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Abstract: The paper deals with the formation control of Unmanned Ground Vehicles (UGVs)
moving in horizontal plane. The control system consists of the high level centralized forma-
tion control of the UGVs and the low level decentralized PID type suspension, speed and
steering control of the different vehicles. Both problems are discussed in multi-body assump-
tions. The paper presents the generalization of the multi-body method for underactuated
car-like vehicles, developed originally for fully-actuated surface ships. In order to simplify
the design and implementation on the formation level, an approximate single track dynamic
model was assumed for each vehicle. At low level a more realistic two track dynamic model
is used in the form of a multibody system in tree structure. This realistic nonlinear model is
obtained by using Appell’s method, Pacejka’s magic formula for tyre-road connections and
kinematic constraints expressing the nullity of vertical accelerations of the contact points.
The interface between the higher and lower control levels is presented in the form of acceler-
ation and steering angle prescriptions (output of high level). The decentralized control system
of each vehicle converts the specifications in smooth reference signals and performs the de-
sired motion. Simulation results of the high level control of UGV formations are presented
for sine-shaped and circular paths.

Keywords: Formation Control, Unmanned Ground Vehicles, Multi-Body Approach, Tree
Structured Vehicle, Pacejka’s Magic Formula, Contact Point Constraints, Robust PID Control

1 Introduction

Formation control design and implementation is a complex and time-critical prob-
lem for which a hierarchical control system will be suggested. The high level sub-
system deals with the formation control of vehicles satisfying connection constraints
equivalent to the formation. The problem is a multi-body one in the sense that many
vehicles take part in the formation. In order to simplify the design and realization
at the formation level, approximate single track dynamic model will be assumed
here for each vehicle. However, the realization needs a more realistic model for
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the vehicles, hence a two track model will be considered for each vehicle at the
lower control level. The interface between the higher and the lower control levels
will be presented in the form of acceleration and steering angle prescriptions for the
different vehicles and produced as output of the formation control. At low level,
the decentralized control system of each vehicle converts the specifications in suf-
ficiently smooth reference signals and performs the desired control based on robust
PID type suspension, speed and steering control. At this level each vehicle is con-
sidered as a real multi-body system in tree structure. The motion of the formation is
the result of both levels.

For stabilization of ground vehicles (robots) in formation the fusion of potential
field method, passivity theory, dynamic inversion and LMI technique is a theoret-
ically well founded approach if the inertia of the car-like vehicles has to be taken
into consideration [1], [2]. Synchronized path following based on the fusion of
backstepping control and passivity theory was suggested for surface ships [3]. Un-
fortunately this method cannot be used for UGVs because the dynamic model of the
vehicles does not satisfy the strict-feedback form which is assumed for backstep-
ping control. Another approach may be multi-body interpretation of the formation
resulting in constrained control. This method was successfully applied in the for-
mation control of full-actuated surface ships [4]. For formation flight control of
constraint multi-body system [5] presents an approach where the aircraft model is
of point-mass type and only position distance constraints are considered. Ground
vehicles are underactuated and in many cases their inertia cannot be neglected, thus
the original formulation for ships has to be generalized. One aim of the paper is to
elaborate the necessary modification of the theory and illustrate its applicability for
car-like UGVs.

In general, the ground vehicle can be regarded as a multi-body system whose base is
the mobile chassis and the wheels are the end effectors. Several methods are avail-
able to find the kinematics and dynamic models of mobile robots [6, 7], but they
mostly build on simplifying kinematic constraints that do not take into account the
three-dimensional forces between the wheel and the ground. Other recent works
[8, 9] use robotic description for modeling and validation of cars, but they do not
deal with closed loop control and do not take into account the lateral and longitu-
dinal offset in the vehicle’s centre of gravity point (CoG). Numerical methods and
symbolic software (Symoro+, OpenSYMORO) are available to find the dynamic
model based on Newton-Euler method [10]. Another often used method is the La-
grange technique. In this paper, an alternative approach is introduced that uses the
concept of acceleration energy and eliminates a large number of numerical steps of
the Newton-Euler method. The algorithm is based on Appell’s method which di-
rectly computes the dynamic model of the composite system. Although using sym-
bolic software these methods result in equivalent dynamic models, however for only
numerical computations (without the use of the symbolic results) they have different
computation time. Another aim of the work is to develop a complex vehicle control
system that is capable of eliminating the rolling and pitching effect through active
suspension control system as well as maintaining a prescribed velocity and steering
angle profile in closed loop. Such a system helps also studying the interaction of the
system with the environment.
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The structure of the paper is as follows. Section 2 summarizes the concept of the
multi-body implementation for full-actuated systems (surface ships, robots etc.).
Section 3 discusses the conversion of formation specifications into multi-body con-
straints. Section 4 gives the approximate dynamic model of a single ground vehicle
and the generalization of the multi-body approach for UGVs. The simplified model
consideres the tyre-road connections through the cornering stiffnesses which is a lin-
ear approximation. Section 5 presents the geometric and kinematic model and the
tree structured topology of a single vehicle using the modified Denavit-Hartenberg
form [11]. Here will be developed the vehicle’s realistic two-track dynamic model
using Appell’s method by calculating the Gibbs functions of each segment. This
section describes also the kinematic constraints and the external forces acting on the
vehicle. The realistic model considers the tyre-road connections in the form of Pace-
jka’s magic formulas hence the model is nonlinear in the state variables. In Section
6 the decentralized low-level control system will be presented in short form con-
taining the reference signal design and the concept of PID type active suspension,
driving and steering control based on the realistic nonlinear vehicle model. Section
7 shows the simulation results for formation control of UGVs using multi-body ap-
proach. Finally Section 8 summarizes the conclusions and the main directions of
future research.

