
Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 127 –

Activity Diagram as an Orientation Catalyst

within Source Code

Ján Lang, Dávid Spišák

Faculty of Informatics and Information Technologies, Slovak University of

Technology in Bratislava, Ilkovičova 2, 842 16 Bratislava Slovakia

{jan.lang, qspisakd}@stuba.sk

Abstract: There is a premise that the activity diagrams can communicate their knowledge

to the source code. This article analyzes the opportunity of the activity diagrams to improve

the comprehensibility, orientation, reading, and modularization of the source code. It

proposes an Activity Diagram Driven Approach (ADDA) and verifies application

suitability of the approach in comparison to Use Case and Package-based approach. It

highlights the strengths and weaknesses of such behavior description and discusses the

identified limits and benefits of the proposed approach. It proposes an extension of the

source code modularization at metamodel level based on source code parts associated with

certain elements of the activity diagram. The proposed solution is evaluated over several

test cases from different aspects using implemented plug-in and the results show

appropriate use of the proposed approach.

Keywords: UML; activity diagram; source code; orientation; comprehensibility;

modularization

1 Introduction

Initial analysis of business processes often leads to a set of activity diagrams (AD)

that describe how the work is carried out within the organization. These diagrams

may contain so-called swimlines which visually distinguish contribution to the

implementation of business processes and responsibility for implementation of

sub-activities throughout the process. Implicitly, within these diagrams, there is

documentation of explicit links between the actions and roles, players, i.e., the

users. Such a depicted business process can gain representation in the form of

software—to a human somehow readable form of a source code. Unlike behavior

diagrams, source code is rather difficult to read and highly technical in nature with

almost no business information. It is difficult to mentally grasp even related

source code parts of the project with respect to its complexity and scope.

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 128 –

This problem met a resolution in the decomposition of a complex solution into

smaller units [1] or packages [10] etc. Such a decomposition or in other words,

modularization may carry into the software a considerable set of implications. One

of them is the issue of preserving the intent in the source code [7], low cohesion

and high coupling of the source code [8], [29] its readability [3] and

comprehensibility or simply orientation at all. Preserving or grabbing source code

intent is not only a problem of reading an unknown author’s source code but even

of its own ones, especially after some time. Actually, even the author himself has

to make a lot of effort to get in his own source code after a while. To comprehend

a certain business processes, a more or less complex ones already available in the

form of source code, would not be so simple. One could feel the need to get rid of

unnecessary details, to abstract or to see things from a higher perspective.

It is known that the system maintenance consumes approximately 70 percent of

the total cost of the software product [13]. The use and benefits of the information

stored in the behavioral diagrams and their mapping to the source code is

confirmed by developers themselves when up to 17 of 19 developers would

welcome a tool to help them navigate in the source code, especially if they do not

know the source code [21]. The same developers have suggested that the error rate

could be significantly reduced because the diagrams provide a better overview of

what the developer may currently work on. This paper presents the design and

implementation of the Activity Diagram Driven Approach (ADDA) and source

code mapping, i.e., organizing source code into a structure based on activity

diagrams in order to achieve better modularization, readability, comprehensibility,

and orientation in the source code as such. The work is divided into several

sections. Section 2 refers to the core principle of the activity diagram-driven

source code modularization. Section 3 provides consideration in the context of the

activity diagram’s metamodel and its extension. Section 4 includes an extensive

evaluation and reflects on related work.

2 Related Work

The proposed approach ADDA can be confronted across all phases of software

development. One can come across activity diagrams within a workflow modeling

during the requirements elicitation phase [14]. At this stage, we usually do not

have any source code except for existing projects and for example specifications

in the form of Changelog. Further analysis and design may only refine the

identified model of the upcoming system. Connection with the implementation

phase of software development is found in the study of the coverage degree of the

source code by the activity diagram [19]. They proved that it is possible to

generate source code not only from structural class diagrams but also from

behavioral diagrams namely UML AD. To achieve automatic generation L. Jim

and P. Klint had to define relatively complex stereotypes and limitations.

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 129 –

According to L. S. Jim and P. Klint [19], K. Hyungchoul [20] and Heinecke et al.

[17], user-acceptance tests (UAT) can also be generated from UML AD.

A similar connection between the software development phases also provides

another UML artifact. M. Bystrický in his work [5], [6] and [7] presented the idea

of the source code modulation from the point of view of use cases. In this

approach, it represents a use case by a single file - a markdown file. This file, in

addition, contains business information and source code implementing the

behavior of the use case. Thus, the user finds the relevant source code in one

place. This is the most fundamental difference between M. Bystrický’s approach

and the proposed ADDA approach. Using UML AD even UML UC in both cases,

is just a way of looking at the source code - simply a certain perspective of

looking. Using different views, respectively projections, in relation to the source

code has also been investigated by J. Porubän and M. Nosáľ [27] in “Leveraging

Program Comprehension with Concern-Oriented Source Code Projections”. The

authors recognized the possible need to look at the source code from different

viewing angles according to the actual needs of the programmer. ADDA approach

can also be considered as one of the source code projections. However, J. Porubän

and M. Nosáľ did not come with UML AD in their solution, so they chose a

different approach for source code projections based on annotations. However, a

number of authors have dealt with the UML activity diagrams [17], [19], [21], the

use of a new view at the source code e.g. from the perspective of use cases [7]

even from the perspective of interrelated pieces of (multidimensional) software

knowledge [34] or readability [4] comprehensibility [26], [24], [29], reusability

and manageability [12], [11]. There are several types of contributors that

participate in the development process. They prefer different types of perspective

according to Alistair Cockburn’s [9] UC levels of abstraction. Software

comprehension supported by structural diagrams is also provided [18] based on

measuring the time and correctness of responses. In another experiment

demonstrating the need for diagramming participants desired a wide range of

information contained in diagrams. They also declare the need for flexible,

adaptive, and responsive diagramming tool support. Just for that reason, the

prototype ADACSCO (Activity Diagram As a Catalyst of a Source Code

Overview) has been deployed as an extension of the existing IDE Eclipse.

