 

soldiers only to use warning shots, but the two divergent trajectories still persisted. 

Thus the second hypothesis had to be discarded as well. 

The above experiment also rendered unlikely our third hypothesis – that our 

agent-based system was simply displaying chaotic behavior. The first counter-

argument had already been furnished by the clustering exercise in Fig. 5, where 

the system behavior was shown to be robust, without undue sensitivity to the 

change in the simulation time step. We would expect high sensitivity if the 

observed divergence was primarily due to random fluctuations. Forcing soldiers to 

use only warning shots was a significant change and yet the divergence persisted. 

We can therefore quite safely conjecture that the divergence is caused by some 

stable and robust mechanism. This does not mean that the element of randomness 

plays no role – in fact it has to because without it the simulations would be 

completely deterministic – but that there are likely to be other, deterministic 

factors amplifying and stabilizing the divergence. 

Our fourth hypothesis was that the external events and social influence acted 

together, perhaps as part of a two-stage or even a multi-stage process. However, in 

order to verify this we needed to improve our method first. 

5.1 Method Improvements and New Preliminary Results 

As mentioned above, the first improvement aimed at identifying decisive moments 

early in the simulations. This we have solved by logging causal partitions every 2 

seconds during the simulation. Later, off-line, we could then identify the moment 

at which the causal partitions started exhibiting increased predictive power, and 

which partition components were responsible. 
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The second improvement reflected our need for more detailed information: instead 

of considering the combined effect of all the external events lumped together, we 

recorded the effect of soldier actions separately from that of civilian actions. This 

meant a split of each “external event” component of our causal partitions into two. 

Thus, FE was split into FEC (civilian actions) and FES (soldier actions), and AE into 

AEC (civilians) and AES (soldiers). The causal partitions of anger and fear thus 

became A = (AA0, AEC, AES, AI, AL) and F = (FF0, FEC, FES, FI). 

At present, our exploratory analysis with the improved method proceeds along 

two dimensions. The first (and currently the more advanced) relates to data 

mining, namely to alternative ways of determining the relative importance of 

causal attributes for prediction, e.g. through decision trees. We have published a 

preliminary study [6], where we have shown that the 10
th

 second of the simulated 

time was the earliest moment in which the outcome could be predicted with an 

increased accuracy (72%), mainly thanks to the component FEC (the effect of 

civilian actions on fear). In the 12
th

 second, the prediction accuracy jumped to 

87.6%, but here the importance of FEC faded, having been replaced by FI (the 

effect of social influence on fear), followed by FES (the effect of soldier actions on 

fear). In the 14
th

 and 16
th

 seconds the prediction accuracy reached 98.6% and 

99.1%, respectively, and here FI strengthened its lead, followed by FEC and FES (in 

that order). Thus we indeed saw the expected staged process: the external events 

(civilian actions) starting it, and social influence taking over. Actions of soldiers 

seemed to play a temporary and intermediary role. We consider the fact that so 

early in the scenario we could predict so precisely its subsequent aggressive or 

timid turn (covering 90 seconds of simulated time) as very significant and 

promising. Yet, this result is not exactly what we had hoped for, because we still 

do not know which feature of our model is causing it. In order to answer that 

question, we need to devise new hypotheses and new experiments, which we 

envisage as the second, and more challenging, dimension of our future work. 

Conclusions 

In this paper we have shown how the principles of structural causal analysis can 

be adapted for exploratory analysis of a hybrid dynamical system whose 

continuous dynamics is described by ordinary nonlinear differential equations. 

The key step in the process is the introduction of “causal partitions” of model 

variables – vector-like structures whose components quantify the influence of 

various causal factors on a given variable. Causal partitions can be processed by 

machine learning techniques and assist in the process of meaningful interpretation 

of the emergent behavior of the simulated system. 

In our practical experiments we have demonstrated the relevance of causal 

partitions, that is, their ability to classify the simulations accurately into two 

classes – timid and aggressive. Regarding the practical utility of our method, we 

formulated several hypotheses and tried to qualitatively assess their likelihood 

based on the results of our clustering and classification experiments. We have also 
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implemented the improvements proposed in [3] and presented the first tentative 

results reached with the improved method. The successful resolution of our task 

requires further work along two dimensions: 

 To develop reliable methods of determining the relative importance 

of causal attributes for prediction 

 To formulate new hypotheses regarding the underlying causes of the 

observed behavior, and design new experiments to verify them 

In spite of the work that is yet to be done, we feel justified in concluding that 

structural causal analysis and causal partitions represent potentially valuable tools 

not only for hybrid dynamical systems, but also for simulation studies in general. 
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