2 Fully actuated control of constrained multi-body sys-
tems

A single full-actuated marine vehicle moving in the horizontal plane can be mod-
elled by

η̇ = R(ψ)ν
Mν̇ +n(ν , ν̇ ,η) = τ

(1)

where R(ψ)is the rotation matrix from body to the (quasi) inertia frame, η =(x,y,ψ)T

is the position and orientation, ν = (u,v,r)T is the linear and angular velocity, M de-
notes the system inertia (for ships the rigid body inertia and the added mass) and n
contains the centripetal, Coriolis, damping and gravity effects. Notice the similarity
to robot control in 6-DOF where H(q)q̈+ h(q, q̇) = τ is the dynamic model of the
robot in joint coordinates and the Jacobian J(q) plays the role of the rotation matrix
according to ẋ = J(q)q̇.

If a set of constraints is given in the form of C(η) = 0 ∈ Rp in the inertia system
and the constraints Jacobian is denoted by W (η) = ∂C(η)

∂η
then, by using the results

of [12], the motion equation is modified to

Mν̇ +n(ν , ν̇ ,η) = τ + τc (2)

where the constraint force τc has the form τc = −W (η)T λ and λ is the Lagrange
multiplier.

– 139 –



B. Lantos et al. Hierarchical control of unmanned ground vehicle formations using multi-body approach

Transforming the motion equation into the inertia frame and using the fact that
RT τη = τ ⇒ τη = Rτ , it yields

Mη(η)η̈ +nη(ν , ν̇ ,η) = τη −R(ψ)W (η)T
λ . (3)

It follows from C(η) = 0 that

Ċ(η) =
∂C
∂η

η̇ =W (η)η̇ = 0, C̈(η) =W (η)η̈ +Ẇ (η)η̇ = 0. (4)

Adding stabilizing terms we choose

C̈ =−KdĊ−KpC (5)

with Kd ,Kp diagonal and having positive elements. Then s2 + kdis + kpi = s2 +
2ξ ω0s+ω2

0 = 0 is stable if kdi = 2ξ ω0 and kpi = ω2
0 where ξ > 0 is the damping

and ω0 is the undamped eigenfrequency. In this case it follows

WM−1
η (τη −nη −RW T

λ )+Ẇ η̇ =−KdĊ−KpC (6)

λ = (WM−1
η RW T )−1[WM−1

η (τη −nη)+Ẇ η̇ +KdĊ+KpC] (7)

if WM−1
η RW T is invertible which is satisfied if W has full row rank.

If there are n vehicles then we can collect vectors into new vectors and matrices into
new blockdiagonal matrices. The resulting vectors and matrices will be denoted
further on by η , nη ,τη ,τc and Mη , respectively. The prescribed formation can be
converted to the constraint C(η) = 0 having Jacobian W (η).

The constraint force for the ith vehicle is

τci = ∑k∈Ai
c
∑ j∈Bk

−W T
ki (WkM−1

η ,i jR
−1T
i j W T

k )−1×
[WkiMη ,i j(τη ,i j−nη ,i j)+Kd,kiĊki +Kp,kiCki]

(8)

where Ai
c is the index set of vehicles staying in connection with vehicle i, Bk is the

index of constraints selected by index k and Wki = 0 for k /∈ Ai
c.