3 Activity Diagram Driven Source Code

Modularization

In principle, activity diagrams are used to communicate reality or ideas about

business processes [17], [25], [42]. They offer comprehensive support for the

control-flow of the majority of them [30] and they are at least one level of

abstraction above compared to use cases presented in Cockburn’s Five Level Use

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 130 –

Case Model [9]. However, activity diagrams besides their textual description, in

addition, visualize the process control flow. It is possible to consider the case

when one business process consists of more than one use case [15], [35]. In this

case, one executable node may also represent just one use case that embodies

lower-level steps in the overall activity according to UML Specification. All of

this only confirms a higher or equal perspective of the activity diagram’s view of a

model in comparison to the perspective of use cases. In some literature, this is

referred to as a difference in the granularity of the view of the model [2]. It also

destroys misunderstanding of the activity diagrams as just a mean for a single-use

case expression [22].

As mentioned above, activity diagrams are describing execution flows called – the

flow of work, workflow, working process or business process represented by

actions - nodes called ActivityNodes interconnected by edges. And so, the

description of the workflow consists of ActivityNodes (ControlNodes,

ObjectNodes, and ExecutableNodes) and flow-of-control constructs

(synchronization, decision, and concurrency) principally analogous to Petri Nets.

The activity diagramming is specific for its possibility to expose other artifacts

such as real object instances [31], the naming of roles that cooperate in the

business process, visualization of parallel sub-processes [32], and specification of

event-driven behavior [13]. The considered approach of activity diagram-driven

source code modularization attempts to use explicitly created links to map the

activity diagram with the source code as close as possible. Additionally, classes

would not be logically grouped in a suitable way by belonging to elements or

activity diagrams. Element implementation information would be scattered

throughout the code. However, the benefit of the alternative with comments and

tags could be the assignment at the level of methods and attributes. The second

alternative is to link classes or source files directly with an activity diagram’s

elements so that their relationship appears in the AD action tree rather than in the

source code. However, mapping classes to AD elements represents a higher

granularity of association abstraction in comparison to mapping methods or

attributes to AD elements and of course, it brings in certain redundancy in the

form of element-irrelevant parts of the source code. But, such a form of

decomposition is not in contradiction with a possible more detailed

implementation.

The modularization units that would account for such a structure are the activity

diagrams and the elements of the activity diagram - predominantly actions. Each

element of the activity diagram respectively the activity diagram itself may have

its behavior implemented by a specific part of source code. In our experiments,

those specific parts will be classes. The activity diagram element to source code

relevance can be visualized for example by an explicit link between the element

and the class. For a simpler and more transparent view, it is possible to document

these associations in the form of a tree structure, where the root of the tree is the

activity diagram, its nodes are the elements, and the tree leaves represent the

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 131 –

classes themselves. Creating these explicit links, respectively bindings allows

defining the structure of the source code based on activity diagrams. Such a

structure preserves a degree of business information that can help the user to

orientate between the source code classes.

Figure 1

Associations between UML AD elements and classes in Package Explorer (PE)

Figure 2

Tree structure organization of UML AD elements in ADACSCO plug-in

Colored lines in Figure 1 connect executable nodes of the activity diagram with

classes of the Order Management System project listed in PE of the Integrated

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 132 –

Development Environment (IDE) Eclipse tool. The extension of the above

visualization is illustrated by the Tree Structure Organization of UML AD in

Figure 2 supplemented by the association orientation. The number in common

brackets next to the name of each executable node expresses the number of classes

participating in the implementation of the behavior behind the action.

Implementation of the plug-in for IDE Eclipse seems to offer a new perspective

for organizing the project - in terms of business processes. However, the principle

is not only bound to the above mentioned IDE either language of the source code.

Binding classes to actions assume the source code in the object-oriented paradigm.

An interesting aspect is the direction of the binding. An arrow of the association

goes from class to action. However, several different scenarios of modularization

supported by an association AD with specific parts of the project - the source code

can be considered. For the purpose of evaluation, we have created all diagrams in

Enterprise Architect (EA). Interestingly, in this context, it seems to be an

estimation of the burden resulting from the proposed approach. For the purpose of

evaluation, prepared AD was neither difficult nor complex. It can be assumed that

there is no potentially greater burden put on the developers neither in the case of

enterprise projects nor projects with a higher number of AD. Hypothetically, this

results from the fact that a discrete backlog task does not matter how processed

(iteratively, agile. . .) will always be or should be just a subset of a particular AD.

And for this purpose, each developer performs the synchronization of changes

made to it for all affected repositories including the update in associations

between AD elements and classes. The nature of the approach itself, as it is

apparent from the description, suggests that it is a non-invasive method from the

source code point of view. The above scenarios represent a way to modularize the

source code driven by AD. Regarding the source code modularization, there are

several ways of implementation e.g. based on packages, from the architectural

point of view according to the MVC pattern or driven by use cases [7]. However,

none of these directly support organizations according to the studied business

processes in a complex view. All the things mentioned above especially

modularization related are heading to improve orientation itself. Straight and tidy

units, respectively parts of a project, create a premise for better orientation.

4 Activity Diagram Metamodel Extension

The proposed approach does not implement all of the elements for simplicity. This

is also because they are not expected to be used frequently and could uselessly

complicate the proposed solution and make the proposed structure less apparent.

The yellow-colored element of the metamodel has been included in the alpha

version of the implemented prototype. This approach proposes UML metamodel

extension in the form of an association between the activity diagram element -

ActivityNode and the SourceCode element by composition see Figure 3. One

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 133 –

ActivityNode can aggregate multiple parts of the source code. Deleting a

particular activity from the activity diagram also results in an adequate response

on the source code side. This synchronization is fully supported by the

implemented prototype.

Figure 3

UML AD metamodel – Control node part. Based on OMG® Unified Modeling Language

In order to confirm or disprove all the above-mentioned assumptions even

expectations including the extension of the metamodel within the ADDA

approach, testing and evaluation were performed. For this purpose as the

prototype ADACSCO plug-in has been implemented according to the above-

mentioned specification in Java as an Open Source IDE Eclipse project.

5 Evaluation of the Proposed Approach

Orientation in UML AD is relatively simple following the instructions in the UML

specification [25]. This good orientation in UML AD ensures the control of even

object flow [33]. The swim lines may contribute as well. They group the elements

of the activity diagram, e.g. according to the actor who performs these actions

[25]. We expect these features can improve orientation in the source code.

Experimental verification of these expectations is provided within the Evaluation

by selected user types, Performing tasks by participants using ADDA and

Multiple Users’ Collaboration support.

Activity diagram driven approach proposed in this paper is expected to play the

role of an imaginary catalyst that supports orientation within a source code. Let us

assume that, AD is considered to be a catalyst (CA) according to a certain analogy

with formal expression in chemistry, then

𝐀𝐃 ⇔ 𝐂𝐀#(𝟏)

AD is intended to be used in conjunction with the source code (SC) just as any

other artefact, therefore

𝐀𝐃 + 𝐒𝐂 → 𝐀𝐃𝐒𝐂 #(𝟐)

Of course, catalyst supported source code (ADSC) can be compiled by Compiler

(C). Only the code is really compiled. In general, the catalyst does not affect the

reaction balance in chemistry even in this analogous case for the source code

compilation. So AD does not affect the way the code is compiled. AD remains

unchanged by compilation. AD is just an artifact like many others,

C(ADSC) → CSC + AD#(3)

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 134 –

As a result of compiling source code in the IDE with links to various artifacts not

excluding AD is the Compiled Source Code (CSC). AD as a catalyst and at the

same time one of the artifacts is not consumed and still remains. Concerning

orientation (O) in the existing source code, we can assume a situation where at the

beginning (in time denoted as t1) of the interaction with the source code, the

degree of a user orientation is denoted as Ot1. After some time of interaction (in

time denoted as t2), study or acquaintance with the source code, the degree of the

user orientation will be referred to as Ot2. So, the duration of getting to know the

source code ∆t without the use of AD as a catalyst can be expressed as:

Ot1 → Ot2: t2 > t1: ∆t = t2 − t1#(4)

Another situation occurs if we use AD as a catalyst. Catalyst - AD influences only

the duration of the user’s interaction with the source code ∆tAD in order to get the

required level of the orientation. While Ot3 is the user orientation in the beginning

and Ot4 is the user orientation after some time of interaction with the source code.

𝑂𝑡3
𝐴𝐷
→ 𝑂𝑡4: 𝑡4 > 𝑡3: ∆𝑡𝐴𝐷 = 𝑡4 − 𝑡3#(5)

So, we can express our hypothesis as:

∆𝑡𝐴𝐷 < ∆𝑡#(6)

To prove this hypothesis, a series of tests were carried out under the same

conditions with respect to the source code sample and the group of participants.

The experimental group of participants - for evaluation purposes, a group of 12

participants was created. All participants who participated in the evaluation

activities were all experienced in programming (each worked for at least 3 years

as a developer) and recognized the Java language in which the source code sample

was implemented. Four of the participants previously worked as testers and two of

them have had practical experience with system analysis. The age of participants

varied when the youngest was 28 and the oldest 49 years old. Source code’s

working set - a source code’s working set is a set of source code classes to which

the developer needs access throughout a particular assignment. For evaluation

purposes, we have used a source code fragment whose characteristics are listed in

Tables 1, 2, and 3.

Evaluation was performed by the following ten testing scenarios.

A.) Activity diagram coverage by ADACSCO. Implementation of ADACSCO, a

data model has been created over which the plug-in is working. To confirm that,

this data model covers all the important AD UML 2.5 elements (specifically

ActivityNodes, flow-of-control constructs - decision and concurrency) we have

compared it with the UML AD metamodel. Due to the limited space in the article,

we do not provide a visualization of this mapping. Finally, all metamodel entities

respectively the metamodel elements that were identified in the Activity diagram

driven source code modularization section as necessary are included and

implemented in the proposed data model.

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 135 –

B.) UML AD creating in ADACSCO. Source code and related eight sample ADs

were prepared in Enterprise Architect and available in the form of .png images as

well as .xml files. Respondents did not recognize the source code before. Each of

the participants had to get in these ADs into ADACSCO in two ways - manually

and automatically.