3 Conversion of formation specifications to multi-body
constraints

In the sequel the indexes p, o and d denote position, orientation and desired value,
respectively, furthermore f is for fixed, tt for time dependent value and r for relative
value between two vehicles. For simplicity denote here ξi = (xi,yi)

T the position
and ψi the orientation of vehicle i, and let their collected vectors be ξ and ψ , re-
spectively.

Desired position and orientation constraints. The position of vehicle i is forced
to ξd by the constraint

Cp(ξ ) = ξi−ξd = 0. (9)
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For at least three times differentiable desired path ξd(t) we have

Ctt(ξ ) = ξi−ξd(t) = 0. (10)

Similarly, for orientation constraints it yields

Co(ψ) = ψi−ψd = 0, Co,tt(ψ) = ψi−ψd(t) = 0. (11)

Distance constraints. If the distance ri j should be satisfied between vehicle i and j
then the appropriate constraint is

Crd(ξ ) = (ξi−ξ j)
T (ξi−ξ j)− r2

i j = 0. (12)

Fixed relative position and orientation constraints. For prescribed relative posi-
tion and orientation between two vehicles the constraints are

C f p(ξ ) = ξi−ξ j− pi j = 0, C f o(ψ) = ψi−ψ j−oi j = 0. (13)

Combined constraints. If for example Crd and Cp are two constraints to which the
constraint forces are W T

rdλrd and W T
p λp then they can be combined to

W T
λ = [W T

rd W T
p ]

[
λrd
λp

]
. (14)

Formation topology. Typical formation specifications can be converted to a result-
ing constraint set by using the above steps and their combinations. We shall assume
that redundant constraints have already been omitted and there are no contradictions
amongst the constraints which means that the resulting W has full row rank.

Master vehicle and followers. We can specify a master vehicle for which the de-
sired path and path velocity will be designed. Specifications for the other vehicles
can be derived from them if the formation type is chosen. Typical formations may
be longitudinal, transversal, V-shaped and circular ones.

If xr(t), yr(t) is the desired reference path for the master vehicle then its desired
reference orientation can be determined by ψr(t) = arctan2(ẏr(t), ẋr(t)). Denoting
the relative position of vehicle i to the master vehicle by pxi , pyi then the following
constraints have to be introduced:

Cm,tt(η) =

 xm− xr(t)
ym− yr(t)
ψm−ψr(t)

 , Ci,tt(η) =

 xi− xr(t)− pxi(t)
yi− yr(t)− pyi(t)

ψi−ψr(t)

 i 6= m. (15)

C(η) =
[

CT
m,tt(η) · · · CT

i,tt(η) · · ·
]T

. (16)

If W denotes the Jacobian of C then it yields

W T
λ =

[
W T

m,tt · · · W T
i,tt · · ·

] [
λ T

m,tt · · · λ T
i,tt · · ·

]T
. (17)

Since in each row of C appears only a single variable hence in case of the above
convention W = I and Ẇ = 0 which simplifies the computations.
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Figure 1
Simplified sketch of a single ground vehicle

4 Multi-body approach for underactuated UGVs in for-
mation

The high level formation control design is a complex problem. Therefore, as usual
in the literature, we apply the single-track vehicle model in order to make the com-
putations easier and more efficient. The simplified sketch of a single car-like ground
vehicle moving in horizontal plane is shown in Fig. 1.

4.1 Simplified dynamic model of a single vehicle

The dynamic model of a single ground vehicle can be written in the form

ẋ = vcos(φ)
ẏ = vsin(φ)

φ̇ = a11
v β + a12

v2 r+ b1
v δw

β̇ = a11
v β +

(
a12
v2 −1

)
r+ b1

v δw

ṙ = a21β + a22
v r+b2δw

v̇ = α
(18)

where q1 = (x,y)T is the position, v is the absolute value of the velocity, ψ is the
orintation, β is the side slip angle, φ = β +ψ , δw is the steering angle and α is the
longitudinal acceleration, see [2]. Here we used the notations

a11 =− cF+cR
mv

a12 =
cRlR−cF lF

mv
b1 =

cF
mv

a21 =
cRlR−cF lF

Iz
a22 =−

cRl2
R+cF l2

F
Iz

b2 =
cF lF

Iz

(19)

where mv is the mass, Iz is the inertia moment of the vehicle and cF , cR are the
cornering stiffnesses assumed to be constant.

For heavy-duty cars we assumed a11 = −147.1481, a12 = 0.0645, a21 = 0.0123,
a22 =−147.1494, b1 = 66.2026 and b2 = 31.9835, all in standard SI units.