Manually creating a tree structure - in this case, participants had to redraw the

ADs based on prepared images using ADACSCO editor functionality. The

sequence of actions that participants had to perform was as follows: create a

project in Eclipse IDE then redraw activity diagrams in ADACSCO including

activity diagram elements for each and finally assign parts of the source code to

AD elements. Respondents did not consider creating a project and activity

diagram as problematic just as the creation of elements in these diagrams. They

even marked them as actions that would be rarely performed. The complications

were seen just in the assignment of the classes to the actions. Assigning classes to

actions may occur in an ongoing project. Therefore, in such a case, it can be

perceived as counterproductive. Of course, it can be argued that each developer

would use ADACSCO only on the part of the AD that is the subject of his work.

Therefore, he should assign classes only to selected and a significantly smaller

number of elements. There could be a lot of duplicate work when two developers

work on the same AD. In order to avoid similar situations, ADACSCO has been

extended to support collaboration between developers by export and import

functionality (described in Multiple Users’ Collaboration support).

Automatically creating a tree structure - in this case, participants had to create

ADs using a .xml file import ADACSCO functionality. This option unburdens the

developer not only from the tree structure creation but also in certain cases from

the manual assignment of classes to selected elements of the activity diagram. A

prerequisite for using this functionality is a properly designed activity diagram (in

our case in the Enterprise Architect) exported in the form of .xml file. ADACSCO

can read the file, convert it properly into the tree structure and visualize it.

During the import phase, the AD and its elements are automatically created.

Created links between actions are also supported by the plug-in. If the activity

diagram has a relationship between the activity diagram element and a class,

ADACSCO can create these links as well. So if the associated class already exists

in the project, ADACSCO will offer link with the element based on name

matching. If the class has not been created yet ADACSCO will offer an option for

its creation. No negative comments were recorded by the participants in the

assessment of the implemented functionality.

C.) Activity diagram elements data customizing. The ADACSCO plug-in allows

creating of tagged values for each project, AD, or AD’s elements. The tagged

value consists of the name and the value that belongs to it. In this way, it is

possible to record the required set of data in the tree structure of ADACSCO for

each element of the AD. In assessing this functionality, each participant had to

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 136 –

find as many ways of applying the tagged values as possible, respectively through

tagged values should store as much data as one thinks to be useful. The most

commonly created tagged values were: priority - the importance of why a snippet

of the code was attached to the AD element, complexity - the degree of

implementation difficulty, dates - each participant gave at least one date,

requirements - participants would welcome to add non-functional requirements

related. There were also: information useful in the agile development process -

participants saw the potential of tagged values also in recording information in

agile development method when it could be recorded for example a sprint number,

start and end date or product owner and attributes for implementing user

acceptance tests (UAT) - tagged values can also be used in activity diagrams to

generate UAT tests.

D. Created structure modification support. Evaluating the available options for

modifying the structure of AD, participants were asked to edit the AD in EA.

Then, transfer these changes into ADACSCO or they could skip editing the

diagram in EA if they did not consider it important. As part of this evaluation,

participants did not make any serious comments and did not notice any

shortcomings of the plug-in as well.

E. Multiple Users’ Collaboration support. Multiple Users’ Collaboration has been

evaluated at the source code level as well as ADACSCO Tree Structure. Source

code level collaboration point of view - ADACSCO does not prevent or restrict

users from using Git, SVN for collaboration. Because ADACSCO does not

directly work with source files but only opens them with IDE Eclipse Editor

(similar to PE), there are no temporary or permanent copies of the source code

files. This behavior ensures that source code files management does not require

any additional configuration or tracking of a different set of source code files. In

other words, if one developer uses ADACSCO and the other does not, it has no

impact on working with Git. This behavior was tested in the following scenario.

Each of the two participants had their own computer while the first one updated

the source code using ADACSCO, and the other used the standard PE. They used

GitHub service through terminal commands. Description of the test scenario:

Respondent 1 (PC 1): Updating the NaturalPerson.java class (ADACSCO);

Inserting changes to the shared Git repository (push). Respondent 2 (PC 2):

Downloading changes from shared Git repository (pull), Updating the

NaturalPerson.java and LegalEntity.java (Package Explorer), Inserting changes to

the shared Git repository (push). Respondent 1 (PC 1): Downloading changes

from shared Git repository (pull). The result of evaluating the use of ADACSCO

with Git was consistent with the assumption. This means that after the testing

scenario, participant 2 had available changes made by participant 1, and

participant 1, in turn, saw changes made by participant 2.

Collaboration at the Tree Structure level of ADACSCO plug-in - tree-level

collaboration means sharing a previously created activity diagram, its elements

including elements with the associated source files. The goal of enabling

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 137 –

ADACSCO activity diagrams to be shared is to avoid unnecessary duplicate

activity with developers. If someone has already created the structure, it is

unnecessary to create it again. Tree-level collaboration at the ADACSCO platform

is made possible by AD exporting and importing. This means that the developer

exports the already created activity diagram in ADACSCO. The diagram is stored

in a .xml file that can be delivered to a different developer, e.g., by email. The

tree-level collaboration was evaluated by all 12 participants. Eleven of them

exported their AD and put the export on a common USB. The last twelfth

participant imported these AD into ADACSCO. As a result of this evaluation, the

twelfth participant had access to the tree structures created by his colleagues in his

ADACSCO. This evaluation also successfully attempted to show a possible way

of using the plug-in in an already running project, even when a large system is

distributed among multiple developers.