With x̄ = (x,y,φ ,β ,r,v)T and u = (δw,α)T the system can be brought to the param-
eter dependent input affine form ˙̄x = Ā(x,ρ)+ B̄(x,ρ)u where ρ = (v,v2)T is the
parameter vector.
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4.2 Generalization of multi-body interpretation for UGVs

Since each vehicle is underactuated and the number of input signals is two, we
can prescribe only limited type of constraints. From physical consideration, the
variables for which constraints can be specified, will be the position coordinates
x,y. Hence, we omit orientation parts from the set of constraints. However, if the
position follows its prescribed path and the side slip angle is zero (except for short
transients), then the vehicle’s velocity is parallel to the tangent of the path and its
orientation is acceptable. For small side slip angle β the assumption is fulfilled.

Choosing new state variables according to q1 =(x,y)T , q2 =(ẋ, ẏ)T and q3 =(β ,r)T ,
and applying the usual notation in robotics Cφ = cos(φ) and Sφ = sin(φ), then we
obtain

q̇1 =

[
vCφ

vSφ

]
(20)

q̇2 =

[
v̇Cφ − vSφ φ̇

v̇Sφ + vCφ φ̇

]
=

[
αCφ − vSφ [(a11/v)β +(a12/v2)r+(b1/v)δw]
αSφ + vCφ [(a11/v)β +(a12/v2)r+(b1/v)δw]

]
(21)

from which follows q̈1 = P(φ)z+Q(φ)τ , where z = (β ,r/v)T , τ = (δw,α)T and

P(φ) =
[
−a11Sφ −a12Sφ

a11Cφ a12Cφ

]
, Q(φ) =

[
−b1Sφ Cφ

b1Cφ Sφ

]
. (22)

The same is valid for each vehicle. Denoting the appropriate terms for vehicle
i by q1i, q̇1i, zi, τi, Pi, Qi and collecting them in the vectors q1, q̇1, z, τ and in
the blockdiagonal matrices P, Q, respectively, then we can generalize the original
method for UGVs. Hence

Wq̈1 +Ẇ q̇1 = C̈ (23)

W [Pz+Qτ]+Ẇ q̇1 = C̈ (24)

τ =−W T
λ (25)

W [Pz−QW T
λ ]+Ẇ q̇1 = C̈ (26)

WQW T
λ =WPz+Ẇ q̇1−C̈ (27)

from which it follows

λ = (WQW T )−1(WPz+Ẇ q̇1−C̈). (28)

The inverse of WQW T exists since det Q =−b1 6= 0 and W has full row rank.

The constraint force for the ith vehicle is

τci = ∑k∈Ai
c
∑ j∈Bk

−W T
ki (WkQi jW T

k )−1×
(WkiPi jzi j +Ẇkiq̇1,i j +Kd,kiĊki +Kp,kiCki)

(29)

where Ai
c, Bk and Wki are defined as earlier and the environmental force is assumed

to be zero.
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4.3 Stability considerations

The feedback loop works as follows. Each vehicle determines its state x̄i = (xi,yi,φi,
βi,ri,vi)

T and computes ψi = φi−βi, zi = (βi,ri/vi)
T , Pi(φi), Qi(φi), q1i = (xi,yi)

T

and q̇1i = (ẋi, ẏi)
T . The composite vectors q1, q̇1, z and the blockdiagonal matrices

P, Q are formed, then the constraint C, its Jacobian W and the derivative Ċ = Wq̇1
will be computed. For each vehicle i the force τc,i will be determined using forma-
tion information and Eq. (29). Finally τc,i = (δw,i,αi)

T will be applied as steering
angle and acceleration for the vehicle. Thus the feedback loop is closed.

The constraints determine a manifold MC. The choice of Kd , Kp and C̈ +KdĊ +
KpC = 0 assures that the system moves on the manifold satisfying global exponen-
tial stability (GES).

However the system of UGVs is underactuated therfore zero dynamics is present.
The stability of the zero dynamics was proved in [2].

5 Realistic dynamic modeling and control using robotic
formalism

5.1 Geometric topology of 16 DoF ground vehicle

Consider a tree-structured mechanical system assembled by rigid bodies B j for j =
1, . . . ,n, i.e. numbered from the base body to the terminals. A body can be virtual
or real: virtual bodies are introduced to describe joints with multiple degrees of
freedom such as ball joints or intermediate fixed frames.