F.) Modularization support. Modularization of the software is the distribution of

monolithic code to modules having a certain modular structure [28]. Three ways

of organizing the source code, namely Package-based approach, the Use Case-

based approach, and the ADDA approach were confronted during the evaluation

process. Package-based approach - traditional approach uses packages to organize

classes. These packages used to be based on domains (as was the case in the

evaluated sample code). The basic modularization unit is a package. Use Case-

based approach - this approach uses an organization based on use cases. One use

case is included in a file (a markdown file) that contains the source code needed to

implement the flow of a given instance of the use case. The basic modularization

unit is a single step of the use case. ADDA approach - a source code

modularization approach that uses the structure based on the UML AD, where the

main modularization unit is an action element of the activity diagram. This

approach was described in more detail in section Activity diagram driven source

code modularization. Each approach from those mentioned above provides a

different source code modularization base. For a closer comparison of all three

approaches, selected values were identified. The results are shown in Tables 1, 2,

and 3. When comparing the results of the basic modularization units (package,

activity diagram element and single use case step), we can see that the lowest

average number of source code files per modularization unit is reported by the use

case approach, see Table 3. The reason that the markdown file associated with the

use case has the best results is that it contains only the source code for that use

case. This means that it does not provide the user any unnecessary methods,

attributes, comments, and so on.

However, when looking at the results, the activity diagram - the ADDA approach

(see Table 2) shows nearly 8,308 source code rows per AD whereas the package

has approximately 3,420 source code rows per packages, see Table 1.

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 138 –

Table 1

Modularization: Package based approach project perspective

Number of packages 12

Number of classes 157

Number of methods 689

Number of source code rows 41033

Average number of source code files per packages 13.08

Average number of methods per packages 57.42

Average number of source code rows per packages 3419.42

Table 2

Modularization: ADDA approach project perspective

Number of activity diagrams 8

Average number of elements per activity diagram 8.25

Average number of source code files per activity diagram 32.86

Average number of source code files per activity diagram element 4.59

Average number of methods per activity diagram 124.028

Average number of methods per activity diagram element 17.75

Average number of source code rows per activity diagram 8307.75

Average number of source code rows per activity diagram element 1164.57

However, this result is correct and expected because one class can participate in

the implementation of multiple elements of the AD. This is why the ADDA

approach shows a higher number of source code rows. This view, however, does

not rule out the fact that repetitive occurrences of redundant parts of the code can

be eliminated by more detailed methods to action binding. If we compare the

ADDA and Package based approach depending on the working sets, we get

41,033 to 8,308 in favor of the ADDA approach. The ADDA approach shows a

better result also in decomposition AD into its elements too. The average number

of source code files per activity diagram element is only 4.59 to 13.08 in favor of

the ADDA approach. We believe that a smaller number of files per modularization

unit reduces the user’s mental load. At the end of the modularization evaluation, a

significant majority of all participants involved in the study opted for

modularization based on ADs and use cases. Only one of them voted for

modularization based on packages.

G.) Readability and comprehensibility evaluation. Readability and

comprehensibility are the properties of the source code which can be evaluated not

only on the basis of subjective evaluation of participants but also from the

perspective of different metrics. As was already mentioned ADDA approach does

not modify the source code in any way, but only provides a new look at its

structure. Based on this argument it could be assumed that the metrics for

Package-based approach and the ADDA approach will be identical. However, this

assumption is not entirely correct. ADDA allows you to assign the same file of a

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 139 –

source code (e.g, class) to multiple elements. As a result of this behavior,

ADACSCO creates duplicates in the tree structure. It is then possible to define

two assumptions. When calculating metrics for both projects of both approaches,

the ADDA approach will have worse results due to the duplicates mentioned

above. When calculating metrics for the source code’s working set (the set of

source code files the developer will need when implementing the specified

assignment), the ADDA approach will have better results because the Package

working set contains many more source code files. In order to confirm both

assumptions, but not exclusively (Number of Code Rows (NCR), Average

Number of Classes (ANC), Average Method Complexity (AMC) - Average

Cycling Complexity [23], Average Number of Direct Descendants of a class

(ANDD), Average Number of Inherited Methods (ANIM) and the Average

Coupling Between Object (ACBO) [16]) metrics have been calculated to identify

ADDA’s impact on readability and comprehensibility. All 6 metrics for

readability and comprehensibility were calculated using the Eclipse IDE Metrics

plug-in. Cyclomatic complexity for AMC was also verified by the CyVis tool.

Table 4 lists the results of the experiment confirming the assumptions described

above. Better results for the project have the Package-based approach and on the

contrary, the results measured for the source code working set are in favor of the

ADDA approach.

Based on the results shown in Table 4 it can be concluded that the ADDA

approach improves the readability and comprehensibility of the source code the

developer is working on, but only within the scope of one activity diagram. One

backlog task usually does not exceed one use case which is comparable to the

above AD range. The principle of problem decomposition always leads to simpler

tasks. This may be a recommendation to create a backlog, consisting of tasks not

exceeding one AD. Table 4 also shows that the ADDA approach reduces the

working set of classes the developer needs at the time of implementation. It is

worth mentioning another finding based on the participants’ testimonies. Classes

are not just class clusters, as it is in the case of packages because of the structure

based on AD. This only confirms the conclusion obtained on the basis of the

metrics calculation. So, readability and comprehensibility are better when working

with classes in an ADDA manner more than working with them in package

organization.

H.) Source code orientation catalyzation. This section does not reflect issues such

as proper source code offsetting or use of appropriate names or decision and cyclic

structures but it deals with simple quick and accurate identification of the file

associated with actions. The key metric for the purpose of the evaluation was the

time to find related artifacts. This should be supported by the tree structure itself

based on activity diagrams and orientation-supporting elements - decorations in

the form of graphical differentiation of individual elements of the activity

diagram, graphical resolution based on integrity, information about node number

of descendants, and prefix for structured activities.