Frame K j, associated with body B j, is given by its origin and an orthonormal basis
(x j,y j,z j). Transformation between two consecutive frames Ki and K j is performed
by the modified Denavit-Hartenberg formalism mand can be described by the ho-
mogeneous transformation, see [11]:

iTj =

[ iA j
i p j

01×3 1

]
where iA j defines the (3×3) rotation matrix and i p j is the (3×1) vector describing
the position of the origin of K j with respect to Ki. The generalized coordinate of the
jth joint connecting B j−1 and B j is defined as follows:

q j = σ̄ jθ j +σ jr j, σ̄ j = 1−σ j (30)

where σ j is 0 for rotational joints and 1 for translational joints. In the case of fixed
frames attached to the same body, no joint variable is used.

The vehicle is considered as a mobile robot interconnected by joints, see Fig. 2,
and modeled as a multi-body system consisting of 10 actuated and 10 virtual bodies
similar to [13]. In the sequel, front steered and rear axle driven vehicle is assumed.
Notice that for example x4,5 means that the axes x4 and x5 are equivalent. The
different joint variables are denoted by q j.
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Figure 2
Model of 16 DoF ground vehicle

The 16 degree of freedom (DoF) model of the vehicle incorporates a 6 DoF (x,y,z,
φ ,θ ,ψ) chassis (K1) as the base, two front steering wheels (q3,q8) which can be
rotated about the front vertical axes, four suspensions (q2,q7,q12,q16) connected to
the chassis by vertical translational joints and four driving wheels (q5,q10,q14,q18).
Notice that for rear axle driven vehicles (q5,q10) are not actuated.

5.2 Novel Appell Formalism for Tree Structured Systems

There exist several equivalent methods for mass-point systems (Newton-Euler, La-
grange, Appell) based on the common assumption that the sum of internal forces
and the sum of the moment of internal forces to any point are zero which can be
extended to rigid multi-body systems, see Section A.4 in [2]. Each method tends to
derive the dynamic model in vector form of

τ = M(q)q̈+h(q, q̇) (31)

where M(q) is the generalized inertia matrix and the effects of the centrifugal, Cori-
olis, gravity and external forces are contained in h(q, q̇).

In our approach, Appell’s method is chosen which uses the concept of acceleration
energy or more precisely, the Gibbs function [2, 14] and eliminates a large number
of numerical steps of the Newton-Euler technique. The algorithm directly computes
the dynamic model of the composite system without the need of differentiation by
time as in the Lagrange formalism. In case of numerical computations the complex-
ity of the methods is different. Using symbolic computations, these differences play
no more role.

The dynamic model by Appell’s method reads as

∂G
∂ q̈ j

+
∂P
∂q j

= τ j (32)
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where P is the potential energy (gravity effect) of the segment, q j is the generalized
variable in the direction of the generalized force τ j.

In order to obtain the dynamic model in the vector form M(q)q̈+ h(q, q̇) = τ and
simplify the use of Appell’s method, the acceleration and angular acceleration of
the segments will be computed in the compatible form

a j = Ω j(q)q̈+θ j(q, q̇), ε j = Γ j(q)q̈+φ j(q, q̇). (33)

Moving from the root to the terminal of a branch in the tree structure, the matrices
and vectors of the kinematic model can be computed in forward recursion. Let the
antecedent of segment j be i and the efficient dimension of q will be increased by 1
in each step, then

Γ j =
[ iAT

j Γi | σ̄ j(0, 0, 1)T ]
, ω j = Γ jq̇

φ j = iAT
j φi + σ̄ j (ωy, j,−ωx, j, 0)T q̇ j

Ω j =
[ iAT

j (Ωi− [i p j×]Γi) |σ j(0, 0, 1)T ]
θ j = iAT

j {θi +([φi×]+ [ωi×]2)i p j)}+σ j2(ωy, j,−ωx, j, 0)T q̇ j.

After some conversions the matrix and vector portions of a single segment of the
dynamic model can be written in form of

Ms(q) =
[

ΩT ΓT ][ mI3 − [mρc×]
[mρc×] J

]
s

[
Ω

Γ

]
hs(q) =

[
ΩT ΓT ][ θm+φ ×mρc +[ω×] [ω×]mρc

Jφ −θ ×mρc +ω× (Jω)

]
s

where the matrices Ω, Γ are already the concatenated ones, e.g. Ω is of type 3n×n
and Γ is of type 3n×n.

The dynamic model (31) is the sum of the above portions if the index s goes from the
root to the terminals of the branches because the Gibbs function is additive. After
these extensions both composite matrices Ω and Γ have (6+nq) columns and 3 ·21
rows (see the number of frames in Fig. 2).