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 140 –

Table 3

Modularization: Use case based approach project perspective

Number of use cases 11

Average number of source code files per use case’s step 1

Average number of methods per use case 7.2

Average number of source code rows per use case 428.79

Graphical differentiation between activity diagram’s elements in the plug-in is

done using icons based on UML 2.5. Each element of the activity diagram stores

information about implementation completeness and entails information about the

number of source code files that are related to it. Improvement in the source code

orientation was tested by participants in fulfilling selected tasks. Respondents’

statements revealed a positive assessment of the above-mentioned artifacts to

support orientation in the related source code.

Table 4

Metric results

Tool/Metrics
Package Explorer ADACSCO

Project Package Project AD

NCR 41033.0 3730.3 76 861.8 9 607.7

ANC 157.0 14.3 303.0 37.9

AMC 27.1 2.5 34.8 4.4

ANDD 0.714 0.1 0.9 0.1

ANIM 3.39 0.3 3.8 0.5

ACBO 2.1 0.2 2.7 0.3

I.) Performing tasks by participants using ADDA. Respondent’s role was to

perform several tasks (Modify VAT calculation from 20% to 15%, Change the

notification email text after successful client creation, etc.) on a selected source

code sample using three different approaches. All 12 participants attended the

evaluation. Respondents were divided into three groups of four. The first group

used a traditional approach based on packages the second used ADACSCO and

ADDA approaches. The last third group used the Use Case-based approach

implemented by the ADACSCO plug-in too. The time needed to identify the class

was measured for each task, also the number of clicks and the number of open

classes for each participant. None of the participants previously met the source

code sample and did not have any more information about it. The evaluation

results confirmed the expectations. The traditional Package-based organization has

much worse (approximately four times worse) results than ADDA and Use Case-

based approach see Figure 4. ADDA approach was not the best in terms of time

but its results did not lag behind the results of UC-based approach. So, our

assumption that the time required to obtain orientation in the source code in

ADDA approach will be shorter than in the standard package-oriented approach

has been confirmed. Performing tasks using Package Explorer; participants - who

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 141 –

did not know the source code - had to browse the classes that could have the

required functionality based on the similarity in names. This observation was

confirmed by the participants themselves.

Figure 4

Task completion - time comparison between approaches

Respondents working with ADDA; have been much more successful in terms of

time see Figure 4. They said it was useful that they were able to reduce the

number of classes from about 150 to about 8 on the basis of functionalities. They

found it great in finding the right class and of course very useful if someone did

not know the code. Respondents’ statements in further discussion only confirmed

the results where model-based approaches that provide users with functionality

information have a significant positive effect on the orientation between source

code files. Previous testing has revealed that ADDA and use Case-based

approaches have a significant impact on improving orientation. In order to make a

subjective comparison between the two successful approaches participants have

tried both approaches in the reverse order. Subsequently, participants’ subjective

opinion was investigated. It was not possible to distinguish which approach was

better from participants’ subjective statements because each response was based

on personal preferences. As a result, 5 participants would use a UC-based

approach and three of them approach based on activity diagrams.

J.) Evaluation by selected user types. ADDA’s main asset is a source code

extension by the information that may be beneficial not only for developers but

also for testers, managers or analysts, see Activity diagram driven source code

modularization. In order to verify this assumption, an interview was conducted

with an analyst, project manager, and two testers (none of whom belonged to the

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 142 –

original group of 12 participants from the previous evaluation activities). Each of

these four participants should subsequently confirm or refute the usefulness of the

proposed approach in their normal workload. The participant, who works as an IT

analyst, proposed an extension as it is possible to associate other types of files

with AD – for example by GUI designs, data samples, etc. Improving the

overview of the project, the project manager (PM) must have was appreciated by

the respondent working as a project manager. He emphasized that it would be

interesting to see how many processes are already implemented and how many

still remain. Further use of the approach was mentioned according to a price

estimation of future projects. It could be based on the overall business process

duration or just a single action duration. Respondents - testers identified usage of

the approach in unit testing. They claimed that as well as being able to associate

the source code according to AD elements, it is also possible to associate the test

scripts. Another option that they pointed out was directed to the description of

errors directly related to the process or its particular part. They have appreciated

the ability to add the time of the latest tests and versions. Test time and test

version information could be recorded as tagged values. From the approach

assessment by specialists, it can be assumed that the approach can also be

beneficial to non-developers. This conclusion can only be put forward as just a

premise. The actual benefit could only be tested and found within a real project in

which ADDA and ADACSCO were not used.

Conclusions

This paper presented the idea of organizing source code from the activity diagram

perspective denoted here as the ADDA approach to improve modularization,

readability, comprehensibility, and mainly orientation in the source code. In order

to achieve this goal, an analysis of the possible benefits of UML AD was

performed. The result of this analysis was the identification of important features

of the activity diagram which could make a significant contribution in binding

with the source code. Based on the results of the analytical activities, ADDA has

been suggested which mainly uses explicit associations between the source code

parts and the activity diagram elements. These bindings allowed us to define a

new modularization structure that can be depicted as a tree where the root of the

tree is an activity diagram its nodes are the elements and the leaves are the classes

themselves. The ADACSCO plug-in to Eclipse IDE has been implemented for

evaluation purposes to create and work with a tree structure defined by the ADDA

approach. ADDA approach evaluation using ADACSCO consisted of 6 parts:

Evaluation of ADACSCO activity diagram coverage, Workflow evaluation,

Modularization assessment, Readability and Comprehensibility assessment,

Evaluation of orientation, and evaluation by selected user types. Twelve

participants took part in the evaluation. Within the selected evaluation parts, a

comparison has also been made with another two existing approaches – Package-

based approach and Use Case-based approach. The ADACSCO AD coverage

assessment was performed to demonstrate that each element of the activity

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 143 –

diagram identified in the ADDA proposed approach has its own representation in

ADACSCO. The result was achieved by mapping the selected metamodel of the

activity diagram to the ADACSCO data model. The orientation was evaluated in

the form of subjective evaluation of 12 participants and was divided into two

parts. The first one consisted of testing and commenting elements supporting the

orientation in the source code. The second part of the evaluation was to perform

certain tasks by participants using the Package-based approach, ADDA approach

and Use Case-based approach. When performing these tasks, the values were

measured: time, the number of clicks, and a number of open classes. The ADDA

approach had the second-best results only slightly behind the Use Case-based

approach. The Package-based approach, on the other hand, had worse results than

the other two approaches. The reason for these differences between the results was

that the Package-based approach did not contain any business information.

Evaluation by selected user types has demonstrated the possibility of using ADDA

and ADACSCO also for project team members such as analyst, project manager,

and tester. Finally, it can be generalized that creating explicit links between the

available artifacts in the development of the software supports the orientation in

the source code itself. Defining the source code structure based on activity

diagrams maintains a degree of business information that can help the user

navigate between the source code classes.

Acknowledgment

The work reported here was supported by the Scientific Grant Agency of Slovak

Republic (VEGA) under grant No. VG 1/0759/19, the Slovak Research and

Development Agency under contract No. APVV-16-0213, and by the Operational

Programme Integrated Infrastructure for the project: Electronic methods for

detecting unusual business operations in the course of trade (ITMS code:

313022W057), co-funded by the European Regional Development Fund (ERDF).

References

[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K.

Rustan M. Leino. (2006) Boogie: A Modular Reusable Verifier for Object-

Oriented Programs. In Formal Methods for Components and Objects.

Springer Berlin Heidelberg, 364-387, https://doi.org/10.1007/11804192_17

[2] Sonia Berman and Thembinkosi Daniel Semwayo. (2007) A Conceptual

Modeling Methodology Based on Niches and Granularity. In Conceptual

Modeling - ER 2007, Springer Berlin Heidelberg, 338-358,

https://doi.org/10.1007/978-3-540-75563-0_24

[3] Jürgen Börstler, Michael E. Caspersen, and Marie Nordström. (2015)

Beauty and the Beast: on the readability of object-oriented example

programs. Software Quality Journal 24, 2 (feb 2015), 231-246,

https://doi.org/10.1007/s11219-015-9267-5

about:blank

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 144 –

[4] Raymond P. L. Buse and Westley R. Weimer. (2010) Learning a Metric for

Code Readability. IEEE Trans. Softw. Eng. 36, 4 (July 2010), 546-558,

https://doi.org/10.1109/TSE.2009.70

[5] Michal Bystrický and Valentino Vranić. (2016) Development Environment

for Literal Inter-language Use Case Driven Modularization. In Companion

Proceedings of the 15
th

 International Conference on Modularity

(MODULARITY Companion 2016) ACM, New York, NY, USA, 12-15,

https://doi.org/10.1145/2892664.2893465

[6] Michal Bystrický and Valentino Vranić. (2016) Literal Inter-language Use

Case Driven Modularization. In Companion Proceedings of the 15
th

International Conference on Modularity (MODULARITY Companion

2016) ACM, New York, NY, USA, 99-103, https://doi.org/10.1145/

2892664.2892680

[7] Michal Bystrický and Valentino Vranic. (2017) Preserving use case flows

in source code: Approach, context, and challenges. Computer Science and

Information Systems 14, 2 (2017) 423-445, https://doi.org/10.2298/

csis151101005b

[8] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. (2016)

Using Cohesion and Coupling for Software Remodularization: Is It

Enough? ACM Trans. Softw. Eng. Methodol. 25, 3, Article 24 (June 2016),

28 pages, https: //doi.org/10.1145/2928268

[9] A. Cockburn. (2001) Writing Effective Use Cases. Addison-Wesley

[10] Ferruccio Damiani, Arnd Poetzsch-Heffter, and Yannick Welsch. (2012) A

type system for checking specialization of packages in object-oriented

programming. In Proceedings of the 27
th

 Annual ACM Symposium on

Applied Computing - SAC. ACM Press. https://doi.org/10.1145/

2245276.2232058

[11] Anil Saroliya Deepa Dhabhai, A. K. Dua. (2015) Review paper: A Study on

Metric For Code Readability. International Journal of Advanced Research

in Computer Science and Software Engineering 5, 6 (June 2015), 463-466

[12] James L. Elshoff and Michael Marcotty. (1982) Improving Computer

Program Readability to Aid Modification. Commun. ACM 25, 8 (Aug.

1982), 512-521, https://doi.org/10.1145/358589.358596

[13] Rik Eshuis. (2006) Symbolic model checking of UML activity diagrams.

ACM Transactions on Software Engineering and Methodology 15, 1 (jan

2006), 1-38, https://doi.org/10.1145/1125808.1125809

[14] Rik Eshuis and Roel Wieringa. (2001) A Real-Time Execution Semantics

for UML Activity Diagrams. In Fundamental Approaches to Software

Engineering. Springer Berlin Heidelberg, 76-90, https://doi.org/10.1007/3-

540-45314-8_7

Acta Polytechnica Hungarica Vol. 18, No. 3, 2021

 – 145 –

[15] M. Fowler and Safari Tech Books Online. (2004) UML Distilled: A Brief

Guide to the Standard Object Modeling Language. Addison-Wesley.

https://books.google.sk/books?id=nHZslSr1gJAC

[16] R. Harrison, S. Counsell, and R. Nithi. An overview of object-oriented

design metrics. In Proceedings Eighth IEEE International Workshop on

Software Technology and Engineering Practice incorporating Computer

Aided Software Engineering. IEEE Comput. Soc. https://doi.org/

10.1109/step.1997.615494

[17] Andreas Heinecke, Tobias Brückmann, Tobias Griebe, and Volker Gruhn.