5.3 Kinematic constraints

Composite variables are defined to collect the parameters of the 6 DoF moving base
and the generalized coordinates of the vehicle

qEL = [x,y,z,ϕ,θ ,ψ,q2, . . . ,q18]
T . (34)

In order to keep the vehicle in the ground, kinematic constraints are introduced that
express the nullity of vertical accelerations at the contact points in the reference
frame

( f a6z,
f a11z,

f a15z,
f a19z)

T = J4q̈EL +Ψ = 04×1. (35)
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Adding the above constraint equations to the result of Eq. (31) in form of Lagrange
multipliers (λ ) and assuming that no external forces act on the moving base, the
direct dynamic model becomes(

q̈EL
λ

)
=

[
M16×16 JT

4
J4 04×4

]−1(
τ−h
−Ψ

)
(36)

where λ represent the constraint forces to maintain the contact points of the wheels
on the ground and the first six components of τ are zero, see [12]. System (36) can
be reformulated into a set of ordinary differential equations (ODEs) with constraints
by using the well known differentiation rules a = v̇+ω × v and ε = ω̇ in moving
frames.

5.4 External forces

Normal (Fz, j), lateral (Fy, j) and longitudinal (Fx, j) forces at the wheel/ground con-
tact points are taken into account in the right hand side of the dynamic model
by projecting them to the base by the corresponding Jacobian matrix. Normal
forces can be computed from the dynamic load distribution as described in [15]
for j = {6,11,15,19} respectively:

Fz, j =
m

L f +Lr
(gL∗+ηh1ax)

(
1
2
+ν

h1ay

2gd

)
(37)

η = {−1,−1,1,1}, ν = {−1,1,−1,1} (38)

where g is the gravity constant, m is the total mass of the vehicle, η and ν are wheel
selectors and L∗ defines the static equilibrium point along the x-axis (front and rear
are different) based on ρ1c,x and h is the height of the center of mass above the road
surface in K f . Since this formula does not take into consideration ρ1c,y we have
developed corrections for it similarly to [9].

The longitudinal and lateral wheel forces are described by Pacejka’s model [16] and
given by the same formula, with different coefficients, in function of the longitudinal
and lateral slip

Fx,y = Dsin(Catan(Bα−E(Bα− atan(Bα))))

αx, j =−(1vx, j−Raq̇ j)/(max{1vx, j,Raq̇ j})

αy, j =−κqi− arctan
( 1vy, j

1vx, j

)
, j = {6,11,15,19}

where i = {3,8} for the right and left front wheels and κ is zero for the rear wheels.
The total torques acting on the driven wheels consist of the active actuator torques
and the passive longitudinal wheel forces

τ j = τa j−RaFx, j, j = {14,18}. (39)
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6 Low level decentralized control system based on re-
alistic vehicle model

6.1 Reference signals

Reference signals for vehicles can be derived from the acceleration pedal and the
steering wheel changes, respectively. It will be assumed that they are variables for
the desired longitudinal velocity and the derivative of the steering angle (whose in-
tegral is the steering angle). However, for control purposes in many cases a strategy
has to be elaborated to find their time derivatives, i.e. the reference acceleration
and the steering angle acceleration. Of course, if the reference signals and their
derivatives are designed analytically, then this step can be omitted.

Denote with ẋref any variable to be differentiated further by the time and assume
an approximating linear model for the output ẋ in the form of Gẋ,u(s) = 1

s(1+sτ) . A

fictitious feedback system can be designed with PI controller Gu,e(s) = kp+
ki
s , error

signal e = ẋref− ẋ and open loop Go(s) = (kps+ki)
1

s2(1+sτ)
and closed loop transfer

function

Gẋ,ẋref(s) =
G0(s)

1+G0(s)
=

kps+ ki

τs3 + s2 + kps+ ki
. (40)

Then the derivative ẍref can be approximated by the output of the controller of this
fictitious closed loop system, e.g.

ẍref ≈
kps2 + kis

τs3 + s2 + kps+ ki
. (41)

Notice, that τ is responsible for the precision of the approximation. Based on
the different forms of the root locus, for high speed approximations τ = 0.005sec,
ki/kp = 0.25 and kp = 100 were chosen for the applications.

This method was applied for finding both v̇ref and δ̈ref.

6.2 Active suspension control

The vertical movement for passive suspensions can be taken into account as an
elasticity model of

τe j = k j(q j−q j0)+Foffs, j +d jq̇ j, j = {2,7,12,16} (42)

with stiffness k j and damping d j. The displacement of the suspensions is also influ-
enced by the initial offset Foffs, j.

An important problem is the determination of the resulting total mass and center
of gravity from the first moments of the chassis and the four wheel branches in
steady state. Using their values and (37)-(38) the load forces can be determined.
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Then from them and the stiffness values of the suspension the vertical movements
of the translational joints q j0 and their average value q0,avg can be determined. The
prescribed height of K1 above the road surface was chosen as z0 =Ra+q0,avg and the
offsets Foffs, j were computed to it. The passive suspension forces can be computed
from them by (42).

Beside the passive suspension PID type active suspension was applied according to

τ j = KP(z0−Ra−q j)−KDq̇ j +KI

∫
(z0−Ra−q j)dt,

KP = 100000, KD = 10000, KI = 300000.

6.3 Speed control

For each actively driven wheel yields component-wise τ = θ q̈ where θ denotes the
resulting inertia moment of the axis. The usual choice is q̇v,ref = vref/Ra. Hence, the
PID control law

τ := θ [ki,v(qv,ref−q)+ kp,v(q̇v,ref− q̇)+ q̈v,ref] (43)

can be suggested, from which with e := qv,ref−q follows the error differential equa-
tion and from it the characteristic equation

ë+ kp,vė+ ki,ve = 0⇒ s2 + kp,vs+ ki,v = 0. (44)

With the choice of (1+ sT )2 = 0, it follows that kp,v =
2
T and ki,v =

1
T 2 are satisfac-

tory for the closed loop stability.

6.4 Steering control

For active steering a similar concept was chosen as for speed control, however now
q̇D,ref = δ̇w,ref and its integral and derivative are qD,ref and q̈D,ref, respectively. The
PID control law and controller parameters were chosen similarly to active speed
control.

7 Simulation results of high level control of UGV for-
mations

Efficiency of the robust and high-speed low level control system is presented in an-
other paper [17]. Hence, only the high level control of UGV formations is discussed
here. The high level system produces reference signals for the low level system in
form of acceleration (α) and steering angle (δw) for each vehicle of the formation.
In the sequel simulation results will be presented using MATLAB/Simulink.
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Figure 3
Structure of the hierarchical control system using multi-body interpretation

7.1 Software system

A software system was elaborated for the investigation of formation control of
unmanned ground and marine vehicles using a broad field of methods [18]. The
method based on potential function can be applied for UGVs and UMVs.

Synchronized path following was implemented only for surface ships in formation
because this method is based on the dynamic model in strictly feedback form which
is not valid for UGVs.

Formation control based on multi-body implementation was elaborated both for full-
actuated ships and underactuated car-like vehicles. The methods allow the investi-
gation of different types of formations, amongst horizontal, vertical, V-shaped and
circular ones. The formation can be dynamically changed during the experiment.

The software has a graphical user interface in which the control method, the number
of vehicles, their groups, the initial positions/orientations and the parameters of the
paths, vehicles and controllers can be easily formulated. After the simulation all the
states, control and other signals can be drawn and the motion of the formation is
presented in animation.

From the simulation results we present here only the formation control of UGVs
based on multi-body method in varying formations. For the constraints manifold
kdi = kpi = 150 was chosen. The structure of the control system based on multi-
body interpretation is shown in Fig. 3.

7.2 Sine-shaped paths

The master vehicle has index 1 and its orientation is ψr = arctan2(Aω cos(ωt),1),
where A is the magnitude and ω is the angular velocity of the master’s path. In
the experiments heavy-duty cars are used therefore A = 100m, ω = 0.02rad/sec and
D = 12.5m are assumed.

In horizontal formation the reference path of the i-th vehicle is sin-shaped according
to
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Figure 4
Realized motion of UGVs along sin-shaped path in varying formations

(
xi(t)
yi(t)

)
=

(
t +di cos(ψr)

Asin(ωt)+di sin(ψr)

)
where di = (−1)i−1 bi/2cD is the distance from the master and D is the relative
distance between the vehicles. Vehicles having odd index are before the master, the
others are behind the master. The formation is tangential to the master’s path.

Vertical formation is orthogonal to the tangent of the master’s path. Vehicles having
odd index are to the right from the master, while vehicles having even index are to
the left from the master. The path is(

xi(t)
yi(t)

)
=

(
t +di sin(ψr)

Asin(ωt)−di cos(ψr)

)
where di is as for horizontal formation.