(2010) Generating Test Plans for Acceptance Tests from UML Activity

Diagrams. In 2010 17
th

 IEEE International Conference and Workshops on

Engineering of Computer Based Systems. IEEE. https://doi.org/

10.1109/ecbs.2010.14

[18] D. Hendrix, J. H. Cross, and S. Maghsoodloo. (2002) Corrections to "the

effectiveness of control structure diagrams in source code comprehension

activities". IEEE Transactions on Software Engineering 28, 6 (jun 2002),

624-624, https://doi.org/10.1109/tse.2002.1010064

[19] S. L. Jim and P. Klint. (2006) From UML diagrams to behavioural source

code. (2006). unpublished thesis

[20] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, and Inyoung Ko.

(2007) Test Cases Generation from UML Activity Diagrams. In Eighth

ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD

2007) IEEE. https://doi.org/10.1109/snpd.2007.189

[21] Seonah Lee, Gail C. Murphy, Thomas Fritz, and Meghan Allen. (2008)

How can diagramming tools help support programming activities?. In 2008

IEEE Symposium on Visual Languages and Human-Centric Computing.

IEEE. https: //doi.org/10.1109/vlhcc.2008.4639095

[22] Shuang Liu, Jun Sun, Yang Liu, Yue Zhang, Bimlesh Wadhwa, Jin Song

Dong, and Xinyu Wang. (2014) Automatic Early Defects Detection in Use

Case Documents. In Proceedings of the 29
th

 ACM/IEEE International

Conference on Automated Software Engineering (ASE ’14). ACM, New

York, NY, USA, 785-790, https://doi.org/10.1145/2642937.2642969

[23] T. J. McCabe. (1976) A Complexity Measure. IEEE Transactions on

Software Engineering SE-2, 4 (dec 1976), 308-320, https://doi.org/

10.1109/tse.1976.233837

[24] Mohd Nazir, Raees A. Khan, and Khurram Mustafa. (2010) A Metrics

Based Model for Understandability Quantification. CoRR abs/1004.4463

(2010) arXiv:1004.4463

[25] OMG. Unified Modeling Language (OMG UML), Superstructure, Version

2.4.1, August 2011

about:blank

J. Lang et al. Activity Diagram as an Orientation Catalyst within Source Code

 – 146 –

[26] Mishra P. (2014) Measuring The Understandability And Maintainability Of

C# Inheritance And Interface Source Codes. Universe of Emerging

Technologies and Science 1, 1 (June 2014)

[27] Jaroslav Porubän and Milan Nosál. (2014) Leveraging Program

Comprehension with Concern-oriented Source Code Projections (2014)

https://doi.org/10.4230/oasics.slate.2014.35

[28] Girish Maskeri Rama and Naineet Patel. (2010) Software modularization

operators. In 2010 IEEE International Conference on Software

Maintenance. IEEE. https://doi.org/10.1109/icsm.2010.5609546

[29] Luz Rello, Horacio Saggion, Ricardo Baeza-Yates, and Eduardo Graells.

(2012) Graphical Schemes May Improve Readability but Not

Understandability for People with Dyslexia. In Proceedings of the First

Workshop on Predicting and Improving Text Readability for Target Reader

Populations (PITR ’12) Association for Computational Linguistics,

Stroudsburg, PA, USA, 25-32

[30] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia

Wohed. (2006) On the Suitability of UML 2.0 Activity Diagrams for

Business Process Modelling. In Proceedings of the 3
rd

 Asia-Pacific

Conference on Conceptual Modelling - Volume 53 (APCCM ’06)

Australian Computer Society, Inc., Darlinghurst, Australia, Australia

[31] Ksenia Ryndina, Jochen M. Küster, and Harald Gall. Consistency of

Business Process Models and Object Life Cycles. In Models in Software

Engineering. Springer Berlin Heidelberg, 80-90, https://doi.org/

10.1007/978-3-540-69489-2_11

[32] Mahesh Shirole and Rajeev Kumar. (2012) Testing for concurrency in

UML diagrams. ACM SIGSOFT Software Engineering Notes 37, 5 (sep

2012) 1 https://doi.org/10.1145/2347696.2347712

[33] Martin Siebenhaller and Michael Kaufmann. (2006) Drawing Activity

Diagrams. In Proceedings of the 2006 ACM Symposium on Software

Visualization (SoftVis ’06) ACM, New York, NY, USA, 159-160

https://doi.org/10.1145/1148493. 1148523

[34] Valentino Vranić and Adam Neupauer. (2019) Abstract Layers and Generic

Elements as a Basis for Expressing Multidimensional Software Knowledge.

In Modelling is going to become Programming, a workshop at 23
rd

European Conference on Advances in Databases and Information Systems.

to be published by Springer, https://doi.org/10.1109/ icpc.2013.6613836

[35] Zhiqun Wang. (2013) The application of business activity diagram to

capture use case. In 2013 IEEE Third International Conference on

Information Science and Technology (ICIST) IEEE https://doi.org/10.1109/

icist.2013.6747568