V-shaped formation has path

(
xi(t)
yi(t)

)
=


(

t−di sin(π/4−ψr)
Asin(ωt)−di cos(π/4−ψr)

)
i = 2k+1(

t−di cos(π/4−ψr)
Asin(ωt)+di sin(π/4−ψr)

)
i = 2k

where di = bi/2cD is the distance between master and follower. The wing angle of
the V-shape is π/4 relative to the tangent of the master’s path. Vehicles having odd
index are to the right from the master, the others are to the left.

Simulation results for three UGVs along sin-formed paths in varying V-shaped, hor-
izontal and vertical formations are shown as follows. Fig. 4 presents the realized
paths for the varying formations using multi-body approach. Snap-shot of the con-
trol signals along sin-formed paths are shown in Fig. 5. The snap-shot of the side
slip angles along sin-formed paths can be seen in Fig. 6 illustrating that β is small
except transients belonging to larger curvatures.
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Figure 5
Snap-shot of the control signals on V-shaped section along sin-formed path
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Figure 6
Snap-shot of the side-slip angles on V-shaped section along sin-formed path
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7.3 Circular paths

The master vehicle has index 1 and A and ω are as for the sin-formed path, however
the orientation is ψr = mod(ωt +π/2, 2π/ω).
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Figure 7
Realized motion of UGVs along circular paths in varying formations

In horizontal formation the circular path is defined by(
xi(t)
yi(t)

)
=

(
Acos(ωt)+di cos(ψr)
Asin(ωt)+di sin(ψr)

)
where di = (−1)i−1 bi/2cD and D is the relative distance between the vehicles. The
formation is tangential to the master’s path. Vehicles having odd index are before
the master, the others are behind the master.

In vertical formation(
xi(t)
yi(t)

)
=

(
Acos(ωt)+di sin(ψr)
Asin(ωt)−di cos(ψr)

)
where di = (−1)i−1 bi/2cD. The formation is orthogonal to the master’s path. Ve-
hicles having odd index are to the right from the master, the others are to the left.

In V-shaped formation the wing angle of the V-shape is π/4 relative to the tangent
of the master’s path. Vehicles having odd index are to the right from the master, the
others are to the left. The position is defined by

(
xi(t)
yi(t)

)
=


(

Acos(ωt)−di sin(π/4−ψr)
Asin(ωt)−di cos(π/4−ψr)

)
i = 2k+1(

Acos(ωt)−di cos(π/4−ψr)
Asin(ωt)+di sin(π/4−ψr)

)
i = 2k
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Figure 8
Snap-shot of the control signals on V-shaped section along circular path
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Figure 9
Snap-shot of the side-slip angles on V-shaped section along circular path

where di = bi/2cD is the distance between master and follower.

Simulation results for three UGVs along circular paths in varying V-shaped, hori-
zontal and vertical formations are shown as follows. Fig. 7 presents the realized
paths for the varying formations using multi-body approach. Snap-shot of the con-
trol signals along circular paths are shown in Fig. 8. The snap-shot of the side slip
angles along circular paths can be seen in Fig. 9 illustrating that β is small except
transients belonging to larger curvatures.

8 Conclusions

A hierarchical control system has been elaborated for the formation control of UGVs
moving in horizontal plane. The control system consists of the high level centralized
formation control of the UGVs and the low level decentralized PID type suspension,
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speed and steering control of the different vehicles. Both problems were discussed
in multi-body assumptions.

The formation control method, developed originally for fully-actuated ships, was
generalized for underactuated car-like vehicles. Multi-body theory at this level used
the result of Lanczos and the method of Lagrange multipliers. Formation specifi-
cations were formulated as constraints containing position, orientation and distance
prescriptions. In order to simplify the design and implementation on formation
level, approximate single track dynamic model was assumed for each vehicle.

At low level a more realistic two track dynamic model is used in the form of a multi-
body system in tree structure. This realistic nonlinear model is obtained by using
Appell’s method, Pacejka’s magic formula for tyre-road connections and kinematic
constraints expressing the nullity of vertical accelerations of the contact points. The
interface between the higher and lower control levels is presented in the form of
acceleration and steering angle prescriptions (output of high level). At low level the
decentralized control system of each vehicle converts the specifications in smooth
reference signals and performs the desired motion.

Simulation results of the high level control of UGV formations were presented for
sine-shaped and circular paths. The Simulation results demonstrate the applicability
of the multi-body approach for car-like UGVs.

Detailed simulation results for low level vehicle control based on PID type suspen-
sion, speed and steering controllers can be found in another paper [17].

Further researches are in progress to check the method under real-time conditions
and state estimation based on the fusion of GPS and IMU. Further directions may
be the elaboration of real-time multi-body approach for unmanned indoor quadrotor
helicopters.
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